GNAT User’s Guide
for OpenVMS Alpha

GNAT, The GNU Ada 95 Compiler
GNAT Version for GCC 3.3.2

Ada Core Technologies, Inc.

Copyright (©) 1995-2002, Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU Free Documentation
License”, with the Front-Cover Texts being “GNAT User’s Guide for OpenVMS Alpha”,

and with no Back-Cover Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

About This Guide 1

About This Guide

This guide describes the use of of GNAT, a full language compiler for the Ada 95 programming
language, implemented on DIGITAL OpenVMS Alpha Systems. It describes the features
of the compiler and tools, and details how to use them to build Ada 95 applications.

What This Guide Contains

This guide contains the following chapters:

Chapter 1 [Getting Started with GNAT], page 5, describes how to get started compiling
and running Ada programs with the GNAT Ada programming environment.

Chapter 2 [The GNAT Compilation Model], page 11, describes the compilation model
used by GNAT.

Chapter 3 [Compiling Using GNAT COMPILE], page 29, describes how to compile
Ada programs with GNAT COMPILE, the Ada compiler.

Chapter 4 [Binding Using GNAT BIND], page 59, describes how to perform binding of
Ada programs with GNAT BIND, the GNAT binding utility.

Chapter 5 [Linking Using GNAT LINK], page 87, describes GNAT LINK, a program that
provides for linking using the GNAT run-time library to construct a program. GNAT
LINK can also incorporate foreign language object units into the executable.

Chapter 6 [The GNAT Make Program GNAT MAKE]|, page 91, describes GNAT MAKE, a
utility that automatically determines the set of sources needed by an Ada compilation
unit, and executes the necessary compilations binding and link.

Chapter 7 [Renaming Files Using GNAT CHOP], page 99, describes GNAT CHOP, a
utility that allows you to preprocess a file that contains Ada source code, and split it
into one or more new files, one for each compilation unit.

Chapter 8 [Configuration Pragmas|, page 103, describes the configuration pragmas
handled by GNAT.

Chapter 9 [Handling Arbitrary File Naming Conventions Using gnatname], page 105,
shows how to override the default GNAT file naming conventions, either for an indi-
vidual unit or globally.

Chapter 10 [GNAT Project Manager|, page 109, describes how to use project files to
organize large projects.

Chapter 11 [Elaboration Order Handling in GNAT], page 141, describes how GNAT
helps you deal with elaboration order issues.

Chapter 12 [The Cross-Referencing Tools GNAT XREF and GNAT FIND], page 167,
discusses GNAT XREF and GNAT FIND, two tools that provide an easy way to navigate
through sources.

Chapter 13 [File Name Krunching Using GNAT KRUNCH], page 177, describes the
GNAT KRUNCH file name krunching utility, used to handle shortened file names on oper-
ating systems with a limit on the length of names.

Chapter 14 [Preprocessing Using GNAT PREPROCESS], page 181, describes GNAT
PREPROCESS, a preprocessor utility that allows a single source file to be used to generate
multiple or parameterized source files, by means of macro substitution.

2 GNAT User’s Guide for OpenVMS Alpha

e Chapter 16 [The GNAT Library Browser GNAT LIST], page 187, describes GNAT LIST,
a utility that displays information about compiled units, including dependences on the
corresponding sources files, and consistency of compilations.

e Chapter 17 [Finding Memory Problems with GNAT Debug Pool], page 191, describes
how to use the GNAT-specific Debug Pool in order to detect as early as possible the
use of incorrect memory references.

e Chapter 18 [Creating Sample Bodies Using GNAT STUB]|, page 193, discusses GNAT
STUB, a utility that generates empty but compilable bodies for library units.

e Chapter 19 [Reducing the Size of Ada Executables with GNAT ELIM], page 195,
describes GNAT ELIM, a tool which detects unused subprograms and helps the compiler
to create a smaller executable for the program.

e Chapter 20 [Other Utility Programs|, page 199, discusses several other GNAT utilities,
including GNAT STANDARD.

e Chapter 21 [Running and Debugging Ada Programs], page 205, describes how to run
and debug Ada programs.

e Chapter 23 [Inline Assembler|, page 243, shows how to use the inline assembly facility
in an Ada program.

e Chapter 24 [Performance Considerations|, page 267, reviews the trade offs between
using defaults or options in program development.

e Chapter 22 [Compatibility with DEC Adal, page 221, details the compatibility of GNAT
with DEC Ada 83 for OpenVMS Alpha.

What You Should Know before Reading This Guide

This user’s guide assumes that you are familiar with Ada 95 language, as described in the
International Standard ANSI/ISO/IEC-8652:1995, Jan 1995.

Related Information

For further information about related tools, refer to the following documents:

e GNAT Reference Manual, which contains all reference material for the GNAT imple-
mentation of Ada 95.

e Ada 95 Language Reference Manual, which contains all reference material for the Ada
95 programming language.

e Debugging with GDB , located in the GNU:[DOCS] directory, contains all details on
the use of the GNU source-level debugger.

e GNU EMACS Manual , located in the GNU:[DOCS] directory if the EMACS kit is
installed, contains full information on the extensible editor and programming environ-

ment EMACS.

About This Guide 3

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
e Functions, utility program names, standard names, and classes.
e ‘Option flags’
e ‘File Names’, ‘button names’, and ‘field names’.
e Variables.
o Emphasis.

[optional information or parameters]
e Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters "$ "
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

GNAT User’s Guide for OpenVMS Alpha

Chapter 1: Getting Started with GNAT 5

1 Getting Started with GNAT

This chapter describes some simple ways of using GNAT to build executable Ada programs.

1.1 Running GNAT

Three steps are needed to create an executable file from an Ada source file:
1. The source file(s) must be compiled.
2. The file(s) must be bound using the GNAT binder.
3. All appropriate object files must be linked to produce an executable.
All three steps are most commonly handled by using the GNAT MAKE utility program that,

given the name of the main program, automatically performs the necessary compilation,
binding and linking steps.

1.2 Running a Simple Ada Program

Any text editor may be used to prepare an Ada program. If Glide is used, the optional Ada
mode may be helpful in laying out the program. The program text is a normal text file. We
will suppose in our initial example that you have used your editor to prepare the following
standard format text file:

with Ada.Text_I0; use Ada.Text_IO;
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

This file should be named ‘HELLO.ADB’. With the normal default file naming conventions,
GNAT requires that each file contain a single compilation unit whose file name is the unit
name, with periods replaced by hyphens; the extension is ‘ads’ for a spec and ‘adb’ for a
body. You can override this default file naming convention by use of the special pragma
Source_File_Name (see Section 2.4 [Using Other File Names|, page 15). Alternatively, if
you want to rename your files according to this default convention, which is probably more
convenient if you will be using GNAT for all your compilations, then the GNAT CHOP utility
can be used to generate correctly-named source files (see Chapter 7 [Renaming Files Using
GNAT CHOPJ, page 99).

You can compile the program using the following command ($ is used as the command
prompt in the examples in this document):
$ GNAT COMPILE HELLO.ADB

GNAT COMPILE is the command used to run the compiler. This compiler is capable of com-
piling programs in several languages, including Ada 95 and C. It assumes that you have
given it an Ada program if the file extension is either ‘.ADS’ or ‘.ADB’, and it will then call
the GNAT compiler to compile the specified file.

6 GNAT User’s Guide for OpenVMS Alpha

This compile command generates a file ‘HELLO.0BJ’, which is the object file correspond-
ing to your Ada program. It also generates an "Ada Library Information" file ‘HELLO.ALI’,
which contains additional information used to check that an Ada program is consistent. To
build an executable file, use GNAT BIND to bind the program and GNAT LINK to link it. The
argument to both GNAT BIND and GNAT LINK is the name of the ‘ali’ file, but the default ex-
tension of ‘. ALI’ can be omitted. This means that in the most common case, the argument
is simply the name of the main program:

$ GNAT BIND hello
$ GNAT LINK hello

A simpler method of carrying out these steps is to use GNAT MAKE, a master program that
invokes all the required compilation, binding and linking tools in the correct order. In
particular, GNAT MAKE automatically recompiles any sources that have been modified since
they were last compiled, or sources that depend on such modified sources, so that "version
skew" is avoided.

$ GNAT MAKE HELLO.ADB

The result is an executable program called ‘hello’, which can be run by entering:

$ hello
assuming that the current directory is on the search path for executable programs.

and, if all has gone well, you will see

Hello WORLD!

appear in response to this command.

1.3 Running a Program with Multiple Units

Consider a slightly more complicated example that has three files: a main program, and the
spec and body of a package:

Chapter 1: Getting Started with GNAT 7

~

package Greetings is
procedure Hello;
procedure Goodbye;
end Greetings;

with Ada.Text_I0; use Ada.Text_IO0;
package body Greetings is
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

procedure Goodbye is
begin
Put_Line ("Goodbye WORLD!");
end Goodbye;
end Greetings;

with Greetings;
procedure Gmain is
begin
Greetings.Hello;
Greetings.Goodbye;
end Gmain;

=

)

Following the one-unit-per-file rule, place this program in the following three separate files:

‘GREETINGS.ADS’
spec of package Greetings

‘GREETINGS. ADB’
body of package Greetings

‘GMAIN.ADB’
body of main program

To build an executable version of this program, we could use four separate steps to compile,
bind, and link the program, as follows:

$ GNAT COMPILE GMAIN.ADB

$ GNAT COMPILE GREETINGS.ADB

$ GNAT BIND gmain

$ GNAT LINK gmain
Note that there is no required order of compilation when using GNAT. In particular it
is perfectly fine to compile the main program first. Also, it is not necessary to compile
package specs in the case where there is an accompanying body; you only need to compile
the body. If you want to submit these files to the compiler for semantic checking and not
code generation, then use the ‘/NOLOAD’ qualifier:

$ GNAT COMPILE GREETINGS.ADS /NOLOAD

Although the compilation can be done in separate steps as in the above example, in practice
it is almost always more convenient to use the GNAT MAKE tool. All you need to know in this
case is the name of the main program’s source file. The effect of the above four commands
can be achieved with a single one:

$ GNAT MAKE GMAIN.ADB

In the next section we discuss the advantages of using GNAT MAKE in more detail.

8 GNAT User’s Guide for OpenVMS Alpha

1.4 Using the GNAT MAKE Utility

If you work on a program by compiling single components at a time using GNAT COMPILE,
you typically keep track of the units you modify. In order to build a consistent system, you
compile not only these units, but also any units that depend on the units you have modified.
For example, in the preceding case, if you edit ‘GMAIN.ADB’, you only need to recompile
that file. But if you edit ‘GREETINGS.ADS’, you must recompile both ‘GREETINGS.ADB’ and
‘GMAIN.ADB’, because both files contain units that depend on ‘GREETINGS.ADS’ .

GNAT BIND will warn you if you forget one of these compilation steps, so that it is im-
possible to generate an inconsistent program as a result of forgetting to do a compilation.
Nevertheless it is tedious and error-prone to keep track of dependencies among units. One
approach to handle the dependency-bookkeeping is to use a makefile. However, makefiles
present maintenance problems of their own: if the dependencies change as you change the
program, you must make sure that the makefile is kept up-to-date manually, which is also
an error-prone process.

The GNAT MAKE utility takes care of these details automatically. Invoke it using either

one of the following forms:

$ GNAT MAKE GMAIN.ADB

$ GNAT MAKE GMAIN
The argument is the name of the file containing the main program; you may omit the ex-
tension. GNAT MAKE examines the environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files, generating the executable
file, ‘GMAIN.EXE’. In a large program, it can be extremely helpful to use GNAT MAKE, because
working out by hand what needs to be recompiled can be difficult.

Note that GNAT MAKE takes into account all the Ada 95 rules that establish dependencies
among units. These include dependencies that result from inlining subprogram bodies, and
from generic instantiation. Unlike some other Ada make tools, GNAT MAKE does not rely on
the dependencies that were found by the compiler on a previous compilation, which may
possibly be wrong when sources change. GNAT MAKE determines the exact set of dependencies
from scratch each time it is run.

1.5 Editing with EMACS

EMACS is an extensible self-documenting text editor that is available in a separate VMSIN-
STAL kit.

Invoke EMACS by typing "EMACS" at the command prompt. To get started, click on
the EMACS Help menu and run the EMACS Tutorial. In a character cell terminal, EMACS
help is invoked with "Ctrl-h" (also written as "C-h"), and the tutorial by "C-h t".

Documentation on EMACS and other tools is available in EMACS under the pull-down
menu button: Help - Info. After selecting Info, use the middle mouse button to select a
topic (e.g. EMACS).

In a character cell terminal, do "C-h i" to invoke info, and then "m" (stands for menu)
followed by the menu item desired, as in "m EMACS", to get to the EMACS manual. Help
on EMACS is also available by typing "HELP EMACS" at the DCL command prompt.

Chapter 1: Getting Started with GNAT 9

The tutorial is highly recommended in order to learn the intricacies of EMACS, which
is sufficiently extensible to provide for a complete programming environment and shell for
the sophisticated user.

10

GNAT User’s Guide for OpenVMS Alpha

Chapter 2: The GNAT Compilation Model 11

2 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that used
by other languages, such as C and C++, this model is substantially different from the
traditional Ada compilation models, which are based on a library. The model is initially
described without reference to the library-based model. If you have not previously used an
Ada compiler, you need only read the first part of this chapter. The last section describes
and discusses the differences between the GNAT model and the traditional Ada compiler
models. If you have used other Ada compilers, this section will help you to understand
those differences, and the advantages of the GNAT model.

2.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set, plus additional characters used for
representing foreign languages (see Section 2.2 [Foreign Language Representation], page 11
for support of non-USA character sets). The format effector characters are represented
using their standard ASCII encodings, as follows:

VT Vertical tab, 16#0B#

HT Horizontal tab, 16#09#
CR Carriage return, 16#0D#
LF Line feed, 16#0A#

FF Form feed, 16#0C#

Source files are in standard text file format. In addition, GNAT will recognize a wide
variety of stream formats, in which the end of physical physical lines is marked by any of
the following sequences: LF, CR, CR-LF, or LF-CR. This is useful in accommodating files
that are imported from other operating systems.

The end of a source file is normally represented by the physical end of file. However, the
control character 16#1A# (SUB) is also recognized as signalling the end of the source file.
Again, this is provided for compatibility with other operating systems where this code is
used to represent the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with
the unit. For example, this means you must place a package declaration (a package spec)
and the corresponding body in separate files. An Ada compilation (which is a sequence of
compilation units) is represented using a sequence of files. Similarly, you will place each
subunit or child unit in a separate file.

2.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada 95 as well as several other non-
standard character sets for use in localized versions of the compiler (see Section 3.2.11
[Character Set Control], page 51).

12 GNAT User’s Guide for OpenVMS Alpha

2.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859, part 1.
The lower half (character codes 16#00# ... 16#7F#) is identical to standard ASCII coding,
but the upper half is used to represent additional characters. These include extended
letters used by European languages, such as French accents, the vowels with umlauts used
in German, and the extra letter A-ring used in Swedish.

For a complete list of Latin-1 codes and their encodings, see the source file of library
unit Ada.Characters.Latin_1 in file ‘A-CHLAT1.ADS’. You may use any of these extended
characters freely in character or string literals. In addition, the extended characters that
represent letters can be used in identifiers.

2.2.2 Other 8-Bit Codes

GNAT also supports several other 8-bit coding schemes:

Latin-2 Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.

Latin-3 Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.

Latin-4 Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.

Latin-5 Latin-4 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase
equivalence.

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended
Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and lowercase
equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in
this range. This is useful in conjunction with certain encoding schemes used
for some foreign character sets (e.g. the typical method of representing Chinese
characters on the PC).

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences
that are recognized, see the file ‘CSETS.ADB’ in the GNAT compiler sources. You will need
to obtain a full source release of GNAT to obtain this file.

Chapter 2: The GNAT Compilation Model 13

2.2.3 Wide Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also optionally
in identifiers, by means of the following possible encoding schemes:

Hex Coding
In this encoding, a wide character is represented by the following five character
sequence:
ESCabcd

Where a, b, ¢, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of the
full Wide_Character set.

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, "a" is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to
be in the upper half. This method can be also used for shift-JIS or EUC, where
the internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab# and
16#cd#, with the restrictions described for upper-half encoding as described
above. The internal character code is the corresponding JIS character
according to the standard algorithm for Shift-JIS conversion. Only characters
defined in the JIS code set table can be used with this encoding method.

EUC Coding
A wide character is represented by a two-character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal character
code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxXXXX#
16#0080#-16#07ff#: 2#110xxxxx# 2#10XXXXXXH#
16#0800#—-16#ffff#: 2#1110xxxx# 2#10xxxxXX# 2#H10XXXXXXH#

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit
characters as 6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will be treated as illegal).

14 GNAT User’s Guide for OpenVMS Alpha

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:

["abcada"]

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ["A345"] is used to represent the wide
character with code 16#A345#. It is also possible (though not required) to use
the Brackets coding for upper half characters. For example, the code 16#A3#
can be represented as ["A3"].
This scheme is compatible with use of the full Wide_Character set, and is also
the method used for wide character encoding in the standard ACVC (Ada
Compiler Validation Capability) test suite distributions.

Note: Some of these coding schemes do not permit the full use of the Ada 95 character set.
For example, neither Shift JIS, nor EUC allow the use of the upper half of the Latin-1 set.

2.3 File Naming Rules

The default file name is determined by the name of the unit that the file contains. The name
is formed by taking the full expanded name of the unit and replacing the separating dots
with hyphens and using uppercase for all letters.

An exception arises if the file name generated by the above rules starts with one of the
characters A,G,I, or S, and the second character is a minus. In this case, the character dollar
sign is used in place of the minus. The reason for this special rule is to avoid clashes with
the standard names for child units of the packages System, Ada, Interfaces, and GNAT,
which use the prefixes S- A- I- and G- respectively.

The file extension is ‘. ADS’ for a spec and ‘.ADB’ for a body. The following list shows
some examples of these rules.
‘MAIN.ADS’
Main (spec)
‘MAIN.ADB’
Main (body)

‘ARITH_FUNCTIONS.ADS’
Arith_Functions (package spec)

‘ARITH_FUNCTIONS.ADB’
Arith_Functions (package body)

‘FUNC-SPEC. ADS’
Func.Spec (child package spec)

‘FUNC-SPEC. ADB’
Func.Spec (child package body)

‘MAIN-SUB. ADB’
Sub (subunit of Main)

Chapter 2: The GNAT Compilation Model 15

‘A$BAD. ADB’
A.Bad (child package body)

Following these rules can result in excessively long file names if corresponding unit names
are long (for example, if child units or subunits are heavily nested). An option is available
to shorten such long file names (called file name "krunching"). This may be particularly
useful when programs being developed with GNAT are to be used on operating systems
with limited file name lengths. See Section 13.2 [Using GNAT KRUNCH], page 177.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names; if file name krunching is used, it is your responsibility to ensure no name clashes
occur. Alternatively you can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a compiler with a
different naming convention, you can use the GNAT CHOP utility to produce source files
that follow the GNAT naming conventions. (For details see Chapter 7 [Renaming Files
Using GNAT CHOP], page 99.)

2.4 Using Other File Names

In the previous section, we have described the default rules used by GNAT to determine the
file name in which a given unit resides. It is often convenient to follow these default rules,
and if you follow them, the compiler knows without being explicitly told where to find all
the files it needs.

However, in some cases, particularly when a program is imported from another Ada
compiler environment, it may be more convenient for the programmer to specify which file
names contain which units. GNAT allows arbitrary file names to be used by means of the
Source_File_Name pragma. The form of this pragma is as shown in the following examples:

pragma Source_File_Name (My_Utilities.Stacks,
Spec_File_Name => "MYUTILST_A.ADA");

pragma Source_File_name (My_Utilities.Stacks,
Body_File_Name => "MYUTILST.ADA");

As shown in this example, the first argument for the pragma is the unit name (in this
example a child unit). The second argument has the form of a named association. The
identifier indicates whether the file name is for a spec or a body; the file name itself is given
by a string literal.

The source file name pragma is a configuration pragma, which means that normally it
will be placed in the ‘GNAT.ADC’ file used to hold configuration pragmas that apply to a
complete compilation environment. For more details on how the ‘GNAT.ADC’ file is created
and used see Section 8.1 [Handling of Configuration Pragmas], page 103
GNAT MAKE handles non-standard file names in the usual manner (the non-standard file name
for the main program is simply used as the argument to GNAT MAKE). Note that if the
extension is also non-standard, then it must be included in the GNAT MAKE command,
it may not be omitted.

16 GNAT User’s Guide for OpenVMS Alpha

2.5 Alternative File Naming Schemes

In the previous section, we described the use of the Source_File_Name pragma to allow
arbitrary names to be assigned to individual source files. However, this approach requires
one pragma for each file, and especially in large systems can result in very long ‘GNAT.ADC’
files, and also create a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than
the standard default naming scheme previously described. An alternative scheme for naming
is specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (
Spec_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (
Body_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (
Subunit_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);
FILE_NAME_PATTERN ::= STRING_LITERAL
CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The
optional parameter Casing indicates whether the unit name is to be all upper-case letters,
all lower-case letters, or mixed-case. If no Casing parameter is used, then the default is all
upper-case.

The optional Dot_Replacement string is used to replace any periods that occur in subunit
or child unit names. If no Dot_Replacement argument is used then separating dots appear
unchanged in the resulting file name. Although the above syntax indicates that the Casing
argument must appear before the Dot_Replacement argument, but it is also permissible to
write these arguments in the opposite order.

As indicated, it is possible to specify different naming schemes for bodies, specs, and
subunits. Quite often the rule for subunits is the same as the rule for bodies, in which
case, there is no need to give a separate Subunit_File_Name rule, and in this case the
Body_File_name rule is used for subunits as well.

The separate rule for subunits can also be used to implement the rather unusual case of
a compilation environment (e.g. a single directory) which contains a subunit and a child
unit with the same unit name. Although both units cannot appear in the same partition,
the Ada Reference Manual allows (but does not require) the possibility of the two units
coexisting in the same environment.

The file name translation works in the following steps:

o If there is a specific Source_File_Name pragma for the given unit, then this is always
used, and any general pattern rules are ignored.

Chapter 2: The GNAT Compilation Model 17

e If there is a pattern type Source_File_Name pragma that applies to the unit, then the
resulting file name will be used if the file exists. If more than one pattern matches, the
latest one will be tried first, and the first attempt resulting in a reference to a file that
exists will be used.

e If no pattern type Source_File_Name pragma that applies to the unit for which the
corresponding file exists, then the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which
file names are all lower case, with separating periods copied unchanged to the resulting file
name, and specs end with ".1.ADA", and bodies end with ".2. ADA". GNAT will follow
this scheme if the following two pragmas appear:

pragma Source_File_Name
(Spec_File_Name => "x.1.ADA");
pragma Source_File_Name
(Body_File_Name => "*.2.ADA");
The default GNAT scheme is actually implemented by providing the following default prag-
mas internally:
pragma Source_File_Name
(Spec_File_Name => "x.ADS", Dot_Replacement => "-");
pragma Source_File_Name
(Body_File_Name => "*.ADB", Dot_Replacement => "-");
Our final example implements a scheme typically used with one of the Ada 83 compilers,
where the separator character for subunits was "__" (two underscores), specs were identified
by adding ‘_.ADA’, bodies by adding ‘.ADA’; and subunits by adding ‘.SEP’. All file names
were upper case. Child units were not present of course since this was an Ada 83 compiler,
but it seems reasonable to extend this scheme to use the same double underscore separator
for child units.

pragma Source_File_Name
(Spec_File_Name => "*_.ADA",
Dot_Replacement => "__",
Casing = Uppercase);

pragma Source_File_Name
(Body_File_Name => "x.ADA",
Dot_Replacement => "__",
Casing = Uppercase) ;

pragma Source_File_Name
(Subunit_File_Name => "*.SEP",
Dot_Replacement => "__",
Casing = Uppercase);

2.6 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the program
is to generate the corresponding object files. These are generated by compiling a subset of
these source files. The files you need to compile are the following:

e If a package spec has no body, compile the package spec to produce the object file for
the package.

e If a package has both a spec and a body, compile the body to produce the object file
for the package. The source file for the package spec need not be compiled in this case

18 GNAT User’s Guide for OpenVMS Alpha

because there is only one object file, which contains the code for both the spec and
body of the package.

e For a subprogram, compile the subprogram body to produce the object file for the
subprogram. The spec, if one is present, is as usual in a separate file, and need not be
compiled.

e In the case of subunits, only compile the parent unit. A single object file is generated
for the entire subunit tree, which includes all the subunits.

e Compile child units independently of their parent units (though, of course, the spec of
all the ancestor unit must be present in order to compile a child unit).

e Compile generic units in the same manner as any other units. The object files in
this case are small dummy files that contain at most the flag used for elaboration
checking. This is because GNAT always handles generic instantiation by means of
macro expansion. However, it is still necessary to compile generic units, for dependency
checking and elaboration purposes.

The preceding rules describe the set of files that must be compiled to generate the object
files for a program. Each object file has the same name as the corresponding source file,
except that the extension is ‘.0BJ’ as usual.

You may wish to compile other files for the purpose of checking their syntactic and
semantic correctness. For example, in the case where a package has a separate spec and
body, you would not normally compile the spec. However, it is convenient in practice to
compile the spec to make sure it is error-free before compiling clients of this spec, because
such compilations will fail if there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking
correctness; such compilations are not required as part of the process of building a program.
To compile a file in this checking mode, use the ‘/NOLOAD’ qualifier.

2.7 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce it. Here
we are using depends in the sense of a typical make utility; in other words, an object file
depends on a source file if changes to the source file require the object file to be recompiled.
In addition to this basic dependency, a given object may depend on additional source files
as follows:

e If a file being compiled with’s a unit X, the object file depends on the file containing
the spec of unit X. This includes files that are with’ed implicitly either because they
are parents of with’ed child units or they are run-time units required by the language
constructs used in a particular unit.

e If a file being compiled instantiates a library level generic unit, the object file depends
on both the spec and body files for this generic unit.

e If a file being compiled instantiates a generic unit defined within a package, the object
file depends on the body file for the package as well as the spec file.

e If a file being compiled contains a call to a subprogram for which pragma Inline applies
and inlining is activated with the ‘/INLINE=PRAGMA’ qualifier, the object file depends
on the file containing the body of this subprogram as well as on the file containing the

Chapter 2: The GNAT Compilation Model 19

spec. Note that for inlining to actually occur as a result of the use of this qualifier, it
is necessary to compile in optimizing mode.

The use of ‘~gnatN’ activates a more extensive inlining optimization that is performed
by the front end of the compiler. This inlining does not require that the code generation
be optimized. Like ‘/INLINE=PRAGMA’, the use of this qualifier generates additional
dependencies.

If an object file O depends on the proper body of a subunit through inlining or instan-
tiation, it depends on the parent unit of the subunit. This means that any modification
of the parent unit or one of its subunits affects the compilation of O.

The object file for a parent unit depends on all its subunit body files.

The previous two rules meant that for purposes of computing dependencies and recom-
pilation, a body and all its subunits are treated as an indivisible whole.

These rules are applied transitively: if unit A with’s unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A will depend on the body of C,
in file ‘C.ADB’.

The set of dependent files described by these rules includes all the files on which the
unit is semantically dependent, as described in the Ada 95 Language Reference Manual.
However, it is a superset of what the ARM describes, because it includes generic, inline,
and subunit dependencies.

An object file must be recreated by recompiling the corresponding source file if any
of the source files on which it depends are modified. For example, if the make utility
is used to control compilation, the rule for an Ada object file must mention all the
source files on which the object file depends, according to the above definition. The
determination of the necessary recompilations is done automatically when one uses
GNAT MAKE.

2.8 The Ada Library Information Files

Each compilation actually generates two output files. The first of these is the normal object file
that has a ‘.0BJ’ extension. The second is a text file containing full dependency information.
It has the same name as the source file, but an ‘.ALI’ extension. This file is known as the
Ada Library Information (‘ali’) file. The following information is contained in the ‘ali’

file.

Version information (indicates which version of GNAT was used to compile the unit(s)
in question)

Main program information (including priority and time slice settings, as well as the
wide character encoding used during compilation).

List of arguments used in the GNAT COMPILE command for the compilation

Attributes of the unit, including configuration pragmas used, an indication of whether
the compilation was successful, exception model used etc.

A list of relevant restrictions applying to the unit (used for consistency) checking.
Categorization information (e.g. use of pragma Pure).

Information on all with’ed units, including presence of Elaborate or Elaborate_All
pragmas.

20 GNAT User’s Guide for OpenVMS Alpha

e Information from any Linker_Options pragmas used in the unit
e Information on the use of Body_Version or Version attributes in the unit.

e Dependency information. This is a list of files, together with time stamp and checksum
information. These are files on which the unit depends in the sense that recompilation
is required if any of these units are modified.

e Cross-reference data. Contains information on all entities referenced in the unit. Used
by tools like GNAT XREF and GNAT FIND to provide cross-reference information.

For a full detailed description of the format of the ‘ali’ file, see the source of the body of
unit Lib.Writ, contained in file ‘LIB-WRIT.ADB’ in the GNAT compiler sources.

2.9 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together.
This means that it is possible to link an inconsistent version of a program, in which two
units have included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example,
if two clients have different versions of the same package, it is illegal to build a program
containing these two clients. These rules are enforced by the GNAT binder, which also
determines an elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It
is given the name of the main program unit, and from this it determines the set of units
required by the program, by reading the corresponding ALI files. It generates error messages
if the program is inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program, in Ada by default, that
contains calls to the elaboration procedures of those compilation unit that require them,
followed by a call to the main program. This Ada program is compiled to generate the object
file for the main program. The name of the Ada file is ‘B$xxx.ADB’ (with the corresponding
spec ‘B$xxx.ADS’) where xxx is the name of the main program unit.

Finally, the linker is used to build the resulting executable program, using the object
from the main program from the bind step as well as the object files for the Ada units of
the program.

2.10 Mixed Language Programming

2.10.1 Interfacing to C

There are two ways to build a program that contains some Ada files and some other language
files depending on whether the main program is in Ada or not. If the main program is in
Ada, you should proceed as follows:

1. Compile the other language files to generate object files. For instance:

GNAT COMPILE FILE1.C
GNAT COMPILE FILE2.C

Chapter 2: The GNAT Compilation Model 21

2. Compile the Ada units to produce a set of object files and ALI files. For instance:
GNAT MAKE /ACTIONS=COMPILE MY_MAIN.ADB

3. Run the Ada binder on the Ada main program. For instance:
GNAT BIND MY_MAIN.ALI

4. Link the Ada main program, the Ada objects and the other language objects. For
instance:

GNAT LINK MY_MAIN.ALI FILE1.0BJ FILE2.0BJ

The three last steps can be grouped in a single command:
GNAT MAKE MY_MAIN.ADB /LINKER_QUALIFIERS FILE1.0BJ FILE2.0BJ

If the main program is in some language other than Ada, Then you may have more than one
entry point in the Ada subsystem. You must use a special option of the binder to generate
callable routines to initialize and finalize the Ada units (see Section 4.7 [Binding with Non-
Ada Main Programs|, page 82). Calls to the initialization and finalization routines must
be inserted in the main program, or some other appropriate point in the code. The call to
initialize the Ada units must occur before the first Ada subprogram is called, and the call
to finalize the Ada units must occur after the last Ada subprogram returns. You use the
same procedure for building the program as described previously. In this case, however,
the binder only places the initialization and finalization subprograms into file ‘B$xxx.ADB’
instead of the main program. So, if the main program is not in Ada, you should proceed as
follows:
1. Compile the other language files to generate object files. For instance:

GNAT COMPILE FILE1.C
GNAT COMPILE FILE2.C

2. Compile the Ada units to produce a set of object files and ALI files. For instance:

GNAT MAKE /ACTIONS=COMPILE ENTRY_POINT1.ADB
GNAT MAKE /ACTIONS=COMPILE ENTRY_POINT2.ADB

3. Run the Ada binder on the Ada main program. For instance:
GNAT BIND /NOMAIN ENTRY_POINT1.ALI ENTRY_POINT2.ALI

4. Link the Ada main program, the Ada objects and the other language objects. You
only need to give the last entry point here. For instance:

GNAT LINK ENTRY_POINT2.ALI FILE1.0BJ FILE2.0BJ

2.10.2 Calling Conventions

GNAT follows standard calling sequence conventions and will thus interface to any other
language that also follows these conventions. The following Convention identifiers are rec-
ognized by GNAT:

e Ada. This indicates that the standard Ada calling sequence will be used and all Ada
data items may be passed without any limitations in the case where GNAT is used to
generate both the caller and callee. It is also possible to mix GNAT generated code
and code generated by another Ada compiler. In this case, the data types should be
restricted to simple cases, including primitive types. Whether complex data types can
be passed depends on the situation. Probably it is safe to pass simple arrays, such
as arrays of integers or floats. Records may or may not work, depending on whether
both compilers lay them out identically. Complex structures involving variant records,
access parameters, tasks, or protected types, are unlikely to be able to be passed.

22

GNAT User’s Guide for OpenVMS Alpha

Note that in the case of GNAT running on a platform that supports DEC Ada 83, a
higher degree of compatibility can be guaranteed, and in particular records are layed
out in an identical manner in the two compilers. Note also that if output from two
different compilers is mixed, the program is responsible for dealing with elaboration
issues. Probably the safest approach is to write the main program in the version of
Ada other than GNAT, so that it takes care of its own elaboration requirements, and
then call the GNAT-generated adainit procedure to ensure elaboration of the GNAT
components. Consult the documentation of the other Ada compiler for further details
on elaboration.

However, it is not possible to mix the tasking run time of GNAT and DEC Ada 83, All
the tasking operations must either be entirely within GNAT compiled sections of the
program, or entirely within DEC Ada 83 compiled sections of the program.

Assembler. Specifies assembler as the convention. In practice this has the same effect
as convention Ada (but is not equivalent in the sense of being considered the same
convention).

Asm. Equivalent to Assembler.
Asm. Equivalent to Assembly.

COBOL. Data will be passed according to the conventions described in section B.4 of
the Ada 95 Reference Manual.

C. Data will be passed according to the conventions described in section B.3 of the Ada
95 Reference Manual.

Default. Equivalent to C.
External. Equivalent to C.

CPP. This stands for C++. For most purposes this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for further
details.

Fortran. Data will be passed according to the conventions described in section B.5 of
the Ada 95 Reference Manual.

Intrinsic. This applies to an intrinsic operation, as defined in the Ada 95 Reference
Manual. If a a pragma Import (Intrinsic) applies to a subprogram, this means that
the body of the subprogram is provided by the compiler itself, usually by means of an
efficient code sequence, and that the user does not supply an explicit body for it. In
an application program, the pragma can only be applied to the following two sets of
names, which the GNAT compiler recognizes.

e Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_- Arithmetic. The
corresponding subprogram declaration must have two formal parameters. The first
one must be a signed integer type or a modular type with a binary modulus, and
the second parameter must be of type Natural. The return type must be the same
as the type of the first argument. The size of this type can only be 8, 16, 32, or
64.

e binary arithmetic operators: "+", "-" wkn n /v The corresponding operator dec-
laration must have parameters and result type that have the same root numeric
type (for example, all three are long_float types). This simplifies the definition of
operations that use type checking to perform dimensional checks:

type Distance is new Long_Float;

Chapter 2: The GNAT Compilation Model 23

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)

return Velocity;

pragma Import (Intrinsic, "/");
This common idiom is often programmed with a generic definition and an explicit
body. The pragma makes it simpler to introduce such declarations. It incurs no
overhead in compilation time or code size, because it is implemented as a single
machine instruction.

e Stdcall. This is relevant only to NT/Win95 implementations of GNAT, and specifies
that the Stdcall calling sequence will be used, as defined by the NT API.

e DLL. This is equivalent to Stdcall.
e Win32. This is equivalent to Stdcall.

e Stubbed. This is a special convention that indicates that the compiler should provide
a stub body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that can be used to
parametrize conventions and allow additional synonyms to be specified. For example if you
have legacy code in which the convention identifier Fortran77 was used for Fortran, you can
use the configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);

And from now on the identifier Fortran77 may be used as a convention identifier (for example
in an Import pragma) with the same meaning as Fortran.

2.11 Building Mixed Ada & C++ Programs

Building a mixed application containing both Ada and C++ code may be a challenge for the
unaware programmer. As a matter of fact, this interfacing has not been standardized in
the Ada 95 reference manual due to the immaturity and lack of standard of C++ at the
time. This section gives a few hints that should make this task easier. In particular the
first section addresses the differences with interfacing with C. The second section looks into
the delicate problem of linking the complete application from its Ada and C++ parts. The
last section give some hints on how the GNAT run time can be adapted in order to allow
inter-language dispatching with a new C++ compiler.

2.11.1 Interfacing to C++

GNAT supports interfacing with C++ compilers generating code that is compatible with the
standard Application Binary Interface of the given platform.

Interfacing can be done at 3 levels: simple data, subprograms and classes. In the first
2 cases, GNAT offer a specific Convention CPP that behaves exactly like Convention C.
Usually C++ mangle names of subprograms and currently GNAT does not provide any help
to solve the demangling problem. This problem can be addressed in 2 ways:

e by modifying the C++ code in order to force a C convention using the extern "C"
syntax.

24 GNAT User’s Guide for OpenVMS Alpha

e by figuring out the mangled name and use it as the Link_Name argument of the pragma
import.

Interfacing at the class level can be achieved by using the GNAT specific pragmas such as
CPP_Class and CPP_Virtual. See the GNAT Reference Manual for additional information.

2.11.2 Linking a Mixed C++ & Ada Program

Usually the linker of the C++ development system must be used to link mixed applications
because most C++ systems will resolve elaboration issues (such as calling constructors on
global class instances) transparently during the link phase. GNAT has been adapted to
ease the use of a foreign linker for the last phase. Three cases can be considered:

1. Using GNAT and G++ (GNU C++ compiler) from the same GCC installation. The
c++ linker can simply be called by using the c++ specific driver called c++. Note that
this setup is not very common because it may request recompiling the whole GCC tree
from sources and it does not allow to upgrade easily to a new version of one compiler
for one of the two languages without taking the risk of destabilizing the other.

$ c++ -c filel.C

$ c++ -c file2.C
$ GNAT MAKE ada_unit /LINKER_QUALIFIERS FILE1.0BJ FILE2.0BJ --LINK=c++

2. Using GNAT and G++ from 2 different GCC installations. If both compilers are on the
PATH, the same method can be used. It is important to be aware that environment
variables such as C_INCLUDE_PATH, GCC_EXEC_PREFIX, BINUTILS_ROOT or
GCC_ROOT will affect both compilers at the same time and thus may make one of
the 2 compilers operate improperly if they are set for the other. In particular it is
important that the link command has access to the proper GNAT COMPILE library
‘libgcc.a’, that is to say the one that is part of the C++ compiler installation. The
implicit link command as suggested in the GNAT MAKE command from the former
example can be replaced by an explicit link command with full verbosity in order to
verify which library is used:

$ GNAT BIND ada_unit

$ GNAT LINK -v -v ada_unit FILE1.0BJ FILE2.0BJ --LINK=c++
If there is a problem due to interfering environment variables, it can be workaround
by using an intermediate script. The following example shows the proper script to use
when GNAT has not been installed at its default location and g++ has been installed
at its default location:

$ GNAT LINK -v -v ada_unit FILE1.0BJ FILE2.0BJ --LINK=./my_script
$ cat ./my_script

#!/bin/sh

unset BINUTILS_ROOT

unset GCC_ROOT

c++ $x

3. Using a non GNU C++ compiler. The same set of command as previously described can

be used to insure that the c++ linker is used. Nonetheless, you need to add the path to
libgce explicitely, since some libraries needed by GNAT are located in this directory:

$ GNAT LINK ada_unit FILE1.0BJ FILE2.0BJ --LINK=./my_script
$ cat ./my_script

#!/bin/sh

CC $* ‘GNAT COMPILE -print-libgcc-file-name®

Chapter 2: The GNAT Compilation Model 25

Where CC is the name of the non GNU C++ compiler.

2.11.3 A Simple Example

The following example, provided as part of the GNAT examples, show how to achieve proce-
dural interfacing between Ada and C++ in both directions. The C++ class A has 2 methods.
The first method is exported to Ada by the means of an extern C wrapper function. The
second method calls an Ada subprogram. On the Ada side, The C++ calls is modelized by
a limited record with a layout comparable to the C++ class. The Ada subprogram, in turn,
calls the c++ method. So from the C++ main program the code goes back and forth between
the 2 languages.

Here are the compilation commands for native configurations:

$ GNAT MAKE -c simple_cpp_interface

c++ -c cpp_main.C

c++ -c ex7.C

GNAT BIND -n simple_cpp_interface

GNAT LINK simple_cpp_interface -o cpp_main --LINK=$(CPLUSPLUS)
-lstdc++ EX7.0BJ CPP_MAIN.OBJ

Here are the corresponding sources:

$
$
$
$

//cpp_main.C
#include "ex7.h"

extern "C" {
void adainit (void);
void adafinal (void);
void methodl (A *t);
}

void methodl (A *t)
{

t->methodl ();
}

int main ()

{
A obj;
adainit Q;
obj.method2 (3030);
adafinal ();

}

//ex7.h

class Origin {

public:
int o_value;
}
class A : public Origin {
public:

void methodl (void);
virtual void method2 (int v);
AQ;

int a_value;

26

GNAT User’s Guide for OpenVMS Alpha

};
//ex7.C

#include "ex7.h"
#include <stdio.h>

extern "C" { void ada_method2 (A *t, int v);}

void A::methodl (void)
{
a_value = 2020;
printf ("in A::methodl, a_value = %d \n",a_value);

}
void A::method2 (int v)
{
ada_method2 (this, v);
printf ("in A::method2, a_value = %d \n",a_value);
}
A::A(void)
{

a_value = 1010;
printf ("in A::A, a_value = %d \n",a_value);

}

-- Ada sources
package body Simple_Cpp_Interface is

procedure Ada_Method2 (This : in out A; V : Integer) is
begin

Methodl (This);

This.A_Value := V;
end Ada_Method2;

end Simple_Cpp_Interface;

package Simple_Cpp_Interface is
type A is limited
record
0_Value : Integer;
A_Value : Integer;
end record;
pragma Convention (C, A);

procedure Methodl (This : in out A);
pragma Import (C, Method1);

procedure Ada_Method2 (This : in out A; V : Integer);
pragma Export (C, Ada_Method2);

end Simple_Cpp_Interface;

Chapter 2: The GNAT Compilation Model 27

2.11.4 Adapting the Run Time to a New C++ Compiler

GNAT offers the capability to derive Ada 95 tagged types directly from preexisting C++ classes
and . See "Interfacing with C++" in the GNAT reference manual. The mechanism used
by GNAT for achieving such a goal has been made user configurable through a GNAT
library unit Interfaces.CPP. The default version of this file is adapted to the GNU c++
compiler. Internal knowledge of the virtual table layout used by the new C++ compiler is
needed to configure properly this unit. The Interface of this unit is known by the compiler
and cannot be changed except for the value of the constants defining the characteristics of
the virtual table: CPP_DT_Prologue_Size, CPP_DT_Entry_Size, CPP_TSD_Prologue_Size,
CPP_TSD_Entry_Size. Read comments in the source of this unit for more details.

2.12 Comparison between GNAT and C/C++ Compilation
Models

The GNAT model of compilation is close to the C and C++ models. You can think of Ada
specs as corresponding to header files in C. As in C, you don’t need to compile specs; they
are compiled when they are used. The Ada with is similar in effect to the #include of a C
header.

One notable difference is that, in Ada, you may compile specs separately to check them
for semantic and syntactic accuracy. This is not always possible with C headers because
they are fragments of programs that have less specific syntactic or semantic rules.

The other major difference is the requirement for running the binder, which performs two
important functions. First, it checks for consistency. In C or C++, the only defense against
assembling inconsistent programs lies outside the compiler, in a makefile, for example. The
binder satisfies the Ada requirement that it be impossible to construct an inconsistent
program when the compiler is used in normal mode.

The other important function of the binder is to deal with elaboration issues. There
are also elaboration issues in C++ that are handled automatically. This automatic handling
has the advantage of being simpler to use, but the C++ programmer has no control over
elaboration. Where GNAT BIND might complain there was no valid order of elaboration, a
C++ compiler would simply construct a program that malfunctioned at run time.

2.13 Comparison between GNAT and Conventional Ada
Library Models

This section is intended to be useful to Ada programmers who have previously used an Ada
compiler implementing the traditional Ada library model, as described in the Ada 95 Lan-
guage Reference Manual. If you have not used such a system, please go on to the next
section.

In GNAT, there is no library in the normal sense. Instead, the set of source files them-
selves acts as the library. Compiling Ada programs does not generate any centralized
information, but rather an object file and a ALI file, which are of interest only to the binder
and linker. In a traditional system, the compiler reads information not only from the source

28 GNAT User’s Guide for OpenVMS Alpha

file being compiled, but also from the centralized library. This means that the effect of a
compilation depends on what has been previously compiled. In particular:

e When a unit is with’ed, the unit seen by the compiler corresponds to the version of
the unit most recently compiled into the library.

e Inlining is effective only if the necessary body has already been compiled into the
library.

e Compiling a unit may obsolete other units in the library.

In GNAT, compiling one unit never affects the compilation of any other units because the
compiler reads only source files. Only changes to source files can affect the results of a
compilation. In particular:

e When a unit is with’ed, the unit seen by the compiler corresponds to the source version
of the unit that is currently accessible to the compiler.

e Inlining requires the appropriate source files for the package or subprogram bodies to
be available to the compiler. Inlining is always effective, independent of the order in
which units are complied.

e Compiling a unit never affects any other compilations. The editing of sources may
cause previous compilations to be out of date if they depended on the source file being
modified.

The most important result of these differences is that order of compilation is never significant
in GNAT. There is no situation in which one is required to do one compilation before
another. What shows up as order of compilation requirements in the traditional Ada library
becomes, in GNAT, simple source dependencies; in other words, there is only a set of rules
saying what source files must be present when a file is compiled.

Chapter 3: Compiling Using GNAT COMPILE 29

3 Compiling Using GNAT COMPILE

This chapter discusses how to compile Ada programs using the GNAT COMPILE command. It
also describes the set of qualifiers that can be used to control the behavior of the compiler.

3.1 Compiling Programs

The first step in creating an executable program is to compile the units of the program using
the GNAT COMPILE command. You must compile the following files:

e the body file (‘. ADB’) for a library level subprogram or generic subprogram
e the spec file (‘.ADS’) for a library level package or generic package that has no body
e the body file (‘.ADB’) for a library level package or generic package that has a body

You need mnot compile the following files
e the spec of a library unit which has a body
e subunits

because they are compiled as part of compiling related units. GNAT package specs when the
corresponding body is compiled, and subunits when the parent is compiled. If you attempt
to compile any of these files, you will get one of the following error messages (where fff is
the name of the file you compiled):

No code generated for file fff (package spec)

No code generated for file fff (subunit)
The basic command for compiling a file containing an Ada unit is

$ GNAT COMPILE [qualifiers] ‘file name’

where file name is the name of the Ada file (usually having an extension ‘.ADS’ for a spec
or ‘.ADB’ for a body). The result of a successful compilation is an object file, which has the
same name as the source file but an extension of ‘.0BJ’ and an Ada Library Information
(ALI) file, which also has the same name as the source file, but with ‘. ALI’ as the extension.
GNAT creates these two output files in the current directory, but you may specify a source
file in any directory using an absolute or relative path specification containing the directory
information.

GNAT COMPILE is actually a driver program that looks at the extensions of the file ar-
guments and loads the appropriate compiler. For example, the GNU C compiler is ‘CC1’,
and the Ada compiler is ‘GNAT1’. These programs are in directories known to the driver
program (in some configurations via environment variables you set), but need not be in
your path. The GNAT COMPILE driver also calls the assembler and any other utilities needed
to complete the generation of the required object files.

It is possible to supply several file names on the same GNAT COMPILE command. This
causes GNAT COMPILE to call the appropriate compiler for each file. For example, the fol-
lowing command lists three separate files to be compiled:

$ GNAT COMPILE X.ADB Y.ADB Z.C

calls GNAT1 (the Ada compiler) twice to compile ‘X.ADB’ and ‘Y.ADB’, and CC1 (the C
compiler) once to compile ‘Z.C’. The compiler generates three object files ‘X.0BJ’, ‘Y.0BJ’
and ‘Z.0BJ" and the two ALI files ‘X.ALI’ and ‘Y.ALI’ from the Ada compilations. Any
qualifiers apply to all the files listed.

30 GNAT User’s Guide for OpenVMS Alpha

3.2 Qualifiers for GNAT COMPILE

The GNAT COMPILE command accepts qualifiers that control the compilation process. These
qualifiers are fully described in this section. First we briefly list all the qualifiers, in al-
phabetical order, then we describe the qualifiers in more detail in functionally grouped
sections.

/DEBUG Generate debugging information. This information is stored in the object file
and copied from there to the final executable file by the linker, where it can be
read by the debugger. You must use the /DEBUG qualifier if you plan on using
the debugger.

/SEARCH=dir
Direct GNAT to search the dir directory for source files needed by the current
compilation (see Section 3.3 [Search Paths and the Run-Time Library (RTL)],
page 56).

/NOCURRENT_DIRECTORY
Except for the source file named in the command line, do not look for source

files in the directory containing the source file named in the command line (see
Section 3.3 [Search Paths and the Run-Time Library (RTL)], page 56).

/NOOPTIMIZE (default)

/OPTIMIZE[=(keywordl[,...1)]
Selects the level of optimization for your program. The supported keywords are
as follows:

ALL (default)
Perform most optimizations, including those that be expensive.

NONE Do not do any optimizations. Same as /NOOPTIMIZE.
SOME Perform some optimizations, but omit ones that are costly.
DEVELOPMENT

Same as SOME.

INLINING Full optimization, and also attempt automatic inlining of small sub-
programs within a unit (see Section 24.4 [Inlining of Subprograms],
page 269).

UNROLL_LOQOPS
Try to unroll loops. This keyword may be specified together with
any keyword above other than NONE. Loop unrolling usually, but
not always, improves the performance of programs.

/RUNTIME_SYSTEM=rts-path
Specifies the default location of the runtime library. Same meaning as the equiv-
alent GNAT MAKE flag (see Section 6.2 [Qualifiers for GNAT MAKE], page 92).

/ASM Used to cause the assembler source file to be generated, using ‘.S’ as the ex-
tension, instead of the object file. This may be useful if you need to examine
the generated assembly code.

Chapter 3: Compiling Using GNAT COMPILE 31

/VERBOSE Show commands generated by the GNAT COMPILE driver. Normally used only
for debugging purposes or if you need to be sure what version of the compiler
you are executing.

/CHECKS=ASSERTIONS
Assertions enabled. Pragma Assert and pragma Debug to be activated.

-gnatA Avoid processing ‘GNAT.ADC’. If a GNAT.ADC file is present, it will be ignored.

/WARNINGS=BRIEF
Generate brief messages to ‘SYS$ERROR’ even if verbose mode set.

/NOLOAD Check syntax and semantics only (no code generation attempted).

/COMPRESS_NAMES
Compress debug information and external symbol name table entries.

/XDEBUG Output expanded source files for source level debugging. This qualifier also
suppress generation of cross-reference information (see / XREF=SUPPRESS).

-gnatecpath
Specify a configuration pragma file. (see Section 8.2 [The Configuration Prag-
mas Files], page 104)

-gnatempath
Specify a mapping file. (see Section 3.2.16 [Units to Sources Mapping Files],
page 56)

/CHECKS=ELABORATION
Full dynamic elaboration checks.

/REPORT_ERRORS=FULL
Full errors. Multiple errors per line, all undefined references.

/UPPERCASE_EXTERNALS
Externals names are folded to all uppercase.

/STYLE=GNAT
Internal GNAT implementation mode. This should not be used for applications
programs, it is intended only for use by the compiler and its run-time library.
For documentation, see the GNAT sources.

/EXPAND_SOURCE
List generated expanded code in source form.

/IDENTIFIER_CHARACTER_SET=c
Identifier character set For details of the possible selections for ¢, see See Sec-
tion 3.2.11 [Character Set Control], page 51.

/HELP Output usage information. The output is written to ‘SYS$OUTPUT .

/FILE_NAME_MAX_LENGTH=n
Limit file names to n (1-999) characters .

/LIST Output full source listing with embedded error messages.

/ERROR_LIMIT=n
Limit number of detected errors to n (1-999).

32 GNAT User’s Guide for OpenVMS Alpha

/INLINE=PRAGMA
Activate inlining across unit boundaries for subprograms for which pragma
inline is specified.

-gnatN Activate front end inlining.

/INLINE=SUPPRESS
Suppresses all inlining, even if other optimization or inlining qualifiers are set.

/CHECKS=0VERFLOW
Enable numeric overflow checking (which is not normally enabled by default).
Not that division by zero is a separate check that is not controlled by this
qualifier (division by zero checking is on by default).

/CHECKS=SUPPRESS_ALL
Suppress all checks.

/TRY_SEMANTICS
Don’t quit; try semantics, even if parse errors.

/FORCE_ALI
Don’t quit; generate ‘ali’ and tree files even if illegalities.

/POLLING_ENABLE
Enable polling. This is required on some systems (notably Windows NT) to
obtain asynchronous abort and asynchronous transfer of control capability. See
the description of pragma Polling in the GNAT Reference Manual for full de-
tails.

/REPRESENTATION_INFO[0/1/2/3] [s]
Output representation information for declared types and objects.

/SYNTAX_ONLY
Syntax check only.

/TREE_OUTPUT
Tree output file to be generated.

-gnatT nnn
Set time slice to specified number of microseconds

/UNITS_LIST
List units for this compilation.

/UNIQUE_ERROR_TAG
Tag all error messages with the unique string "error:"

/REPORT_ERRORS=VERBOSE
Verbose mode. Full error output with source lines to ‘SYS$O0UTPUT’.

/VALIDITY_CHECKING
Control level of validity checking. See separate section describing this feature.

/WARNINGS=xxx
Warning mode where xxx is a string of options describing the exact warnings
that are enabled or disabled. See separate section on warning control.

Chapter 3: Compiling Using GNAT COMPILE 33

/WIDE_CHARACTER_ENCODING=e

Wide character encoding method (e=BRACKETS, NONE, HEX, UPPER, SHIFT_
JIS, EUC, UTF8)

/XREF=SUPPRESS

Suppress generation of cross-reference information.

/STYLE_CHECKS=(option,option..)

Enable built-in style checks. See separate section describing this feature.

/DISTRIBUTION_STUBS=m

/83

Distribution stub generation and compilation (m=RECEIVER or CALLER to spec-
ify the type of stubs to be generated and compiled).

Enforce Ada 83 restrictions.

The following restrictions apply to the combination of qualifiers in this manner:

The qualifier ‘/NOLOAD’ if combined with other qualifiers must come first in the string.
The qualifier ‘/SYNTAX_ONLY’ if combined with other qualifiers must come first in the
string.

Once a "y" appears in the string (that is a use of the ‘/STYLE=" qualifier), then all
further characters in the qualifier are interpreted as style modifiers (see description of
‘/STYLE=").

Once a "d" appears in the string (that is a use of the ‘-gnatd’ qualifier), then all further
characters in the qualifier are interpreted as debug flags (see description of ‘-gnatd’).
Once a "w" appears in the string (that is a use of the ‘-gnatw’ qualifier), then all further
characters in the qualifier are interpreted as warning mode modifiers (see description
of ‘-gnatw’).

Once a "V" appears in the string (that is a use of the ‘/VALIDITY_CHECKING’ qualifier),

then all further characters in the qualifier are interpreted as validity checking options
(see description of ‘/VALIDITY_CHECKING’).

3.2.1 Output and Error Message Control

The standard default format for error messages is called "brief format." Brief format messages
are written to ‘SYS$ERROR’ (the standard error file) and have the following form:

E.ADB:3:04: Incorrect spelling of keyword "function"
E.ADB:4:20: ";" should be "is"

The first integer after the file name is the line number in the file, and the second integer
is the column number within the line. glide can parse the error messages and point to
the referenced character. The following qualifiers provide control over the error message
format:

/REPORT_ERRORS=VERBOSE

The effect of this setting is to write long-format error messages to
‘SYS$0UTPUT’ (the standard output file. The same program compiled with the
‘/REPORT_ERRORS=VERBOSE’ qualifier would generate:

34 GNAT User’s Guide for OpenVMS Alpha

-

3. funcion X (Q : Integer)

I
>>> Incorrect spelling of keyword "function"
4. return Integer;

>>> ";" should be "is"
N

J

The vertical bar indicates the location of the error, and the ‘>>>’ prefix can be
used to search for error messages. When this qualifier is used the only source
lines output are those with errors.

/LIST This qualifier causes a full listing of the file to be generated. The output might
look as follows:

1. procedure E is

V : Integer;

funcion X (Q : Integer)

|
>>> Incorrect spelling of keyword "function"
4. return Integer;

[

>>> ";" should be "is"
5 begin
6 return Q + Q;
T. end;
8. begin
9
0

w N

. V :=X + X;
.end E;

When you specify the ‘/REPORT_ERRORS=VERBOSE’ or ‘/LIST’ qualifiers and
standard output is redirected, a brief summary is written to ‘SYS$ERROR’ (stan-
dard error) giving the number of error messages and warning messages gener-
ated.

/UNIQUE_ERROR_TAG
This qualifier forces all error messages to be preceded by the unique string
"error:". This means that error messages take a few more characters in space,
but allows easy searching for and identification of error messages.

/WARNINGS=BRIEF
This qualifier causes GNAT to generate the brief format error messages to
‘SYS$ERROR’ (the standard error file) as well as the verbose format message or
full listing (which as usual is written to ‘SYS$0UTPUT’ (the standard output file).

/ERROR_LIMIT=n
n is a decimal integer in the range of 1 to 999 and limits the number of error
messages to be generated. For example, using ‘/ERROR_LIMIT=2" might yield

Chapter 3: Compiling Using GNAT COMPILE 35

E.ADB:3:04: Incorrect spelling of keyword "function"
E.ADB:5:35: missing ".."

fatal error: maximum errors reached

compilation abandoned

/REPORT_ERRORS=FULL
Normally, the compiler suppresses error messages that are likely to be redun-
dant. This qualifier causes all error messages to be generated. In particular, in
the case of references to undefined variables. If a given variable is referenced
several times, the normal format of messages is

E.ADB:7:07: "V" is undefined (more references follow)

where the parenthetical comment warns that there are additional references to

the variable V. Compiling the same program with the ‘/REPORT_ERRORS=FULL’

qualifier yields

E.ADB:7:07: "V" is undefined

E.ADB:8:07: "V" is undefined

E.ADB:8:12: "V" is undefined

E.ADB:8:16: "V" is undefined

E.ADB:9:07: "V" is undefined

E.ADB:9:12: "V" is undefined

/TRY_SEMANTICS
In normal operation mode, the compiler first parses the program and determines
if there are any syntax errors. If there are, appropriate error messages are gen-
erated and compilation is immediately terminated. This qualifier tells GNAT
to continue with semantic analysis even if syntax errors have been found. This
may enable the detection of more errors in a single run. On the other hand,
the semantic analyzer is more likely to encounter some internal fatal error when
given a syntactically invalid tree.

/FORCE_ALI
In normal operation mode, the ‘ali’ file is not generated if any illegalities are
detected in the program. The use of ‘/FORCE_ALI’ forces generation of the ‘ali’
file. This file is marked as being in error, so it cannot be used for binding pur-
poses, but it does contain reasonably complete cross-reference information, and
thus may be useful for use by tools (e.g. semantic browsing tools or integrated
development environments) that are driven from the ‘ali’ file.

In addition, if ‘/TREE_OUTPUT’ is also specified, then the tree file is gener-
ated even if there are illegalities. It may be useful in this case to also specify
‘/TRY_SEMANTICS’ to ensure that full semantic processing occurs. The resulting
tree file can be processed by ASIS, for the purpose of providing partial informa-
tion about illegal units, but if the error causes the tree to be badly malformed,
then ASIS may crash during the analysis.

In addition to error messages, which correspond to illegalities as defined in the Ada 95
Reference Manual, the compiler detects two kinds of warning situations.

First, the compiler considers some constructs suspicious and generates a warning message
to alert you to a possible error. Second, if the compiler detects a situation that is sure to
raise an exception at run time, it generates a warning message. The following shows an
example of warning messages:

36 GNAT User’s Guide for OpenVMS Alpha

E.ADB:4:24: warning: creation of object may raise Storage_Error
E.ADB:10:17: warning: static value out of range
E.ADB:10:17: warning: "Constraint_Error" will be raised at run time

GNAT considers a large number of situations as appropriate for the generation of warning
messages. As always, warnings are not definite indications of errors. For example, if you
do an out-of-range assignment with the deliberate intention of raising a Constraint_Error
exception, then the warning that may be issued does not indicate an error. Some of the
situations for which GNAT issues warnings (at least some of the time) are given in the
following list, which is not necessarily complete.

e Possible infinitely recursive calls

e Qut-of-range values being assigned

e Possible order of elaboration problems

e Unreachable code

e Fixed-point type declarations with a null range

e Variables that are never assigned a value

e Variables that are referenced before being initialized
e Task entries with no corresponding accept statement
e Duplicate accepts for the same task entry in a select
e Objects that take too much storage

e Unchecked conversion between types of differing sizes
e Missing return statements along some execution paths in a function
e Incorrect (unrecognized) pragmas

e Incorrect external names

e Allocation from empty storage pool

e Potentially blocking operations in protected types

e Suspicious parenthesization of expressions

e Mismatching bounds in an aggregate

e Attempt to return local value by reference

e Unrecognized pragmas

e Premature instantiation of a generic body

e Attempt to pack aliased components

e Out of bounds array subscripts

e Wrong length on string assignment

e Violations of style rules if style checking is enabled

e Unused with clauses

e Bit_Order usage that does not have any effect

e Compile time biased rounding of floating-point constant

e Standard.Duration used to resolve universal fixed expression

Chapter 3: Compiling Using GNAT COMPILE

Dereference of possibly null value

Declaration that is likely to cause storage error
Internal GNAT unit with’ed by application unit
Values known to be out of range at compile time
Unreferenced labels and variables

Address overlays that could clobber memory
Unexpected initialization when address clause present
Bad alignment for address clause

Useless type conversions

Redundant assignment statements

Accidental hiding of name by child unit
Unreachable code

Access before elaboration detected at compile time

A range in a for loop that is known to be null or might be null

37

The following qualifiers are available to control the handling of warning messages:

/WARNINGS=0PTIONAL (activate all optional errors)

This qualifier activates most optional warning messages, see remaining
list in this section for details on optional warning messages that can
be individually controlled. @ The warnings that are not turned on by
this qualifier are ‘/WARNINGS=BIASED_ROUNDING’ (biased rounding),
‘/WARNINGS=IMPLICIT_DEREFERENCE’ (implicit dereferencing), and
‘/WARNINGS=HIDING’ (hiding). All other optional warnings are turned on.

/WARNINGS=NOOPTIONAL (suppress all optional errors)

This qualifier suppresses all optional warning messages, see remaining list in
this section for details on optional warning messages that can be individually
controlled.

/WARNINGS=BIASED_ROUNDING (activate warnings on biased rounding)

If a static floating-point expression has a value that is exactly half way between
two adjacent machine numbers, then the rules of Ada (Ada Reference Manual,
section 4.9(38)) require that this rounding be done away from zero, even if the
normal unbiased rounding rules at run time would require rounding towards
zero. This warning message alerts you to such instances where compile-time
rounding and run-time rounding are not equivalent. If it is important to get
proper run-time rounding, then you can force this by making one of the operands
into a variable. The default is that such warnings are not generated. Note that
‘/WARNINGS=0PTIONAL’ does not affect the setting of this warning option.

/WARNINGS=NOBIASED_ROUNDING (suppress warnings on biased rounding)

This qualifier disables warnings on biased rounding.

/WARNINGS=CONDITIONALS (activate warnings on conditionals)

This qualifier activates warnings for conditional expressions used in tests
that are known to be True or False at compile time. The default is that

38

GNAT User’s Guide for OpenVMS Alpha

such warnings are not generated. This warning can also be turned on using
‘/WARNINGS=0PTIONAL’.

/WARNINGS=NOCONDITIONALS (suppress warnings on conditionals)

This qualifier suppresses warnings for conditional expressions used in tests that
are known to be True or False at compile time.

/WARNINGS=IMPLICIT_DEREFERENCE (activate warnings on implicit dereferencing)

If this qualifier is set, then the use of a prefix of an access type in an indexed
component, slice, or selected component without an explicit .all will generate
a warning. With this warning enabled, access checks occur only at points
where an explicit .all appears in the source code (assuming no warnings are
generated as a result of this qualifier). The default is that such warnings are
not generated. Note that ‘/WARNINGS=0PTIONAL’ does not affect the setting of
this warning option.

/WARNINGS=NOIMPLICIT_DEREFERENCE (suppress warnings on implicit
dereferencing)

This qualifier suppresses warnings for implicit deferences in indexed compo-
nents, slices, and selected components.

/WARNINGS=ERROR (treat warnings as errors)

This qualifier causes warning messages to be treated as errors. The warning
string still appears, but the warning messages are counted as errors, and prevent
the generation of an object file.

/WARNINGS=UNREFERENCED_FORMALS (activate warnings on unreferenced formals)

This qualifier causes a warning to be generated if a formal parameter is not
referenced in the body of the subprogram. This warning can also be turned on
using ‘/WARNINGS=0PTIONAL’ or ‘/WARNINGS=UNUSED’.

/WARNINGS=NOUNREFERENCED_FORMALS (suppress warnings on unreferenced formals)

This qualifier suppresses warnings for unreferenced formal param-
eters. Note that the combination ‘/WARNINGS=UNUSED" followed by
‘/WARNINGS=NOUNREFERENCED_FORMALS’ has the effect of warning on
unreferenced entities other than subprogram formals.

/WARNINGS=HIDING (activate warnings on hiding)

This qualifier activates warnings on hiding declarations. A declaration is con-
sidered hiding if it is for a non-overloadable entity, and it declares an entity with
the same name as some other entity that is directly or use-visible. The default
is that such warnings are not generated. Note that ‘/WARNINGS=0PTIONAL’ does
not affect the setting of this warning option.

/WARNINGS=NOHIDING (suppress warnings on hiding)

This qualifier suppresses warnings on hiding declarations.

/WARNINGS=IMPLEMENTATION (activate warnings on implementation units).

This qualifier activates warnings for a with of an internal GNAT implementa-
tion unit, defined as any unit from the Ada, Interfaces, GNAT, DEC, or System
hierarchies that is not documented in either the Ada Reference Manual or the

Chapter 3: Compiling Using GNAT COMPILE 39

GNAT Programmer’s Reference Manual. Such units are intended only for inter-
nal implementation purposes and should not be with’ed by user programs. The
default is that such warnings are generated This warning can also be turned on
using ‘/WARNINGS=0PTIONAL .

/WARNINGS=NOIMPLEMENTATION (disable warnings on implementation units).
This qualifier disables warnings for a with of an internal GNAT implementation
unit.

/WARNINGS=ELABORATION (activate warnings on elaboration pragmas)
This qualifier activates warnings on missing pragma Elaborate_All statements.
See the section in this guide on elaboration checking for details on when such
pragma should be used. The default is that such warnings are not generated.
This warning can also be turned on using ‘/WARNINGS=0PTIONAL’.

/WARNINGS=NOELABORATION (suppress warnings on elaboration pragmas)
This qualifier suppresses warnings on missing pragma Elaborate_All statements.
See the section in this guide on elaboration checking for details on when such
pragma should be used.

/WARNINGS=0VERLAYS (activate warnings on address clause overlays)
This qualifier activates warnings for possibly unintended initialization effects of
defining address clauses that cause one variable to overlap another. The default
is that such warnings are generated. This warning can also be turned on using
‘/WARNINGS=0PTIONAL’.

/WARNINGS=NOOVERLAYS (suppress warnings on address clause overlays)
This qualifier suppresses warnings on possibly unintended initialization effects
of defining address clauses that cause one variable to overlap another.

-gnatwp (activate warnings on ineffective pragma Inlines)
This qualifier activates warnings for failure of front end inlining (activated by
‘~gnatl’) to inline a particular call. There are many reasons for not being able
to inline a call, including most commonly that the call is too complex to inline.
This warning can also be turned on using ‘/WARNINGS=0PTIONAL’.

-gnatwP (suppress warnings on ineffective pragma Inlines)
This qualifier suppresses warnings on ineffective pragma Inlines. If the inlining
mechanism cannot inline a call, it will simply ignore the request silently.

/WARNINGS=REDUNDANT (activate warnings on redundant constructs)
This qualifier activates warnings for redundant constructs. The following is
the current list of constructs regarded as redundant: This warning can also be
turned on using ‘/WARNINGS=0PTIONAL’.

e Assignment of an item to itself.

e Type conversion that converts an expression to its own type.

e Use of the attribute Base where typ’Base is the same as typ.

e Use of pragma Pack when all components are placed by a record represen-
tation clause.

/WARNINGS=NOREDUNDANT (suppress warnings on redundant constructs)
This qualifier suppresses warnings for redundant constructs.

40

GNAT User’s Guide for OpenVMS Alpha

/WARNINGS=SUPPRESS (suppress all warnings)

This qualifier completely suppresses the output of all warning messages from
the GNAT front end. Note that it does not suppress warnings from the GNAT
COMPILE back end. To suppress these back end warnings as well, use the qualifier
-w in addition to ‘/WARNINGS=SUPPRESS’.

/WARNINGS=UNUSED (activate warnings on unused entities)

This qualifier activates warnings to be generated for entities that are defined but
not referenced, and for units that are with’ed and not referenced. In the case of
packages, a warning is also generated if no entities in the package are referenced.
This means that if the package is referenced but the only references are in use
clauses or renames declarations, a warning is still generated. A warning is also
generated for a generic package that is with’ed but never instantiated. In the
case where a package or subprogram body is compiled, and there is a with on
the corresponding spec that is only referenced in the body, a warning is also gen-
erated, noting that the with can be moved to the body. The default is that such
warnings are not generated. This qualifier also activates warnings on unrefer-
enced formals (it is includes the effect of ‘/WARNINGS=UNREFERENCED_FORMALS’).
This warning can also be turned on using ‘/WARNINGS=0PTIONAL’.

/WARNINGS=NOUNUSED (suppress warnings on unused entities)

W

This qualifier suppresses warnings for unused entities and packages. It also
turns off warnings on unreferenced formals (and thus includes the effect of
‘/WARNINGS=NOUNREFERENCED_FORMALS’).

A string of warning parameters can be used in the same parameter. For exam-
ple:
-gnatwale

Would turn on all optional warnings except for elaboration pragma warnings,
and also specify that warnings should be treated as errors.

This qualifier suppresses warnings from the GNAT COMPILE backend. It may be
used in conjunction with ‘/WARNINGS=SUPPRESS’ to ensure that all warnings are
suppressed during the entire compilation process.

3.2.2 Debugging and Assertion Control

/CHECKS=ASSERTIONS

The pragmas Assert and Debug normally have no effect and are ignored. This
qualifier, where ‘a’ stands for assert, causes Assert and Debug pragmas to be
activated.

The pragmas have the form:

pragma Assert (Boolean-expression [,
static-string-expression])
pragma Debug (procedure call)

Chapter 3: Compiling Using GNAT COMPILE 41

The Assert pragma causes Boolean-expression to be tested. If the result is
True, the pragma has no effect (other than possible side effects from evaluating
the expression). If the result is False, the exception Assert_Failure declared
in the package System.Assertions is raised (passing static-string-expression, if
present, as the message associated with the exception). If no string expression
is given the default is a string giving the file name and line number of the
pragma.

The Debug pragma causes procedure to be called. Note that pragma Debug
may appear within a declaration sequence, allowing debugging procedures to
be called between declarations.

/DEBUG [=debug-levell]
/NODEBUG Specifies how much debugging information is to be included in the resulting
object file where ’debug-level’ is one of the following:

TRACEBACK (default)
Include both debugger symbol records and traceback the object file.

ALL Include both debugger symbol records and traceback in object file.

NONE Excludes both debugger symbol records and traceback the object
file. Same as /NODEBUG.

SYMBOLS Includes only debugger symbol records in the object file. Note that
this doesn’t include traceback information.

3.2.3 Validity Checking

The Ada 95 Reference Manual has specific requirements for checking for invalid values. In par-
ticular, RM 13.9.1 requires that the evaluation of invalid values (for example from unchecked
conversions), not result in erroneous execution. In GNAT, the result of such an evaluation
in normal default mode is to either use the value unmodified, or to raise Constraint_Error in
those cases where use of the unmodified value would cause erroneous execution. The cases
where unmodified values might lead to erroneous execution are case statements (where a
wild jump might result from an invalid value), and subscripts on the left hand side (where
memory corruption could occur as a result of an invalid value).

The ‘-gnatVx’ qualifier allows more control over the validity checking mode. The x
argument here is a string of letters which control which validity checks are performed in
addition to the default checks described above.

e ‘—gnatVc’ Validity checks for copies

The right hand side of assignments, and the initializing values of object declarations
are validity checked.

e ‘/VALIDITY_CHECKING=RM Default (RM) validity checks

Some validity checks are done by default following normal Ada semantics (RM 13.9.1
(9-11)). A check is done in case statements that the expression is within the range of the
subtype. If it is not, Constraint_Error is raised. For assignments to array components,
a check is done that the expression used as index is within the range. If it is not,
Constraint_Error is raised. Both these validity checks may be turned off using qualifier

42

GNAT User’s Guide for OpenVMS Alpha

‘~gnatVD’. They are turned on by default. If ‘-~gnatVD’ is specified, a subsequent
qualifier ‘/VALIDITY_CHECKING=RM’ will leave the checks turned on. Qualifier ‘-~gnatVD’
should be used only if you are sure that all such expressions have valid values. If you
use this qualifier and invalid values are present, then the program is erroneous, and
wild jumps or memory overwriting may occur.

‘-gnatVi’ Validity checks for in mode parameters

Arguments for parameters of mode in are validity checked in function and procedure
calls at the point of call.

‘~gnatVm’ Validity checks for in out mode parameters

Arguments for parameters of mode in out are validity checked in procedure calls at the
point of call. The ’m’ here stands for modify, since this concerns parameters that can
be modified by the call. Note that there is no specific option to test out parameters,
but any reference within the subprogram will be tested in the usual manner, and if an
invalid value is copied back, any reference to it will be subject to validity checking.
‘~gnatVo’ Validity checks for operator and attribute operands

Arguments for predefined operators and attributes are validity checked. This includes
all operators in package Standard, the shift operators defined as intrinsic in package
Interfaces and operands for attributes such as Pos.

‘~gnatVr’ Validity checks for function returns

The expression in return statements in functions is validity checked.

‘~gnatVs’ Validity checks for subscripts

All subscripts expressions are checked for validity, whether they appear on the right
side or left side (in default mode only left side subscripts are validity checked).
‘-gnatVt’ Validity checks for tests

Expressions used as conditions in if, while or exit statements are checked, as well as
guard expressions in entry calls.

‘/VALIDITY_CHECKING=FULL’ Validity checks for floating-point values

In the absence of this qualifier, validity checking occurs only for discrete values.
If ‘/VALIDITY_CHECKING=FULL’ is specified, then validity checking also applies for
floating-point values, and NaN’s and infinities are considered invalid, as well as out of
range values for constrained types. Note that this means that standard IEEE infinity
mode is not allowed. The exact contexts in which floating-point values are checked
depends on the setting of other options. For example ‘-gnatVif’ or ‘-gnatVfi’ (the
order does not matter) specifies that floating-point parameters of mode in should be
validity checked.

‘-gnatVa’ All validity checks

All the above validity checks are turned on. That is ‘-gnatVa’ is equivalent to
gnatVcdfimorst.

‘~gnatVn’ No validity checks

This qualifier turns off all validity checking, including the default checking for
case statements and left hand side subscripts. Note that the use of the qualifier
‘/CHECKS=SUPPRESS_ALL’ supresses all run-time checks, including validity checks, and
thus implies ‘-gnatVn’.

Chapter 3: Compiling Using GNAT COMPILE 43

The ¢/VALIDITY_CHECKING’ qualifier may be followed by a string of letters to turn on
a series of validity checking options. For example, ‘~gnatVcr’ specifies that in addition to
the default validity checking, copies and function return expressions be validity checked. In
order to make it easier to specify a set of options, the upper case letters CDFIMORST may be
used to turn off the corresponding lower case option, so for example ‘~gnatVaM’ turns on
all validity checking options except for checking of in out procedure arguments.

The specification of additional validity checking generates extra code (and in the case
of ‘~gnatva’ the code expansion can be substantial. However, these additional checks can
be very useful in smoking out cases of uninitialized variables, incorrect use of unchecked
conversion, and other errors leading to invalid values. The use of pragma Initialize_
Scalars is useful in conjunction with the extra validity checking, since this ensures that
wherever possible uninitialized variables have invalid values.

See also the pragma Validity_Checks which allows modification of the validity checking
mode at the program source level, and also allows for temporary disabling of validity checks.

3.2.4 Style Checking

The /STYLE=(option,option,..) qualifier causes the compiler to enforce specified style rules.
A limited set of style rules has been used in writing the GNAT sources themselves. This
qualifier allows user programs to activate all or some of these checks. If the source program
fails a specified style check, an appropriate warning message is given, preceded by the
character sequence "(style)". (OPTION,OPTION;,..) is a sequence of keywords indicating
the particular style checks to be performed. The following checks are defined:

1-9 (specify indentation level)
If a digit from 1-9 appears in the string after ‘/STYLE=" then proper indentation
is checked, with the digit indicating the indentation level required. The general
style of required indentation is as specified by the examples in the Ada Reference
Manual. Full line comments must be aligned with the —- starting on a column
that is a multiple of the alignment level.

ATTRIBUTE (check attribute casing)
If the word ATTRIBUTE appears in the string after ‘/STYLE=" then attribute
names, including the case of keywords such as digits used as attributes names,
must be written in mixed case, that is, the initial letter and any letter following
an underscore must be uppercase. All other letters must be lowercase.

BLANKS (blanks not allowed at statement end)
If the word BLANKS appears in the string after ‘/STYLE=" then trailing blanks
are not allowed at the end of statements. The purpose of this rule, together
with h (no horizontal tabs), is to enforce a canonical format for the use of blanks
to separate source tokens.

COMMENTS (check comments)
If the word COMMENT'S appears in the string after ‘//STYLE=" then comments
must meet the following set of rules:
e The "—" that starts the column must either start in column one, or else at
least one blank must precede this sequence.

44 GNAT User’s Guide for OpenVMS Alpha

e Comments that follow other tokens on a line must have at least one blank
following the "—" at the start of the comment.

e Full line comments must have two blanks following the "—" that starts the
comment, with the following exceptions.

e A line consisting only of the "—" characters, possibly preceded by blanks
is permitted.

e A comment starting with "—x" where x is a special character is permitted.
This alows proper processing of the output generated by specialized tools
including GNAT PREPROCESS (where ! is used) and the SPARK annnotation
language (where —# is used). For the purposes of this rule, a special
character is defined as being in one of the ASCII ranges 16#21#..16#2F#
or 16#3A#..164#3F 4.

e A line consisting entirely of minus signs, possibly preceded by blanks, is
permitted. This allows the construction of box comments where lines of
minus signs are used to form the top and bottom of the box.

e If a comment starts and ends with "—" is permitted as long as at least one
blank follows the initial "—". Together with the preceding rule, this allows
the construction of box comments, as shown in the following example:

-- This is a box comment --
-- with two text lines. --

END (check end/exit labels)
If the word END appears in the string after ‘/STYLE=" then optional labels
on end statements ending subprograms and on exit statements exiting named
loops, are required to be present.

VTABS (no form feeds or vertical tabs)
If the word VTABS appears in the string after ‘/STYLE=" then neither form
feeds nor vertical tab characters are not permitted in the source text.

HTABS (no horizontal tabs)
If the word HTABS appears in the string after ‘/STYLE=" then horizontal tab
characters are not permitted in the source text. Together with the b (no blanks
at end of line) check, this enforces a canonical form for the use of blanks to
separate source tokens.

IF_THEN (check if-then layout)
If the word IF_THEN appears in the string after ‘/STYLE=", then the keyword
then must appear either on the same line as corresponding if, or on a line
on its own, lined up under the if with at least one non-blank line in between
containing all or part of the condition to be tested.

KEYWORD (check keyword casing)
If the word KEYWORD appears in the string after ‘/STYLE=" then all keywords
must be in lower case (with the exception of keywords such as digits used as
attribute names to which this check does not apply).

Chapter 3: Compiling Using GNAT COMPILE 45

LAYOUT (check layout)
If the word LAYOUT appears in the string after ‘/STYLE=" then layout of state-
ment and declaration constructs must follow the recommendations in the Ada
Reference Manual, as indicated by the form of the syntax rules. For example
an else keyword must be lined up with the corresponding if keyword.

There are two respects in which the style rule enforced by this check option
are more liberal than those in the Ada Reference Manual. First in the case of
record declarations, it is permissible to put the record keyword on the same
line as the type keyword, and then the end in end record must line up under
type. For example, either of the following two layouts is acceptable:

-

type q is record
a : integer;
b : integer;
end record;

type q is
record
a : integer;
b : integer;
end record;
- J

Second, in the case of a block statement, a permitted alternative is to put the
block label on the same line as the declare or begin keyword, and then line
the end keyword up under the block label. For example both the following are
permitted:

-

Block : declare

A : Integer := 3;
begin

Proc (A, A);
end Block;

Block :
declare
A : Integer := 3;
begin
Proc (A, A);
end Block;

The same alternative format is allowed for loops. For example, both of the
following are permitted:

46 GNAT User’s Guide for OpenVMS Alpha

-

Clear : while J < 10 loop
A (J) := 0;
end loop Clear;

Clear :
while J < 10 loop
A (J) :=0;
end loop Clear;

-

LINE_LENGTH (check maximum line length)
If the word LINE_LENGTH appears in the string after ‘/STYLE=" then the
length of source lines must not exceed 79 characters, including any trailing
blanks. The value of 79 allows convenient display on an 80 character wide
device or window, allowing for possible special treatment of 80 character lines.

MAX_LENGTH=nnn (set maximum line length)
If the sequence MAX_LENGTH=nnn, where nnn is a decimal number, appears
in the string after ‘/STYLE=" then the length of lines must not exceed the given
value.

STANDARD_CASING (check casing of entities in Standard)
If the word STANDARD_CASING appears in the string after ‘/STYLE=’ then
any identifier from Standard must be cased to match the presentation in the
Ada Reference Manual (for example, Integer and ASCII.NUL).

ORDERED_SUBPROGRAMS (check order of subprogram bodies)
If the word ORDERED_SUBPROGRAMS appears in the string after ‘/STYLE=’
then all subprogram bodies in a given scope (e.g. a package body) must be in
alphabetical order. The ordering rule uses normal Ada rules for comparing
strings, ignoring casing of letters, except that if there is a trailing numeric
suffix, then the value of this suffix is used in the ordering (e.g. Junk2 comes
before Junk10).

PRAGMA (check pragma casing)
If the word PRAGMA appears in the string after ‘/STYLE=" then pragma names
must be written in mixed case, that is, the initial letter and any letter following
an underscore must be uppercase. All other letters must be lowercase.

REFERENCES (check references)
If the word REFERENCES appears in the string after ‘/STYLE=’ then all identi-
fier references must be cased in the same way as the corresponding declaration.
No specific casing style is imposed on identifiers. The only requirement is for
consistency of references with declarations.

SPECS (check separate specs)
If the word SPECS appears in the string after ‘/STYLE=" then separate declara-
tions ("specs") are required for subprograms (a body is not allowed to serve as
its own declaration). The only exception is that parameterless library level pro-

Chapter 3: Compiling Using GNAT COMPILE 47

cedures are not required to have a separate declaration. This exception covers
the most frequent form of main program procedures.

TOKEN (check token spacing)
If the word TOKEN appears in the string after ‘/STYLE=" then the following
token spacing rules are enforced:

The keywords abs and not must be followed by a space.
The token => must be surrounded by spaces.
The token <> must be preceded by a space or a left parenthesis.

Binary operators other than ** must be surrounded by spaces. There is
no restriction on the layout of the ** binary operator.

Colon must be surrounded by spaces.
Colon-equal (assignment) must be surrounded by spaces.

Comma must be the first non-blank character on the line, or be immediately
preceded by a non-blank character, and must be followed by a space.

If the token preceding a left paren ends with a letter or digit, then a space
must separate the two tokens.

A right parenthesis must either be the first non-blank character on a line,
or it must be preceded by a non-blank character.

A semicolon must not be preceded by a space, and must not be followed
by a non-blank character.

A unary plus or minus may not be followed by a space.

A vertical bar must be surrounded by spaces.

In the above rules, appearing in column one is always permitted, that is, counts
as meeting either a requirement for a required preceding space, or as meeting
a requirement for no preceding space.

Appearing at the end of a line is also always permitted, that is, counts as
meeting either a requirement for a following space, or as meeting a requirement
for no following space.

If any of these style rules is violated, a message is generated giving details on the violation.
The initial characters of such messages are always "(style)". Note that these messages are
treated as warning messages, so they normally do not prevent the generation of an object
file. The ‘/WARNINGS=ERROR’ qualifier can be used to treat warning messages, including
style messages, as fatal errors.

The qualifier /STYLE_CHECKS=ALL_BUILTIN is equivalent to all checking options en-

abled with the exception of ORDERED_SUBPROGRAMS, with an indentation level of 3.
This is the standard checking option that is used for the GNAT sources.

3.2.5 Run-Time Checks

If you compile with the default options, GNAT will insert many run-time checks into the
compiled code, including code that performs range checking against constraints, but not
arithmetic overflow checking for integer operations (including division by zero) or checks

48 GNAT User’s Guide for OpenVMS Alpha

for access before elaboration on subprogram calls. All other run-time checks, as required
by the Ada 95 Reference Manual, are generated by default. The following GNAT COMPILE
qualifiers refine this default behavior:

/CHECKS=SUPPRESS_ALL
Suppress all run-time checks as though pragma Suppress (all_checks) had
been present in the source. Validity checks are also suppressed (in other words
‘/CHECKS=SUPPRESS_ALL’ also implies ‘-gnatVn’. Use this qualifier to improve
the performance of the code at the expense of safety in the presence of invalid
data or program bugs.

/CHECKS=0VERFLOW
Enables overflow checking for integer operations. This causes GNAT to gener-
ate slower and larger executable programs by adding code to check for overflow
(resulting in raising Constraint_Error as required by standard Ada seman-
tics). These overflow checks correspond to situations in which the true value
of the result of an operation may be outside the base range of the result type.
The following example shows the distinction:

X1 : Integer := Integer’Last;
X2 : Integer range 1 .. 5 := 5;

X1
X2

X1 + 1; -- ¢/CHECKS=0VERFLOW’ required to catch the Constraint_Error]]
X2 + 1; -- range check, ¢/CHECKS=0VERFLOW’ has no effect here

Here the first addition results in a value that is outside the base range of Integer,
and hence requires an overflow check for detection of the constraint error. The
second increment operation results in a violation of the explicit range constraint,
and such range checks are always performed. Basically the compiler can assume
that in the absence of the ‘/CHECKS=0VERFLOW’ qualifier that any value of type
xxx is in range of the base type of xxx.

Note that the ‘/CHECKS=0VERFLOW’ qualifier does not affect the code generated
for any floating-point operations; it applies only to integer semantics). For
floating-point, GNAT has the Machine_Overflows attribute set to False and
the normal mode of operation is to generate IEEE NaN and infinite values on
overflow or invalid operations (such as dividing 0.0 by 0.0).

The reason that we distinguish overflow checking from other kinds of range con-
straint checking is that a failure of an overflow check can generate an incorrect
value, but cannot cause erroneous behavior. This is unlike the situation with a
constraint check on an array subscript, where failure to perform the check can
result in random memory description, or the range check on a case statement,
where failure to perform the check can cause a wild jump.

Note again that ‘/CHECKS=0VERFLOW’ is off by default, so overflow checking is
not performed in default mode. This means that out of the box, with the
default settings, GNAT does not do all the checks expected from the language
description in the Ada Reference Manual. If you want all constraint checks to
be performed, as described in this Manual, then you must explicitly use the
/CHECKS=OVERFLOW qualifier either on the GNAT MAKE or GNAT COMPILE
command.

Chapter 3: Compiling Using GNAT COMPILE 49

/CHECKS=ELABORATION
Enables dynamic checks for access-before-elaboration on subprogram calls and

generic instantiations. For full details of the effect and use of this qualifier, See
Chapter 3 [Compiling Using GNAT COMPILE], page 29.

The setting of these qualifiers only controls the default setting of the checks. You may mod-
ify them using either Suppress (to remove checks) or Unsuppress (to add back suppressed
checks) pragmas in the program source.

3.2.6 Stack Overflow Checking

For most operating systems, GNAT COMPILE does not perform stack overflow checking by default.
This means that if the main environment task or some other task exceeds the available stack
space, then unpredictable behavior will occur.

To activate stack checking, compile all units with the GNAT COMPILE option -fstack-
check. For example:
GNAT COMPILE -fstack-check PACKAGE1.ADB

Units compiled with this option will generate extra instructions to check that any use of the
stack (for procedure calls or for declaring local variables in declare blocks) do not exceed the
available stack space. If the space is exceeded, then a Storage_Error exception is raised.

For declared tasks, the stack size is always controlled by the size given in an applicable
Storage_Size pragma (or is set to the default size if no pragma is used.

For the environment task, the stack size depends on system defaults and is unknown
to the compiler. The stack may even dynamically grow on some systems, precluding the
normal Ada semantics for stack overflow. In the worst case, unbounded stack usage, causes
unbounded stack expansion resulting in the system running out of virtual memory.

The stack checking may still work correctly if a fixed size stack is allocated, but this
cannot be guaranteed. To ensure that a clean exception is signalled for stack overflow, set
the environment variable GNAT_STACK_LIMIT to indicate the maximum stack area that can
be used, as in:

SET GNAT_STACK_LIMIT 1600

The limit is given in kilobytes, so the above declaration would set the stack limit of the
environment task to 1.6 megabytes. Note that the only purpose of this usage is to limit the
amount of stack used by the environment task. If it is necessary to increase the amount
of stack for the environment task, then this is an operating systems issue, and must be
addressed with the appropriate operating systems commands.

3.2.7 Run-Time Control

-gnatT nnn
The gnatT qualifier can be used to specify the time-slicing value to be used
for task switching between equal priority tasks. The value nnn is given in
microseconds as a decimal integer.
Setting the time-slicing value is only effective if the underlying thread control
system can accommodate time slicing. Check the documentation of your oper-
ating system for details. Note that the time-slicing value can also be set by use

50

GNAT User’s Guide for OpenVMS Alpha

of pragma Time_Slice or by use of the t qualifier in the GNAT BIND step.
The pragma overrides a command line argument if both are present, and the
t qualifier for GNAT BIND overrides both the pragma and the GNAT COMPILE
command line qualifier.

3.2.8 Using GNAT COMPILE for Syntax Checking

/SYNTAX_ONLY

Run GNAT in syntax checking only mode. For example, the command
$ GNAT COMPILE /SYNTAX_ONLY X.ADB

compiles file ‘X.ADB’ in syntax-check-only mode. You can check a series of files
in a single command .

You may use other qualifiers in conjunction with ‘/SYNTAX_ONLY’. In particular,
‘/LIST’ and ‘/REPORT_ERRORS=VERBOSE’ are useful to control the format of any
generated error messages.

The output is simply the error messages, if any. No object file or ALI file is
generated by a syntax-only compilation. Also, no units other than the one
specified are accessed. For example, if a unit X with’s a unit Y, compiling unit
X in syntax check only mode does not access the source file containing unit Y.

Normally, GNAT allows only a single unit in a source file. However, this restric-
tion does not apply in syntax-check-only mode, and it is possible to check a file
containing multiple compilation units concatenated together. This is primarily
used by the GNAT CHOP utility (see Chapter 7 [Renaming Files Using GNAT
CHOPJ, page 99).

3.2.9 Using GNAT COMPILE for Semantic Checking

/NOLOAD

Causes the compiler to operate in semantic check mode, with full checking for
all illegalities specified in the Ada 95 Reference Manual, but without generation
of any object code (no object file is generated).

Because dependent files must be accessed, you must follow the GNAT semantic
restrictions on file structuring to operate in this mode:

e The needed source files must be accessible (see Section 3.3 [Search Paths
and the Run-Time Library (RTL)], page 56).

e FKach file must contain only one compilation unit.

e The file name and unit name must match (see Section 2.3 [File Naming
Rules|, page 14).

The output consists of error messages as appropriate. No object file is gener-
ated. An ‘ALI’ file is generated for use in the context of cross-reference tools,
but this file is marked as not being suitable for binding (since no object file is
generated). The checking corresponds exactly to the notion of legality in the
Ada 95 Reference Manual.

Chapter 3: Compiling Using GNAT COMPILE 51

Any unit can be compiled in semantics-checking-only mode, including units that
would not normally be compiled (subunits, and specifications where a separate
body is present).

3.2.10 Compiling Ada 83 Programs

/83

Although GNAT is primarily an Ada 95 compiler, it accepts this qualifier to
specify that an Ada 83 program is to be compiled in Ada83 mode. If you
specify this qualifier, GNAT rejects most Ada 95 extensions and applies Ada
83 semantics where this can be done easily. It is not possible to guarantee
this qualifier does a perfect job; for example, some subtle tests, such as are
found in earlier ACVC tests (that have been removed from the ACVC suite for
Ada 95), may not compile correctly. However, for most purposes, using this
qualifier should help to ensure that programs that compile correctly under the
‘/83’ qualifier can be ported easily to an Ada 83 compiler. This is the main use
of the qualifier.

With few exceptions (most notably the need to use <> on unconstrained generic
formal parameters, the use of the new Ada 95 keywords, and the use of pack-
ages with optional bodies), it is not necessary to use the ‘/83’ qualifier when
compiling Ada 83 programs, because, with rare exceptions, Ada 95 is upwardly
compatible with Ada 83. This means that a correct Ada 83 program is usually
also a correct Ada 95 program.

3.2.11 Character Set Control

/IDENTIFIER_CHARACTER_SET=c

Normally GNAT recognizes the Latin-1 character set in source program identi-
fiers, as described in the Ada 95 Reference Manual. This qualifier causes GNAT
to recognize alternate character sets in identifiers. c is a single character or word
indicating the character set, as follows:

1 Latin-1 identifiers

2 Latin-2 letters allowed in identifiers

3 Latin-3 letters allowed in identifiers

4 Latin-4 letters allowed in identifiers

5 Latin-5 (Cyrillic) letters allowed in identifiers

9 Latin-9 letters allowed in identifiers

PC IBM PC letters (code page 437) allowed in identifiers
PC850 IBM PC letters (code page 850) allowed in identifiers
FULL_UPPER

Full upper-half codes allowed in identifiers

NO_UPPER No upper-half codes allowed in identifiers

52

GNAT User’s Guide for OpenVMS Alpha

WIDE Wide-character codes (that is, codes greater than 255) allowed in
identifiers

See Section 2.2 [Foreign Language Representation], page 11, for full details on
the implementation of these character sets.

/WIDE_CHARACTER_ENCODING=e

Specify the method of encoding for wide characters. e is one of the following:

HEX Hex encoding (brackets coding also recognized)
UPPER Upper half encoding (brackets encoding also recognized)
SHIFT_JIS

Shift /JIS encoding (brackets encoding also recognized)
EUC EUC encoding (brackets encoding also recognized)
UTFS8 UTF-8 encoding (brackets encoding also recognized)

BRACKETS Brackets encoding only (default value)

For full details on the these encoding methods see See Section 2.2.3 [Wide
Character Encodings], page 13. Note that brackets coding is always
accepted, even if one of the other options is specified, so for example
‘/WIDE_CHARACTER_ENCODING=UTF8’ specifies that both brackets and UTF-8
encodings will be recognized. The units that are with’ed directly or indirectly
will be scanned using the specified representation scheme, and so if one of
the non-brackets scheme is used, it must be used consistently throughout
the program. However, since brackets encoding is always recognized, it
may be conveniently used in standard libraries, allowing these libraries
to be used with any of the available coding schemes. scheme. If no
‘/WIDE_CHARACTER_ENCODING=?" parameter is present, then the default
representation is Brackets encoding only.

Note that the wide character representation that is specified (explicitly or
by default) for the main program also acts as the default encoding used for
Wide_Text_I0O files if not specifically overridden by a WCEM form parameter.

3.2.12 File Naming Control

/FILE_NAME_MAX_LENGTH=n

Activates file name "krunching". n, a decimal integer in the range 1-999, indi-
cates the maximum allowable length of a file name (not including the ‘. ADS’ or
‘.ADB’ extension). The default is not to enable file name krunching.

For the source file naming rules, See Section 2.3 [File Naming Rules|, page 14.

3.2.13 Subprogram Inlining Control

/INLINE=PRAGMA

GNAT recognizes and processes Inline pragmas. However, for the inlining
to actually occur, optimization must be enabled. To enable inlining across

Chapter 3: Compiling Using GNAT COMPILE 53

unit boundaries, this is, inlining a call in one unit of a subprogram declared
in a with’ed unit, you must also specify this qualifier. In the absence of this
qualifier, GNAT does not attempt inlining across units and does not need to
access the bodies of subprograms for which pragma Inline is specified if they
are not in the current unit.

If you specify this qualifier the compiler will access these bodies, creating an
extra source dependency for the resulting object file, and where possible, the
call will be inlined. For further details on when inlining is possible see See
Section 24.4 [Inlining of Subprograms|, page 269.

-gnatlN The front end inlining activated by this qualifier is generally more extensive,
and quite often more effective than the standard ‘/INLINE=PRAGMA’ inlining
mode. It will also generate additional dependencies.

3.2.14 Auxiliary Output Control

/TREE_QOUTPUT
Causes GNAT to write the internal tree for a unit to a file (with the extension
‘.adt’. This not normally required, but is used by separate analysis tools.
Typically these tools do the necessary compilations automatically, so you should
not have to specify this qualifier in normal operation.

/UNITS_LIST
Print a list of units required by this compilation on ‘SYS$OUTPUT’. The listing
includes all units on which the unit being compiled depends either directly or
indirectly.

3.2.15 Debugging Control

/EXPAND_SOURCE

This qualifier causes the compiler to generate auxiliary output containing a
pseudo-source listing of the generated expanded code. Like most Ada com-
pilers, GNAT works by first transforming the high level Ada code into lower
level constructs. For example, tasking operations are transformed into calls
to the tasking run-time routines. A unique capability of GNAT is to list this
expanded code in a form very close to normal Ada source. This is very useful
in understanding the implications of various Ada usage on the efficiency of the
generated code. There are many cases in Ada (e.g. the use of controlled types),
where simple Ada statements can generate a lot of run-time code. By using
‘/EXPAND_SOURCE’ you can identify these cases, and consider whether it may be
desirable to modify the coding approach to improve efficiency.

The format of the output is very similar to standard Ada source, and is easily
understood by an Ada programmer. The following special syntactic additions
correspond to low level features used in the generated code that do not have
any exact analogies in pure Ada source form. The following is a partial list
of these special constructions. See the specification of package Sprint in file
‘SPRINT.ADS’ for a full list.

54

GNAT User’s Guide for OpenVMS Alpha

new xxx [storage_pool = yyy]
Shows the storage pool being used for an allocator.

at end procedure-name;
Shows the finalization (cleanup) procedure for a scope.

(if expr then expr else expr)
Conditional expression equivalent to the x?7y:z construction in C.

target ~ (source)
A conversion with floating-point truncation instead of rounding.

target?(source)
A conversion that bypasses normal Ada semantic checking. In par-
ticular enumeration types and fixed-point types are treated simply
as integers.

target?” (source)
Combines the above two cases.

x#/y

X #mod y

X #Hxy

x #rem y A division or multiplication of fixed-point values which are treated
as integers without any kind of scaling.

free expr [storage_pool = xxx]
Shows the storage pool associated with a free statement.

freeze typename [actions]
Shows the point at which typename is frozen, with possible associ-
ated actions to be performed at the freeze point.

reference itype
Reference (and hence definition) to internal type itype.

function-name! (arg, arg, arg)
Intrinsic function call.

labelname : label
Declaration of label labelname.

expr && expr && expr ... && expr
A multiple concatenation (same effect as expr & expr & expr, but
handled more efficiently).

[constraint_error]
Raise the Constraint_Error exception.

expression’reference
A pointer to the result of evaluating expression.

target-type ! (source-expression)
An unchecked conversion of source-expression to target-type.

Chapter 3: Compiling Using GNAT COMPILE 55

[numerator/denominator]
Used to represent internal real literals (that) have no exact rep-
resentation in base 2-16 (for example, the result of compile time
evaluation of the expression 1.0/27.0).

/XDEBUG This qualifier is used in conjunction with ‘/EXPAND_SOURCE’ to
cause the expanded source, as described above to be written to
files with names ‘XXX_DG’, where ‘xxx’ is the normal file name,
for example, if the source file name is ‘HELLO.ADB’, then a file
‘HELLO.ADB_DG’ will be written. The debugging information gener-
ated by the GNAT COMPILE /DEBUG qualifier will refer to the gener-
ated ‘XXX_DG’ file. This allows you to do source level debugging us-
ing the generated code which is sometimes useful for complex code,
for example to find out exactly which part of a complex construc-
tion raised an exception. This qualifier also suppress generation of
cross-reference information (see / XREF=SUPPRESS).

/COMPRESS_NAMES
In the generated debugging information, and also in the case of
long external names, the compiler uses a compression mechanism if
the name is very long. This compression method uses a checksum,
and avoids trouble on some operating systems which have difficulty
with very long names. The ‘/COMPRESS_NAMES’ qualifier forces this
compression approach to be used on all external names and names
in the debugging information tables. This reduces the size of the
generated executable, at the expense of making the naming scheme
more complex. The compression only affects the qualification of
the name. Thus a name in the source:
Very_Long_Package.Very_Long_Inner_Package.Var

would normally appear in these tables as:

very_long_package__very_long_inner_package__var

but if the ‘/COMPRESS_NAMES’ qualifier is used, then the name ap-
pears as
XCb7e0c705__var

Here b7e0c705 is a compressed encoding of the qualification prefix.
The GNAT Ada aware version of GDB understands these encoded
prefixes, so if this debugger is used, the encoding is largely hidden
from the user of the compiler.

/REPRESENTATION_INFO[O0|1]2]3] [s]
This qualifier controls output from the compiler of a listing show-
ing representation information for declared types and objects.
For ‘/REPRESENTATION_INFO=NONE’, no information is output
(equivalent to omitting the ‘/REPRESENTATION_INFO’ qualifier).
For ‘/REPRESENTATION_INFO=ARRAYS’ (which is the default, so
‘/REPRESENTATION_INFO’ with no parameter has the same effect), size and
alignment information is listed for declared array and record types. For
‘/REPRESENTATION_INFO=0BJECTS’, size and alignment information is listed

56 GNAT User’s Guide for OpenVMS Alpha

for all expression information for values that are computed at run time for
variant records. These symbolic expressions have a mostly obvious format
with #n being used to represent the value of the n’th discriminant. See source
files ‘REPINFO.ADS/adb’ in the GNAT sources for full detalis on the format of
‘/REPRESENTATION_INFO=SYMBOLIC’ output. If the qualifier is followed by an s
(e.g. ‘~gnatR2s’), then the output is to a file with the name ‘file_REP’ where
file is the name of the corresponding source file.

/XREF=SUPPRESS
Normally the compiler generates full cross-referencing information in the ‘ALI’
file. This information is used by a number of tools, including GNAT FIND and
GNAT XREF. The /XREF=SUPPRESS qualifier suppresses this information.
This saves some space and may slightly speed up compilation, but means that
these tools cannot be used.

3.2.16 Units to Sources Mapping Files

-gnatempath

A mapping file is a way to communicate to the compiler two mappings: from
unit names to file names (without any directory information) and from file
names to path names (with full directory information). These mappings are
used by the compiler to short-circuit the path search.
A mapping file is a sequence of sets of three lines. In each set, the first line is
the unit name, in lower case, with "%s" appended for specifications and "%b"
appended for bodies; the second line is the file name; and the third line is the
path name.
Example:

mainjb

main.2.ADA

/gnat/projectl/sources/main.2.ADA
When the qualifier ‘-gnatem’ is specified, the compiler will create in memory
the two mappings from the specified file. If there is any problem (non existent
file, truncated file or duplicate entries), no mapping will be created.
Several ‘-gnatem’ qualifiers may be specified; however, only the last one on the
command line will be taken into account.

When using a project file, GNAT MAKE create a temporary mapping file and
communicates it to the compiler using this qualifier.

3.3 Search Paths and the Run-Time Library (RTL)

With the GNAT source-based library system, the compiler must be able to find source files
for units that are needed by the unit being compiled. Search paths are used to guide this
process.

The compiler compiles one source file whose name must be given explicitly on the com-
mand line. In other words, no searching is done for this file. To find all other source files
that are needed (the most common being the specs of units), the compiler examines the
following directories, in the following order:

I,

Chapter 3: Compiling Using GNAT COMPILE 57

1. The directory containing the source file of the main unit being compiled (the file name
on the command line).

2. Each directory named by an /SOURCE_SEARCH qualifier given on the GNAT COMPILE
command line, in the order given.

3. Each of the directories listed in the value of the ADA_INCLUDE_PATH logical name.
Normally, define this value as a logical name containing a comma separated list of
directory names.

This variable can also be defined by means of an environment string (an argument to
the DEC C exec* set of functions).
Logical Name:

DEFINE ANOTHER_PATH FOO: [BAG]

DEFINE ADA_INCLUDE_PATH ANOTHER_PATH,FOO: [BAM],FO00: [BAR]
By default, the path includes GNU:[LIB.OPENVMS7_x.2_8_x.DECLIB] first, followed
by the standard Ada 95 libraries in GNU:[LIB.OPENVMS7_x.2_8_x.ADAINCLUDE].
If this is not redefined, the user will obtain the DEC Ada83 IO packages (Text_10,
Sequential IO, etc) instead of the Ada95 packages. Thus, in order to get the Ada 95
packages by default, ADA_INCLUDE_PATH must be redefined.

4. The content of the "ada_source_path" file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
source files.

Specifying the qualifier /NOCURRENT_DIRECTORY inhibits the use of the directory containing
the source file named in the command line. You can still have this directory on your search
path, but in this case it must be explicitly requested with a /SOURCE_SEARCH qualifier.

Specifying the qualifier /NOSTD_INCLUDES inhibits the search of the default location for
the GNAT Run Time Library (RTL) source files.

The compiler outputs its object files and ALI files in the current working directory.

The packages Ada, System, and Interfaces and their children make up the GNAT
RTL, together with the simple System. I0 package used in the "Hello World" example. The
sources for these units are needed by the compiler and are kept together in one directory.
Not all of the bodies are needed, but all of the sources are kept together anyway. In a
normal installation, you need not specify these directory names when compiling or binding.
Either the environment variables or the built-in defaults cause these files to be found.

In addition to the language-defined hierarchies (System, Ada and Interfaces), the GNAT
distribution provides a fourth hierarchy, consisting of child units of GNAT. This is a collec-
tion of generally useful routines. See the GNAT Reference Manual for further details.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

3.4 Order of Compilation Issues

in our earlier example, there was a spec for the hello procedure, it would be contained
in the file ‘HELLO.ADS’; yet this file would not have to be explicitly compiled. This is the
result of the model we chose to implement library management. Some of the consequences
of this model are as follows:

58 GNAT User’s Guide for OpenVMS Alpha

e There is no point in compiling specs (except for package specs with no bodies) because
these are compiled as needed by clients. If you attempt a useless compilation, you
will receive an error message. It is also useless to compile subunits because they are
compiled as needed by the parent.

e There are no order of compilation requirements: performing a compilation never obso-
letes anything. The only way you can obsolete something and require recompilations
is to modify one of the source files on which it depends.

e There is no library as such, apart from the ALI files (see Section 2.8 [The Ada Library
Information Files|, page 19, for information on the format of these files). For now we
find it convenient to create separate ALI files, but eventually the information therein
may be incorporated into the object file directly.

e When you compile a unit, the source files for the specs of all units that it with’s, all its
subunits, and the bodies of any generics it instantiates must be available (reachable by
the search-paths mechanism described above), or you will receive a fatal error message.

3.5 Examples

The following are some typical Ada compilation command line examples:

$ GNAT COMPILE XYZ.ADB
Compile body in file ‘XYZ.ADB’ with all default options.

$ GNAT COMPILE /OPTIMIZE=ALL /CHECKS=ASSERTIONS XYZ-DEF.ADB
Compile the child unit package in file ‘XYZ-DEF . ADB’ with extensive optimiza-
tions, and pragma Assert/Debug statements enabled.

$ GNAT COMPILE /NOLOAD ABC-DEF.ADB
Compile the subunit in file ‘ABC-DEF . ADB’ in semantic-checking-only mode.

Chapter 4: Binding Using GNAT BIND 59

4 Binding Using GNAT BIND

This chapter describes the GNAT binder, GNAT BIND, which is used to bind compiled GNAT
objects. The GNAT BIND program performs four separate functions:

1. Checks that a program is consistent, in accordance with the rules in Chapter 10 of the
Ada 95 Reference Manual. In particular, error messages are generated if a program
uses inconsistent versions of a given unit.

2. Checks that an acceptable order of elaboration exists for the program and issues an
error message if it cannot find an order of elaboration that satisfies the rules in Chapter
10 of the Ada 95 Language Manual.

3. Generates a main program incorporating the given elaboration order. This program is
a small Ada package (body and spec) that must be subsequently compiled using the
GNAT compiler. The necessary compilation step is usually performed automatically
by GNAT LINK. The two most important functions of this program are to call the
elaboration routines of units in an appropriate order and to call the main program.

4. Determines the set of object files required by the given main program. This information
is output in the forms of comments in the generated program, to be read by the GNAT
LINK utility used to link the Ada application.

4.1 Running GNAT BIND

The form of the GNAT BIND command is
$ GNAT BIND [qualifiers] mainprog[.ALI] [qualifiers]

where mainprog.ADB is the Ada file containing the main program unit body. If no
qualifiers are specified, GNAT BIND constructs an Ada package in two files which names
are ‘B$ada_main.ADS’, and ‘B$ada_main.ADB’. For example, if given the parameter
‘HELLO.ALI’, for a main program contained in file ‘HELLO.ADB’, the binder output files
would be ‘B"HELLO.ADS’ and ‘B”HELLO.ADB’.

When doing consistency checking, the binder takes into consideration any source files
it can locate. For example, if the binder determines that the given main program requires
the package Pack, whose ‘.ALI’ file is ‘PACK.ALI’ and whose corresponding source spec
file is ‘PACK.ADS’, it attempts to locate the source file ‘PACK.ADS’ (using the same search
path conventions as previously described for the GNAT COMPILE command). If it can locate
this source file, it checks that the time stamps or source checksums of the source and its
references to in ‘ali’ files match. In other words, any ‘ali’ files that mentions this spec
must have resulted from compiling this version of the source file (or in the case where the
source checksums match, a version close enough that the difference does not matter).

The effect of this consistency checking, which includes source files, is that the binder
ensures that the program is consistent with the latest version of the source files that can
be located at bind time. Editing a source file without compiling files that depend on the
source file cause error messages to be generated by the binder.

For example, suppose you have a main program ‘HELLO.ADB’ and a package P, from file
‘P.ADS’ and you perform the following steps:

1. Enter GNAT COMPILE HELLO.ADB to compile the main program.

60 GNAT User’s Guide for OpenVMS Alpha

2. Enter GNAT COMPILE P.ADS to compile package P.
3. Edit file ‘P.ADS’.
4. Enter GNAT BIND hello.

At this point, the file ‘P.ALI’ contains an out-of-date time stamp because the file ‘P.ADS’
has been edited. The attempt at binding fails, and the binder generates the following error
messages:

error: "HELLO.ADB" must be recompiled ("P.ADS" has been modified)
error: "P.ADS" has been modified and must be recompiled

Now both files must be recompiled as indicated, and then the bind can succeed, generating
a main program. You need not normally be concerned with the contents of this file, but
it is similar to the following which is the binder file generated for a simple "hello world"
program.

-- The package is called Ada_Main unless this name is actually used
-- as a unit name in the partition, in which case some other unique
-- name is used.

with System;
package ada_main is

Elab_Final_Code : Integer;
pragma Import (C, Elab_Final_Code, "__gnat_inside_elab_final_code");

-- The main program saves the parameters (argument count,

-- argument values, environment pointer) in global variables
-- for later access by other units including

-- Ada.Command_Line.

gnat_argc : Integer;
gnat_argv : System.Address;
gnat_envp : System.Address;

-- The actual variables are stored in a library routine. This
-- 1is useful for some shared library situations, where there
-- are problems if variables are not in the library.

pragma Import (C, gnat_argc);
pragma Import (C, gnat_argv);
pragma Import (C, gnat_envp);

-- The exit status is similarly an external location

gnat_exit_status : Integer;
pragma Import (C, gnat_exit_status);

GNAT _Version : constant String :=
"GNAT Version: 3.15w (20010315)";
pragma Export (C, GNAT_Version, "__gnat_version");

-- This is the generated adafinal routine that performs

-- finalization at the end of execution. In the case where
-- Ada is the main program, this main program makes a call
-- to adafinal at program termination.

Chapter 4: Binding Using GNAT BIND 61

procedure adafinal;
pragma Export (C, adafinal, "adafinal");

-- This is the generated adainit routine that performs

-- initialization at the start of execution. In the case
-- where Ada is the main program, this main program makes
-- a call to adainit at program startup.

procedure adainit;
pragma Export (C, adainit, "adainit");

--— This routine is called at the start of execution. It is
-- a dummy routine that is used by the debugger to breakpoint
-- at the start of execution.

procedure Break_Start;
pragma Import (C, Break_Start, "__gnat_break_start");

-- This is the actual generated main program (it would be

-- suppressed if the no main program qualifier were used). As
-- required by standard system conventions, this program has
-- the external name main.

function main
(argc : Integer;
argv : System.Address;
envp : System.Address)
return Integer;
pragma Export (C, main, "main");

-- The following set of constants give the version

-- identification values for every unit in the bound
-- partition. This identification is computed from all
-- dependent semantic units, and corresponds to the

-- string that would be returned by use of the

-- Body_Version or Version attributes.

type Version_32 is mod 2 ** 32;

u00001 : constant Version_32 := 16#7380BEB3#;
u00002 : constant Version_32 := 16#0D24CBDO#;
u00003 : constant Version_32 := 16#3283DBEB#;
u00004 : constant Version_32 := 16#2359F9ED#;
u00005 : constant Version_32 := 16#664FB847#;
u00006 : constant Version_32 := 16#68ES803DF#;
u00007 : constant Version_32 := 16#5572E604#;
u00008 : constant Version_32 := 16#46B173D8#;
u00009 : constant Version_32 := 16#156A40CF#;
u00010 : constant Version_32 := 16#033DABEO#;
u00011 : constant Version_32 := 16#6AB38FEA#;
u00012 : constant Version_32 := 16#22B6217D#;
u00013 : constant Version_32 := 16#68A22947#;
u00014 : constant Version_32 := 16#18CC4A56#;
u00015 : constant Version_32 := 16#08258E1B#;
u00016 : constant Version_32 := 16#367D5222#;
u00017 : constant Version_32 := 16#20COECA4#;
u00018 : constant Version_32 := 16#50D32CB6#;
u00019 : constant Version_32 := 16#39A8BB77#;

62

u00020 :
u00021 :
u00022 :
u00023 :
u00024 :
u00025 :
u00026 :
u00027 :
u00028 :
u00029 :
u00030 :

u00031

u00032 :
u00033 :
u00034 :
u00035 :
u00036 :
u00037 :
u00038 :
u00039 :
u00040 :
u00041 :
u00042 :
u00043 :
u00044 :
u00045 :
u00046 :
u00047 :
u00048 :
u00049 :
u00050 :

u00051

u00052 :
u00053 :
u00054 :
u00055 :
u00056 :
u00057 :

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
: constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
: constant
constant
constant
constant
constant
constant
constant

-- The following
-- with symbolic
-- (for spec) so
-- information provided here is sufficient to track down
-- the exact versions of units used in a given build.

pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma

Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,
Export (C,

GNAT User’s Guide for OpenVMS Alpha

Version_32 := 16#5CF8FA2B#;
Version_32 := 16#2F1EB794#;
Version_32 := 16#31AB6444#;
Version_32 := 16#1574B6E9#;
Version_32 := 16#5109C189#;
Version_32 := 16#56D770CD#;
Version_32 := 16#02F9DE3D#;
Version_32 := 16#08AB6B2C#;
Version_32 := 16#3FA37670%#;
Version_32 := 16#476457A0%#;
Version_32 := 16#731E1B6E#;
Version_32 := 16#23C2E789#;
Version_32 := 16#0F1BD6A1#;
Version_32 := 16#7C25DE96#;
Version_32 := 16#39ADFFA2#;
Version_32 := 16#571DE3ET7#;
Version_32 := 16#5EB646AB#;
Version_32 := 16#4249379B#;
Version_32 := 16#0357EO00A#;
Version_32 := 16#3784FB72#;
Version_32 := 16#2E723019%;
Version_32 := 16#623358EA#;
Version_32 := 16#107F9465#;
Version_32 := 16#6843F68A#;
Version_32 := 16#63305874#;
Version_32 := 16#31E56CE1#;
Version_32 := 16#02917970%#;
Version_32 := 16#6CCBA70E#;
Version_32 := 16#41CD4204#;
Version_32 := 16#572E3F58#;
Version_32 := 16#20729FF5#;
Version_32 := 16#1D4F9O3ES8#;
Version_32 := 16#30B2EC3D#;
Version_32 := 16#34054F96#;
Version_32 := 16#5A199860#;
Version_32 := 16#0E7F912B#;
Version_32 := 16#5760634A#;
Version_32 := 16#5D851835#;

Export pragmas export the version numbers
names ending in B (for body) or S
that they can be located in a link. The

u00001, "helloB");

u00002, "system__standard_libraryB");
u00003, "system__standard_librarys");
u00004, "adaS");

u00005, "ada__text_ioB");

u00006, "ada__text_ioS");

u00007, "ada__exceptionsB");

u00008, "ada__exceptionsS");

u00009, "gnatS");

u00010, "gnat__heap_sort_aB");
u00011, "gnat__heap_sort_aS");
u00012, "systemS");

u00013, "system__exception_tableB");

Chapter 4: Binding Using GNAT BIND

pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma

-- BEGI
-- ada
-— gnat
-- gnat
-— gnat
-- gnat
-— gnat
-- inte
-- syst

Export (C, u00014,
Export (C, u00015,
Export (C, u00016,
Export (C, u00017,
Export (C, u00018,
Export (C, u00019,
Export (C, u00020,
Export (C, u00021,
Export (C, u00022,
Export (C, u00023,
Export (C, u00024,
Export (C, u00025,
Export (C, u00026,
Export (C, u00027,
Export (C, u00028,
Export (C, u00029,
Export (C, u00030,
Export (C, u00031,
Export (C, u00032,
Export (C, u00033,
Export (C, u00034,
Export (C, u00035,
Export (C, u00036,
Export (C, u00037,
Export (C, u00038,
Export (C, u00039,
Export (C, u00040,
Export (C, u00041,
Export (C, u00042,
Export (C, u00043,
Export (C, u00044,
Export (C, u00045,
Export (C, u00046,
Export (C, u00047,
Export (C, u00048,
Export (C, u00049,
Export (C, u00050,
Export (C, u00051,
Export (C, u00052,
Export (C, u00053,
Export (C, u00054,
Export (C, u00055,
Export (C, u00056,
Export (C, u00057,

N ELABORATION ORDER
(spec)

(spec)
.heap_sort_a (spec)
.heap_sort_a (body)
.htable (spec)
.htable (body)
rfaces (spec)
em (spec)

"system__exception_tableS");
"gnat__htableB");

"gnat__htableS");
"system__exceptionsS");
"system__machine_state_operationsB");
"system__machine_state_operationsS");
"system__machine_codeS");
"system__storage_elementsB");
"system__storage_elementsS”);
"system__secondary_stackB") ;
"system__secondary_stackS") ;
"system__parametersB") ;
"system__parametersS") ;
"system__soft_linksB");
"system__soft_linksS");
"system__stack_checkingB");
"system__stack_checkingS");
"system__tracebackB");
"system__tracebackS");
"ada__streamsS");

"ada__tagsB") ;

"ada__tagsS");
"system__string_opsB");
"system__string_opsS");
"interfacesS");
"interfaces__c_streamsB");
"interfaces__c_streamsS");
"system__file_ioB");
"system__file_ioS");
"ada__finalizationB");
"ada__finalizationS");
"system__finalization_rootB");
"system__finalization_rootS");
"system__finalization_implementationB");
"system__finalization_implementationS");
"system__string_ops_concat_3B");
"system__string_ops_concat_35");
"system__stream_attributesB");
"system__stream_attributesS");
"ada__io_exceptionsS");
"system__unsigned_typesS");
"system__file_control_blockS");
"ada__finalization__list_controllerB");
"ada__finalization__list_controllerS");

-- system.machine_code (spec)
-- system.parameters (spec)
-- system.parameters (body)
-- interfaces.c_streams (spec)

63

64

GNAT User’s Guide for OpenVMS Alpha

—-- interfaces.c_streams (body)

-- system.standard_library (spec)

-- ada.exceptions (spec)

-- system.exception_table (spec)

-- system.exception_table (body)

-- ada.io_exceptions (spec)

-- system.exceptions (spec)

-- system.storage_elements (spec)

-- system.storage_elements (body)

-- system.machine_state_operations (spec)
-- system.machine_state_operations (body)
-- system.secondary_stack (spec)

-- system.stack_checking (spec)

-- system.soft_links (spec)

-- system.soft_links (body)

-- system.stack_checking (body)

-- system.secondary_stack (body)

-- system.standard_library (body)

-- system.string_ops (spec)

-- system.string_ops (body)

-- ada.tags (spec)

-- ada.tags (body)

-- ada.streams (spec)

-- system.finalization_root (spec)

-- system.finalization_root (body)

-- system.string_ops_concat_3 (spec)

-- system.string_ops_concat_3 (body)

-- system.traceback (spec)

-- system.traceback (body)

-- ada.exceptions (body)

-- system.unsigned_types (spec)

-- system.stream_attributes (spec)

-- system.stream_attributes (body)

-- system.finalization_implementation (spec)
-- system.finalization_implementation (body)
-- ada.finalization (spec)

-- ada.finalization (body)

-- ada.finalization.list_controller (spec)
-- ada.finalization.list_controller (body)
-- system.file_control_block (spec)

-- system.file_io (spec)

-- system.file_io (body)

-- ada.text_io (spec)

-- ada.text_io (body)

-- hello (body)

-- END ELABORATION ORDER

end ada_main;

-- The following source file name pragmas allow the generated file
-- names to be unique for different main programs. They are needed

-- since the package name will always be Ada_Main.

pragma Source_File_Name (ada_main, Spec_File_Name => "B“HELLO.ADS");
pragma Source_File_Name (ada_main, Body_File_Name => "B~HELLO.ADB");

-- Generated package body for Ada_Main starts here

Chapter 4: Binding Using GNAT BIND

package body ada_main is

65

-- The actual finalization is performed by calling the
-- library routine in System.Standard_Library.Adafinal

procedure Do_Finalize;
pragma Import (C, Do_Finalize, "system__standard_library__adafinal");

procedure adainit is

E040 :

E008

EO14 :

EO053

E017 :

E024

E030 :
E028 :
E035 :
E033 :
E046 :
E048 :
E044
EO057 :
EO55 :
E042 :
E006 :

These booleans are set to True once the associated unit has
been elaborated. It is also used to avoid elaborating the
same unit twice.

Boolean;
: Boolean;
Boolean;
: Boolean;
Boolean;
: Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;

Set_Globals

pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma

is a library routine that

Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import

(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,
(Ada,

E040,
E008,
E014,
E053,
E017,
E024,
E030,
E028,
E035,
E033,
E046,
E048,
E044,
E057,
E055,
E042,
E006,

"interfaces__c_streams_E");
"ada__exceptions_E");
"system__exception_table_E");
"ada__io_exceptions_E");
"system__exceptions_E");
"system__secondary_stack_E");
"system__stack_checking E");
"system__soft_links_E");

"ada__tags_E");

"ada__streams_E");
"system__finalization_root_E");
"system__finalization_implementation_E") ;||
"ada__finalization_E");
"ada__finalization__list_controller_E");
"system__file_control_block_E");
"system__file_io_E");

"ada__text_io_E");

stores away the

value of the indicated set of global values in global
variables within the library.

procedure Set_Globals

(Main_Priority

Time_Slice_Value
WC_Encoding
Locking_Policy
Queuing_Policy

Task_Dispatching_Policy

Integer;
Integer;

: Character;
: Character;
: Character;

: Character;

Adafinal : System.Address;
Unreserve_All_Interrupts : Integer;
Exception_Tracebacks Integer) ;

pragma Import (C, Set_Globals, "__gnat_set_globals");

SDP_Table_Build is a library routine used to build the
exception tables. See unit Ada.Exceptions in files
A-EXCEPT.ADS/adb for full details of how zero cost
exception handling works. This procedure, the call to
it, and the two following tables are all omitted if the
build is in longjmp/setjump exception mode.

66

GNAT User’s Guide for

procedure SDP_Table_Build
(SDP_Addresses : System.Address;
SDP_Count : Natural;
Elab_Addresses : System.Address;
Elab_Addr_Count : Natural);
pragma Import (C, SDP_Table_Build, "__gnat_SDP_Table_Build");

-- Table of Unit_Exception_Table addresses. Used for zero
-- cost exception handling to build the top level table.

ST : aliased constant array (1 .. 23) of System.Address := (
Hello’UET_Address,
Ada.Text_Io’UET_Address,
Ada.Exceptions’UET_Address,
Gnat.Heap_Sort_A’UET_Address,
System.Exception_Table’UET_Address,
System.Machine_State_Operations’UET_Address,
System.Secondary_Stack’UET_Address,
System.Parameters’UET_Address,
System.Soft_Links’UET_Address,
System.Stack_Checking’UET_Address,
System.Traceback’UET_Address,
Ada.Streams’UET_Address,
Ada.Tags’UET_Address,
System.String_Ops’UET_Address,
Interfaces.C_Streams’UET_Address,
System.File_Io’UET_Address,
Ada.Finalization’UET_Address,
System.Finalization_Root’UET_Address,
System.Finalization_Implementation’UET_Address,
System.String_Ops_Concat_3’UET_Address,
System.Stream_Attributes’UET_Address,
System.File_Control_Block’UET_Address,
Ada.Finalization.List_Controller’UET_Address);

-- Table of addresses of elaboration routines. Used for
-- zero cost exception handling to make sure these

-- addresses are included in the top level procedure

-- address table.

EA : aliased constant array (1 .. 23) of System.Address := (
adainit’Code_Address,
Do_Finalize’Code_Address,
Ada.Exceptions’Elab_Spec’Address,
System.Exceptions’Elab_Spec’Address,
Interfaces.C_Streams’Elab_Spec’Address,
System.Exception_Table’Elab_Body’Address,
Ada.Io_Exceptions’Elab_Spec’Address,
System.Stack_Checking’Elab_Spec’Address,
System.Soft_Links’Elab_Body’Address,
System.Secondary_Stack’Elab_Body’Address,
Ada.Tags’Elab_Spec’Address,
Ada.Tags’Elab_Body’Address,
Ada.Streams’Elab_Spec’Address,
System.Finalization_Root’Elab_Spec’Address,
Ada.Exceptions’Elab_Body’Address,
System.Finalization_Implementation’Elab_Spec’Address,

OpenVMS Alpha

Chapter 4: Binding Using GNAT BIND

System.Finalization_Implementation’Elab_Body’Address,
Ada.Finalization’Elab_Spec’Address,
Ada.Finalization.List_Controller’Elab_Spec’Address,
System.File_Control_Block’Elab_Spec’Address,
System.File_Io’Elab_Body’Address,
Ada.Text_Io’Elab_Spec’Address,
Ada.Text_Io’Elab_Body’Address);

-- Start of processing for adainit
begin

-- Call SDP_Table_Build to build the top level procedure
-- table for zero cost exception handling (omitted in
-- longjmp/setjump mode) .

SDP_Table_Build (ST’Address, 23, EA’Address, 23);

-— Call Set_Globals to record various information for
-- this partition. The values are derived by the binder
-- from information stored in the ali files by the compiler.

Set_Globals
(Main_Priority = -1,
-- Priority of main program, -1 if no pragma Priority used

Time_Slice_Value = -1,
-- Time slice from Time_Slice pragma, -1 if none used

WC_Encoding => ’b’,
-- Wide_Character encoding used, default is brackets

Locking_Policy = 7 2

-- Locking Policy used, default of space means not
-- specified, otherwise it is the first character of
-- the policy name.

Queuing_Policy => 7 7,

-- Queuing_Policy used, default of space means not
-- specified, otherwise it is the first character of
-- the policy name.
Task_Dispatching_Policy => "’ 7,

-- Task_Dispatching_Policy used, default of space means
-- not specified, otherwise first character of the

-- policy name.

Adafinal => System.Null_Address,
-- Address of Adafinal routine, not used anymore

Unreserve_All_Interrupts => O,
-- Set true if pragma Unreserve_All_Interrupts was used

Exception_Tracebacks => 0);
-- Indicates if exception tracebacks are enabled

Elab_Final_Code := 1;

67

GNAT User’s Guide for OpenVMS Alpha

-- Now we have the elaboration calls for all units in the partition.
-- The Elab_Spec and Elab_Body attributes generate references to the
-- 1implicit elaboration procedures generated by the compiler for

-- each unit that requires elaboration.

if not E040 then
Interfaces.C_Streams’Elab_Spec;

end if;

E040 := True;

if not EO008 then
Ada.Exceptions’Elab_Spec;

end if;

if not EO014 then
System.Exception_Table’Elab_Body;
EO014 := True;

end if;

if not EO053 then
Ada.To_Exceptions’Elab_Spec;
EO053 := True;

end if;

if not EO017 then
System.Exceptions’Elab_Spec;
E017 := True;

end if;

if not EO030 then
System.Stack_Checking’Elab_Spec;

end if;

if not E028 then
System.Soft_Links’Elab_Body;
E028 := True;

end if;

E030 := True;

if not E024 then
System.Secondary_Stack’Elab_Body;
E024 := True;

end if;

if not E035 then
Ada.Tags’Elab_Spec;

end if;

if not E035 then
Ada.Tags’Elab_Body;
E035 := True;

end if;

if not EO033 then
Ada.Streams’Elab_Spec;
E033 := True;

end if;

if not E046 then
System.Finalization_Root’Elab_Spec;

end if;

E046 := True;

if not EO008 then
Ada.Exceptions’Elab_Body;
E008 := True;

end if;

if not E048 then
System.Finalization_Implementation’Elab_Spec;

end if;

Chapter 4:

Binding Using GNAT BIND

if not E048 then
System.Finalization_Implementation’Elab_Body;
E048 := True;

end if;

if not E044 then
Ada.Finalization’Elab_Spec;

end if;

E044 := True;

if not EO057 then
Ada.Finalization.List_Controller’Elab_Spec;

end if;

E057 := True;

if not EO055 then
System.File_Control_Block’Elab_Spec;
EO55 := True;

end if;

if not E042 then
System.File_Io’Elab_Body;
E042 := True;

end if;

if not EOO6 then
Ada.Text_Io’Elab_Spec;

end if;

if not EOO6 then
Ada.Text_Io’Elab_Body;
EO006 := True;

end if;

Elab_Final_Code := 0;

end adainit;

procedure adafinal is
begin

Do_Finalize;

end adafinal;

main is actually a function, as in the ANSI C standard,
defined to return the exit status. The three parameters
are the argument count, argument values and environment
pointer.

function main

is

(argc : Integer;

argv : System.Address;
envp : System.Address)
return Integer

-- The initialize routine performs low level system
-- initialization using a standard library routine which
-- sets up signal handling and performs any other

69

GNAT User’s Guide for OpenVMS Alpha

-- required setup. The routine can be found in file
-- A-INIT.C.

procedure initialize;
pragma Import (C, initialize, "__gnat_initialize");

-- The finalize routine performs low level system

-- finalization using a standard library routine. The

-- routine is found in file A-FINAL.C and in the standard
-- distribution is a dummy routine that does nothing, so
-- really this is a hook for special user finalization.

procedure finalize;
pragma Import (C, finalize, "__gnat_finalize");

-- We get to the main program of the partition by using

-- pragma Import because if we try to with the unit and

-- call it Ada style, then not only do we waste time

-- recompiling it, but also, we don’t really know the right
-- qualifiers (e.g. identifier character set) to be used
-- to compile it.

procedure Ada_Main_Program;
pragma Import (Ada, Ada_Main_Program, "_ada_hello");

-- Start of processing for main

begin
-- Save global variables
gnat_argc := argc;
gnat_argv := argv;
gnat_envp := envp;
-- Call low level system initialization
Initialize;
-- Call our generated Ada initialization routine
adainit;

-- This is the point at which we want the debugger to get
-- control

Break_Start;

-- Now we call the main program of the partition
Ada_Main_Program;

-- Perform Ada finalization

adafinal;

-- Perform low level system finalization

Finalize;

Chapter 4: Binding Using GNAT BIND 71

-- Return the proper exit status
return (gnat_exit_status);
end;

-- This section is entirely comments, so it has no effect on the
-- compilation of the Ada_Main package. It provides the list of
-- object files and linker options, as well as some standard

-- libraries needed for the link. The GNAT LINK utility parses
-- this B"HELLO.ADB file to read these comment lines to generate
-- the appropriate command line arguments for the call to the

-- system linker. The BEGIN/END lines are used for sentinels for
-- this parsing operation.

-- The exact file names will of course depend on the environment,
-- host/target and location of files on the host system.

—-- BEGIN Object file/option list

- ./HELLO.0BJ

-- -L./

-- -L/usr/local/gnat/lib/gcc-1ib/i686-pc-linux-gnu/2.8.1/adalib/

-- /usr/local/gnat/1lib/gcc-1ib/i686-pc-linux-gnu/2.8.1/adalib/libgnat.a
-- END Object file/option list

end ada_main;

The Ada code in the above example is exactly what is generated by the binder. We have
added comments to more clearly indicate the function of each part of the generated Ada_
Main package.

The code is standard Ada in all respects, and can be processed by any tools that handle
Ada. In particular, it is possible to use the debugger in Ada mode to debug the generated
Ada_Main package. For example, suppose that for reasons that you do not understand,
your program is blowing up during elaboration of the body of Ada.Text_I0. To chase this
bug down, you can place a breakpoint on the call:

Ada.Text_Io’Elab_Body;

and trace the elaboration routine for this package to find out where the problem might be
(more usually of course you would be debugging elaboration code in your own application).

4.2 Generating the Binder Program in C

In most normal usage, the default mode of GNAT BIND which is to generate the main package
in Ada, as described in the previous section. In particular, this means that any Ada
programmer can read and understand the generated main program. It can also be debugged
just like any other Ada code provided the —g qualifier is used for GNAT BIND and GNAT LINK.

However for some purposes it may be convenient to generate the main program in C
rather than Ada. This may for example be helpful when you are generating a mixed
language program with the main program in C. The GNAT compiler itself is an example.
The use of the -C qualifier for both GNAT BIND and GNAT LINK will cause the program to be
generated in C (and compiled using the gnu C compiler). The following shows the C code
generated for the same "Hello World" program:

72

#ifdef __STDC

GNAT User’s Guide for OpenVMS Alpha

#define PARAMS(paramlist) paramlist

#else

#define PARAMS(paramlist) ()

#endif

extern void __gnat_set_globals
PARAMS ((int, int, int, int, int, int,
void (*) PARAMS ((void)), int, int));

extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern

extern
extern
extern
extern

void
void
void

adafinal PARAMS ((void));
adainit PARAMS ((void));
system__standard_library__adafinal PARAMS ((void));

int main PARAMS ((int, char **, char *x*));

void
void
void
void
void

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

exit PARAMS ((int));
__gnat_break_start PARAMS ((void));
_ada_hello PARAMS ((void));
__gnat_initialize PARAMS ((void));
__gnat_finalize PARAMS ((void));

ada__exceptions___elabs PARAMS ((void));
system__exceptions___elabs PARAMS ((void));
interfaces__c_streams___elabs PARAMS ((void));
system__exception_table___elabb PARAMS ((void));
ada__io_exceptions___elabs PARAMS ((void));
system__stack_checking___elabs PARAMS ((void));
system__soft_links___elabb PARAMS ((void));
system__secondary_stack___elabb PARAMS ((void));
ada__tags elabs PARAMS ((void));
ada__tags___elabb PARAMS ((void));
ada__streams___elabs PARAMS ((void));
system__finalization_root___elabs PARAMS ((void));
ada__exceptions___elabb PARAMS ((void));
system__finalization_implementation___elabs PARAMS ((void));
system__finalization_implementation___elabb PARAMS ((void));
ada__finalization___elabs PARAMS ((void));
ada__finalization__list_controller___elabs PARAMS ((void));
system__file_control_block___elabs PARAMS ((void));
system__file_io___elabb PARAMS ((void));
ada__text_io___elabs PARAMS ((void));

ada__text_io___elabb PARAMS ((void));

int __gnat_inside_elab_final_code;

int gnat_argc;

char
char

**xgnat_argv;
**gnat_envp;

int gnat_exit_status;

char __gnat_version[] = "GNAT Version: 3.15w (20010315)";
void adafinal () {
system__standard_library__adafinal ();

}

void adainit ()

{

extern char ada__exceptions_E;
extern char system__exceptions_E;

Chapter 4: Binding Using GNAT BIND

extern char interfaces__c_streams_E;

extern char system__exception_table_E;

extern char ada__io_exceptions_E;

extern char system__secondary_stack_E;

extern char system__stack_checking_E;

extern char system__soft_links_E;

extern char ada__tags_E;

extern char ada__streams_E;

extern char system__finalization_root_E;

extern char system__finalization_implementation_E;
extern char ada__finalization_E;

extern char ada__finalization__list_controller_E;
extern char system__file_control_block_E;

extern char system__file_io_E;

extern char ada__text_io_E;

extern void *__gnat_hello__SDP;

extern void *__gnat_ada__text_io__SDP;

extern void *__gnat_ada__exceptions__SDP;

extern void *__gnat_gnat__heap_sort_a__SDP;

extern void *__gnat_system__exception_table__SDP;

extern void *__gnat_system__machine_state_operations__SDP;

extern void *__gnat_system__secondary_stack__SDP;

extern void *__gnat_system__parameters__SDP;

extern void *__gnat_system__soft_links__SDP;

extern void *__gnat_system__stack_checking__SDP;

extern void *__gnat_system__traceback__SDP;

extern void *__gnat_ada__streams__SDP;

extern void *__gnat_ada__tags__SDP;

extern void *__gnat_system__string_ops__SDP;

extern void *__gnat_interfaces__c_streams__SDP;

extern void *__gnat_system__file_io__SDP;

extern void *__gnat_ada__finalization__SDP;

extern void *__gnat_system__finalization_root__SDP;

extern void *__gnat_system__finalization_implementation__SDP;

extern void *__gnat_system__string_ops_concat_3__SDP;

extern void *__gnat_system__stream_attributes__SDP;

extern void *__gnat_system__file_control_block__SDP;

extern void *__gnat_ada__finalization__list_controller__SDP;

void #*st[23] = {
&__gnat_hello__SDP,
&__gnat_ada__text_io__SDP,
&__gnat_ada__exceptions__SDP,
&__gnat_gnat__heap_sort_a__SDP,
&__gnat_system__exception_table__SDP,
&__gnat_system__machine_state_operations__SDP,
&__gnat_system__secondary_stack__SDP,

__gnat_system__parameters__SDP,

&__gnat_system__soft_links__SDP,
&__gnat_system__stack_checking__SDP,
&__gnat_system__traceback__SDP,
&__gnat_ada__streams__SDP,
&__gnat_ada__tags__SDP,
&__gnat_system__string_ops__SDP,
&__gnat_interfaces__c_streams__SDP,
&__gnat_system__file_io__SDP,
&__gnat_ada__finalization__SDP,

74

GNAT User’s Guide for OpenVMS Alpha

&__gnat_system__finalization_root__SDP,
&__gnat_system__finalization_implementation__SDP,
&__gnat_system__string_ops_concat_3__SDP,
&__gnat_system__stream_attributes__SDP,
&__gnat_system__file_control_block__SDP,

&__gnat_ada__finalization__list_controller__SDP};

extern
extern
extern
extern
extern
extern

void ada__exceptions___elabs ();

void system__exceptions___elabs ();
void interfaces__c_streams___elabs () ;
void system__exception_table___elabb ();
void ada__io_exceptions___elabs ();

void system__stack_checking___elabs ();

extern void system__soft_links___elabb ();
extern void system__secondary_stack___elabb ();
extern void ada__tags___elabs ();

extern void ada__tags___elabb ();

extern void ada__streams___elabs ();

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

void system__finalization_root___elabs ();

void ada__exceptions___elabb ();

void system__finalization_implementation___elabs O;
void system__finalization_implementation___elabb ();
void ada__finalization___elabs ();

void ada__finalization__list_controller___elabs ();
void system__file_control_block___elabs ();

void system__file_io___elabb ();

void ada__text_io___elabs ();

void ada__text_io___elabb ();

void (*ea[23]) (O = {
adainit,
system__standard_library__adafinal,

ada__

exceptions___elabs,

system__exceptions___elabs,

interfaces__c_streams elabs,

system__exception_table
ada__

___elabb,

io_exceptions elabs,

system__stack_checking___elabs,
system__soft_links___elabb,
system__secondary_stack___elabb,

ada__tags___elabs,
ada__tags___elabb,
ada__streams___elabs,
system__finalization_root___elabs,
ada__exceptions___elabb,

system__finalization_implementation___elabs,

system__finalization_implementation_
ada__
ada__

_elabb,
finalization___elabs,

finalization__list_controller___elabs,

system__file_control_block___elabs,

system__file_io
ada__
ada__

__gnat_
__gnat_

-1,
-1,

___elabb,
text_io___elabs,
text_io___elabb};
SDP_Table_Build (&st, 23, ea, 23);
set_globals (
/* Main_Priority */
/* Time_Slice_Value */

Chapter 4: Binding Using GNAT BIND

)b,, /*
’ ’5 /*
’), /*
’ 73 /*
O) /*
0, /*
0); /*

__gnat_inside_e

if (ada__except
ada__excepti

}

if (system__exc
system__exce
system__exce

}

if (interfaces_
interfaces__

}

interfaces__c_s
if (system__exc
system__exce

system__exce

if (ada__io_exc
ada__io_exce
ada__io_exce

WC_Encoding x/
Locking_Policy */
Queuing_Policy x/

Tasking_Dispatching Policy */

Finalization routine address, not used anymore */
Unreserve_All_Interrupts */

Exception_Tracebacks */

lab_final_code = 1;

ions_E == 0) {
ons___elabs ();

eptions_E == 0) {
ptions___elabs ();
ptions_E++;

c_streams_E == 0) {

c_streams___elabs ();
treams_E = 1;
eption_table_E == 0) {
ption_table___elabb ();
ption_table_E++;

eptions_E == 0) {
ptions___elabs ();
ptions_E++;

if (system__stack_checking E == 0) {
system__stack_checking___elabs ();

if (system__sof
system__soft
system__soft

}

t_links_E == 0) {
_links___elabb ();
_links_E++;

system__stack_checking E = 1;
if (system__secondary_stack_E == 0) {

system__secondary_stack

elabb ();

system__secondary_stack_E++;

}

if (ada__tags_E == 0) {
ada__tags___elabs ();

}

if (ada__tags_E == 0) {
ada__tags___elabb ();
ada__tags_E++;

}

if (ada__streams_E == 0) {
ada__streams___elabs ();
ada__streams_E++;

}

if (system__finalization_root_E == 0) {
system__finalization_root___elabs ();

}

system__finalization_root_E = 1;
if (ada__exceptions_E == 0) {
ada__exceptions___elabb () ;

75

76

GNAT User’s Guide for OpenVMS Alpha

ada__exceptions_E++;

}

if (system__finalization_implementation_E == 0) {
system__finalization_implementation___elabs ();

}

if (system__finalization_implementation_E == 0) {
system__finalization_implementation___elabb ();
system__finalization_implementation_E++;

}

if (ada__finalization_E == 0) {
ada__finalization___elabs ();

}

ada__finalization_E = 1;

if (ada__finalization__list_controller_E == 0) {
ada__finalization__list_controller___elabs ();

}

ada__finalization__list_controller_E = 1;

if (system__file_control_block_E == 0) {
system__file_control_block___elabs ();
system__file_control_block_E++;

if (system__file_io_E == 0) {
system__file_io___elabb ();
system__file_io_E++;

}

if (ada__text_io_E == 0) {
ada__text_io___elabs ();

}

if (ada__text_io_E == 0) {
ada__text_io___elabb ();
ada__text_io_E++;

__gnat_inside_elab_final_code = O;
1
int main (argc, argv, envp)

int argc;

char **argv;

char **envp;

gnat_argc = argc;
gnat_argv = argv;
gnat_envp = envp;

__gnat_initialize ();
adainit ;
__gnat_break_start ();

_ada_hello ();

system__standard_library__adafinal ();
__gnat_finalize ();
exit (gnat_exit_status);
}
unsigned helloB = 0x7880BEB3;
unsigned system__standard_libraryB = 0x0D24CBDO;
unsigned system__standard_libraryS = 0x3283DBEB;
unsigned adaS = 0x2359F9ED;

Chapter 4: Binding Using GNAT BIND

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

ada__text_ioB = 0x47C85FC4;
ada__text_ioS 0x496FE45C;
ada__exceptionsB = 0x74F50187;
ada__exceptionsS = 0x6736945B;

gnatS = 0x156A40CF;

gnat__heap_sort_aB = 0x033DABEO;
gnat__heap_sort_aS = Ox6AB38FEA;
systemS = 0x0331C6FE;
system__exceptionsS = 0x20C9ECA4;
system__exception_tableB = 0x68A22947;
system__exception_tableS = 0x394BADD5;
gnat__htableB = 0x08258E1B;
gnat__htableS = 0x367D5222;
system__machine_state_operationsB = 0x4F3B7492;
system__machine_state_operationsS = 0x182F5CF4;
system__storage_elementsB = Ox2F1EB794;
system__storage_elementsS = 0x102C83C7;
system__secondary_stackB = 0x1574B6E9;
system__secondary_stackS = 0x708E260A;
system__parametersB = 0x56D770CD;
system__parametersS 0x237E39BE;
system__soft_linksB = 0x08AB6B2C;
system__soft_linksS = 0x1E2491F3;
system__stack_checkingB = 0x476457A0;
system__stack_checkingS = 0x5299FCED;
system__tracebackB = 0x2971EBDE;
system__tracebackS = 0x2E9C3122;
ada__streamsS = 0x7C25DE96;

ada__tagsB = 0x39ADFFA2;

ada__tagsS = 0x769A0464;
system__string_opsB = O0xS5EB646AB;

unsigned system__string_opsS = 0x63CED018;

unsigned interfacesS = 0x0357E00A;

unsigned interfaces__c_streamsB = 0x3784FB72;

unsigned interfaces__c_streamsS = 0x2E723019;

unsigned system__file_ioB = 0x623358EA;

unsigned system__file_ioS = 0x31F873E6;

unsigned ada__finalizationB = 0x6843F68A;

unsigned ada__finalizationS = 0x63305874;

unsigned system__finalization_rootB = 0x31E56CE1;
unsigned system__finalization_rootS = 0x23169EF3;
unsigned system__finalization_implementationB = 0x6CCBA70E;
unsigned system__finalization_implementationS = 0x604AA587;
unsigned system__string_ops_concat_3B = 0x572E3F58;
unsigned system__string_ops_concat_3S = 0x01F57876;
unsigned system__stream_attributesB = 0x1D4F93ES;

unsigned system__stream_attributesS = 0x30B2EC3D;

unsigned ada__io_exceptionsS = 0x34054F96;

unsigned system__unsigned_typesS = Ox7BOET7FE3;

unsigned system__file_control_blockS = 0x2FF876A8;
unsigned ada__finalization__list_controllerB = 0x5760634A;
unsigned ada__finalization__list_controllerS = 0x5D851835;
/* BEGIN ELABORATION ORDER

ada (spec)

gnat (spec)
gnat.heap_sort_a (spec)
gnat.htable (spec)

77

78

GNAT User’s Guide for OpenVMS Alpha

gnat.htable (body)
interfaces (spec)
system (spec)
system.parameters (spec)
system.standard_library (spec)
ada.exceptions (spec)
system.exceptions (spec)
system.parameters (body)
gnat.heap_sort_a (body)
interfaces.c_streams (spec)
interfaces.c_streams (body)
system.exception_table (spec)
system.exception_table (body)
ada.io_exceptions (spec)
system.storage_elements (spec)
system.storage_elements (body)
system.machine_state_operations (spec)
system.machine_state_operations (body)
system.secondary_stack (spec)
system.stack_checking (spec)
system.soft_links (spec)
system.soft_links (body)
system.stack_checking (body)
system.secondary_stack (body)
system.standard_library (body)
system.string_ops (spec)
system.string_ops (body)
ada.tags (spec)
ada.tags (body)
ada.streams (spec)
system.finalization_root (spec)
system.finalization_root (body)
system.string_ops_concat_3 (spec)
system.string_ops_concat_3 (body)
system.traceback (spec)
system.traceback (body)
ada.exceptions (body)
system.unsigned_types (spec)
system.stream_attributes (spec)
system.stream_attributes (body)
system.finalization_implementation (spec)
system.finalization_implementation (body)
ada.finalization (spec)
ada.finalization (body)
ada.finalization.list_controller (spec)
ada.finalization.list_controller (body)
system.file_control_block (spec)
system.file_io (spec)
system.file_io (body)
ada.text_io (spec)
ada.text_io (body)
hello (body)

END ELABORATION ORDER */

/* BEGIN Object file/option list

./HELLO.0BJ

-L./
-L/usr/local/gnat/lib/gcc-1ib/alpha-dec-osf5.1/2.8.1/adalib/

Chapter 4: Binding Using GNAT BIND 79

/usr/local/gnat/1ib/gcc-1ib/alpha-dec-osf5.1/2.8.1/adalib/libgnat.a
-lexc
END Object file/option list */

Here again, the C code is exactly what is generated by the binder. The functions of the
various parts of this code correspond in an obvious manner with the commented Ada code
shown in the example in the previous section.

4.3 Consistency-Checking Modes

As described in the previous section, by default GNAT BIND checks that object files are consistent
with one another and are consistent with any source files it can locate. The following
qualifiers control binder access to sources.

/READ_SOURCES=ALL
Require source files to be present. In this mode, the binder must be able to
locate all source files that are referenced, in order to check their consistency.
In normal mode, if a source file cannot be located it is simply ignored. If you
specify this qualifier, a missing source file is an error.

/READ_SOURCES=NONE

Exclude source files. In this mode, the binder only checks that ALI files are
consistent with one another. Source files are not accessed. The binder runs
faster in this mode, and there is still a guarantee that the resulting program
is self-consistent. If a source file has been edited since it was last compiled,
and you specify this qualifier, the binder will not detect that the object file is
out of date with respect to the source file. Note that this is the mode that
is automatically used by GNAT MAKE because in this case the checking against
sources has already been performed by GNAT MAKE in the course of compilation
(i.e. before binding).

/READ_SOURCES=AVAILABLE
This is the default mode in which source files are checked if they are available,
and ignored if they are not available.

4.4 Binder Error Message Control

The following qualifiers provide control over the generation of error messages from the binder:

/REPORT_ERRORS=VERBOSE
Verbose mode. In the normal mode, brief error messages are generated to
‘SYS$ERROR’. If this qualifier is present, a header is written to ‘SYS$OUTPUT’
and any error messages are directed to ‘SYS$OUTPUT’. All that is written to
‘SYS$ERROR’ is a brief summary message.

/REPORT_ERRORS=BRIEF
Generate brief error messages to ‘SYS$ERROR’ even if verbose mode is specified.
This is relevant only when used with the /REPORT_ERRORS=VERBOSE qualifier.

80 GNAT User’s Guide for OpenVMS Alpha

/WARNINGS=SUPPRESS
Suppress all warning messages.

/WARNINGS=ERROR
Treat any warning messages as fatal errors.

/WARNINGS=NORMAL
Standard mode with warnings generated, but warnings do not get treated as
€rTors.

/NOTIME_STAMP_CHECK
The binder performs a number of consistency checks including:

e Check that time stamps of a given source unit are consistent
e Check that checksums of a given source unit are consistent
e Check that consistent versions of GNAT were used for compilation

e Check consistency of configuration pragmas as required

Normally failure of such checks, in accordance with the consistency requirements
of the Ada Reference Manual, causes error messages to be generated which abort
the binder and prevent the output of a binder file and subsequent link to obtain
an executable.

The /NOTIME_STAMP_CHECK qualifier converts these error messages into warn-
ings, so that binding and linking can continue to completion even in the pres-
ence of such errors. The result may be a failed link (due to missing symbols),
or a non-functional executable which has undefined semantics. This means that
/NOTIME_STAMP_CHECK should be used only in unusual situations, with extreme
care.

4.5 Elaboration Control

The following qualifiers provide additional control over the elaboration order. For full details
see See Chapter 11 [Elaboration Order Handling in GNAT], page 141.

/PESSIMISTIC_ELABORATION
Normally the binder attempts to choose an elaboration order that is likely
to minimize the likelihood of an elaboration order error resulting in raising
a Program_Error exception. This qualifier reverses the action of the binder,
and requests that it deliberately choose an order that is likely to maximize the
likelihood of an elaboration error. This is useful in ensuring portability and
avoiding dependence on accidental fortuitous elaboration ordering.

Normally it only makes sense to use the -p qualifier if dynamic elaboration
checking is used (‘/CHECKS=ELABORATION’ qualifier used for compilation). This
is because in the default static elaboration mode, all necessary Elaborate_All
pragmas are implicitly inserted. These implicit pragmas are still respected by
the binder in -p mode, so a safe elaboration order is assured.

Chapter 4: Binding Using GNAT BIND 81

4.6 Output Control

The following qualifiers allow additional control over the output generated by the binder.

/BIND_FILE=ADA
Generate binder program in Ada (default). The binder program is named
‘B$mainprog.ADB’ by default. This can be changed with ~o GNAT BIND option.

/NOQUTPUT
Check only. Do not generate the binder output file. In this mode the binder
performs all error checks but does not generate an output file.

/BIND_FILE=C
Generate binder program in C. The binder program is named ‘B_mainprog.C’.
This can be changed with -o GNAT BIND option.

/ELABORATION_DEPENDENCIES
Output complete list of elaboration-order dependencies, showing the reason
for each dependency. This output can be rather extensive but may be use-
ful in diagnosing problems with elaboration order. The output is written to
‘SYS$OUTPUT’.

/HELP Output usage information. The output is written to ‘SYS$OUTPUT .

/LINKER_OPTION_LIST
Output linker options to ‘SYS$OUTPUT’. Includes library search paths, contents
of pragmas Ident and Linker_Options, and libraries added by GNAT BIND.

/ORDER_OF_ELABORATION
Output chosen elaboration order. The output is written to ‘SYS$OUTPUT’.

/0BJECT_LIST
Output full names of all the object files that must be linked to provide the
Ada component of the program. The output is written to ‘SYS$OQUTPUT’. This
list includes the files explicitly supplied and referenced by the user as well as
implicitly referenced run-time unit files. The latter are omitted if the corre-
sponding units reside in shared libraries. The directory names for the run-time
units depend on the system configuration.

/0UTPUT=file
Set name of output file to file instead of the normal ‘B$mainprog.ADB’ default.
Note that file denote the Ada binder generated body filename. In C mode
you would normally give file an extension of ‘.C’ because it will be a C source
program. Note that if this option is used, then linking must be done manually.
It is not possible to use GNAT LINK in this case, since it cannot locate the
binder file.

/RESTRICTION_LIST
Generate list of pragma Rerstrictions that could be applied to the current
unit. This is useful for code audit purposes, and also may be used to improve
code generation in some cases.

In

82 GNAT User’s Guide for OpenVMS Alpha

4.7 Binding with Non-Ada Main Programs

our description so far we have assumed that the main program is in Ada, and that the
task of the binder is to generate a corresponding function main that invokes this Ada main
program. GNAT also supports the building of executable programs where the main program
is not in Ada, but some of the called routines are written in Ada and compiled using GNAT
(see Section 2.10 [Mixed Language Programming], page 20). The following qualifier is used
in this situation:

/NOMAIN No main program. The main program is not in Ada.

In this case, most of the functions of the binder are still required, but instead of generating
a main program, the binder generates a file containing the following callable routines:

adainit You must call this routine to initialize the Ada part of the program by calling
the necessary elaboration routines. A call to adainit is required before the
first call to an Ada subprogram.

Note that it is assumed that the basic execution environment must be setup
to be appropriate for Ada execution at the point where the first Ada sub-
program is called. In particular, if the Ada code will do any floating-point
operations, then the FPU must be setup in an appropriate manner. For the
case of the x86, for example, full precision mode is required. The procedure
GNAT .Float_Control.Reset may be used to ensure that the FPU is in the right
state.

adafinal You must call this routine to perform any library-level finalization required by
the Ada subprograms. A call to adafinal is required after the last call to an
Ada subprogram, and before the program terminates.

If the /NOMAIN qualifier is given, more than one ALI file may appear on the command
line for GNAT BIND. The normal closure calculation is performed for each of the specified
units. Calculating the closure means finding out the set of units involved by tracing with
references. The reason it is necessary to be able to specify more than one ALI file is that a
given program may invoke two or more quite separate groups of Ada units.

The binder takes the name of its output file from the last specified ALI file, unless
overridden by the use of the /0UTPUT=file. The output is an Ada unit in source form
that can be compiled with GNAT unless the -C qualifier is used in which case the output
is a C source file, which must be compiled using the C compiler. This compilation occurs
automatically as part of the GNAT LINK processing.

Currently the GNAT run time requires a FPU using 80 bits mode precision. Under
targets where this is not the default it is required to call GNAT.Float_Control.Reset before
using floating point numbers (this include float computation, float input and output) in the
Ada code. A side effect is that this could be the wrong mode for the foreign code where
floating point computation could be broken after this call.

4.8 Binding Programs with No Main Subprogram

It is possible to have an Ada program which does not have a main subprogram. This program

will call the elaboration routines of all the packages, then the finalization routines.

Chapter 4: Binding Using GNAT BIND 83

The following qualifier is used to bind programs organized in this manner:

/ZERO_MAIN
Normally the binder checks that the unit name given on the command line
corresponds to a suitable main subprogram. When this qualifier is used, a
list of ALI files can be given, and the execution of the program consists of
elaboration of these units in an appropriate order.

4.9 Summary of Binder Qualifiers

The following are the qualifiers available with GNAT BIND:

/0BJECT_SEARCH
Specify directory to be searched for ALI files.

/SOURCE_SEARCH
Specify directory to be searched for source file.

/BIND_FILE=ADA
Generate binder program in Ada (default)

/REPORT_ERRORS=BRIEF
Generate brief messages to ‘SYS$ERROR’ even if verbose mode set.

/NOQUTPUT
Check only, no generation of binder output file.

/BIND_FILE=C
Generate binder program in C

/ELABORATION_DEPENDENCIES
Output complete list of elaboration-order dependencies.

-E Store tracebacks in exception occurrences when the target supports it. This
is the default with the zero cost exception mechanism. This option is cur-
rently supported on the following targets: all x86 ports, Solaris, Windows,
HP-UX, AIX, PowerPC VxWorks and Alpha VxWorks. See also the packages
GNAT.Traceback and GNAT.Traceback.Symbolic for more information. Note
that on x86 ports, you must not use -fomit-frame-pointer GNAT COMPILE
option.

-h Output usage (help) information
/SEARCH Specify directory to be searched for source and ALI files.

/NOCURRENT_DIRECTORY
Do not look for sources in the current directory where GNAT BIND was invoked,
and do not look for ALI files in the directory containing the ALI file named in
the GNAT BIND command line.

/ORDER_OF _ELABORATION
Output chosen elaboration order.

84 GNAT User’s Guide for OpenVMS Alpha

-Lxxx Binds the units for library building. In this case the adainit and adafinal pro-
cedures (See see Section 4.7 [Binding with Non-Ada Main Programs|, page 82)
are renamed to xxxinit and xxxfinal. Implies -n.

-Mxyz Rename generated main program from main to xyz

/ERROR_LIMIT=n
Limit number of detected errors to n (1-999).

/NOMAIN No main program.

/NOSTD_INCLUDES
Do not look for sources in the system default directory.

/NOSTD_LIBRARIES
Do not look for library files in the system default directory.

/RUNTIME_SYSTEM=rts-path
Specifies the default location of the runtime library. Same meaning as the equiv-
alent GNAT MAKE flag (see Section 6.2 [Qualifiers for GNAT MAKE], page 92).

/0UTPUT=file
Name the output file file (default is ‘B$xxx.ADB’). Note that if this option is
used, then linking must be done manually, GNAT LINK cannot be used.

/OBJECT_LIST
Output object list.

-p Pessimistic (worst-case) elaboration order

/READ_SOURCES=ALL
Require all source files to be present.

/NOTIME_STAMP_CHECK
Tolerate time stamp and other consistency errors

-Tn Set the time slice value to n microseconds. A value of zero means no time slicing
and also indicates to the tasking run time to match as close as possible to the
annex D requirements of the RM.

/REPORT_ERRORS=VERBOSE
Verbose mode. Write error messages, header, summary output to ‘SYS$OUTPUT’.

/WARNINGS=NORMAL
Normal warnings mode. Warnings are issued but ignored

/WARNINGS=SUPPRESS
All warning messages are suppressed

/WARNINGS=ERROR
Warning messages are treated as fatal errors

/READ_SOURCES=NONE
Exclude source files (check object consistency only).

/READ_SOURCES=AVAILABLE
Default mode, in which sources are checked for consistency only if they are
available.

Chapter 4: Binding Using GNAT BIND 85

/ZERO_MAIN
No main subprogram.

4.10 Command-Line Access

The package Ada.Command_Line provides access to the command-line arguments and program
name. In order for this interface to operate correctly, the two variables

int gnat_argc;
char **gnat_argv;

are declared in one of the GNAT library routines. These variables must be set from the
actual argc and argv values passed to the main program. With no /NOMAIN present, GNAT
BIND generates the C main program to automatically set these variables. If the /NOMAIN
qualifier is used, there is no automatic way to set these variables. If they are not set, the
procedures in Ada.Command_Line will not be available, and any attempt to use them will
raise Constraint_Error. If command line access is required, your main program must set
gnat_argc and gnat_argv from the argc and argv values passed to it.

4.11 Search Paths for GNAT BIND

The binder takes the name of an ALI file as its argument and needs to locate source files as
well as other ALI files to verify object consistency.

For source files, it follows exactly the same search rules as GNAT COMPILE (see Section 3.3
[Search Paths and the Run-Time Library (RTL)], page 56). For ALI files the directories
searched are:

1. The directory containing the ALI file named in the command line, unless the qualifier
/NOCURRENT_DIRECTORY is specified.

2. All directories specified by /SEARCH qualifiers on the GNAT BIND command line, in the
order given.

3. Each of the directories listed in the value of the ADA_OBJECTS_PATH logical name.
Normally, define this value as a logical name containing a comma separated list of
directory names.

This variable can also be defined by means of an environment string (an argument to
the DEC C exec* set of functions).
Logical Name:

DEFINE ANOTHER_PATH FOO: [BAG]

DEFINE ADA_OBJECTS_PATH ANOTHER_PATH,FOO: [BAM],F00: [BAR]
By default, the path includes GNU:[LIB.OPENVMS7_x.2_8_x.DECLIB] first, followed
by the standard Ada 95 libraries in GNU:[LIB.OPENVMS7_x.2_8_x.ADALIB]. If this
is not redefined, the user will obtain the DEC Ada83 IO packages (Text_10, Sequen-
tial_IO, etc) instead of the Ada95 packages. Thus, in order to get the Ada 95 packages
by default, ADA_OBJECTS_PATH must be redefined.

86 GNAT User’s Guide for OpenVMS Alpha

4. The content of the "ada_object_path" file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
unless the qualifier /NOSTD_LIBRARIES is specified.

In the binder the qualifier /SEARCH is used to specify both source and library file paths. Use
/SOURCE_SEARCH instead if you want to specify source paths only, and /LIBRARY_SEARCH
if you want to specify library paths only. This means that for the binder /SEARCH=dir is
equivalent to /SOURCE_SEARCH=dir /0BJECT_SEARCH=dir. The binder generates the bind file
(a C language source file) in the current working directory.

The packages Ada, System, and Interfaces and their children make up the GNAT
Run-Time Library, together with the package GNAT and its children, which contain a set
of useful additional library functions provided by GNAT. The sources for these units are
needed by the compiler and are kept together in one directory. The ALI files and object
files generated by compiling the RTL are needed by the binder and the linker and are kept
together in one directory, typically different from the directory containing the sources. In a
normal installation, you need not specify these directory names when compiling or binding.
Either the environment variables or the built-in defaults cause these files to be found.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

4.12 Examples of GNAT BIND Usage

This section contains a number of examples of using the GNAT binding utility GNAT BIND.

GNAT BIND hello
The main program Hello (source program in ‘HELLO.ADB’) is bound using the
standard qualifier settings. The generated main program is ‘B"HELLO.ADB’.
This is the normal, default use of the binder.

GNAT BIND HELLO.ALI /0OUTPUT=Mainprog.ADB
The main program Hello (source program in ‘HELLO.ADB’) is bound using the
standard qualifier settings. The generated main program is ‘MAINPROG.ADB’
with the associated spec in ‘MAINPROG.ADS’. Note that you must specify the
body here not the spec, in the case where the output is in Ada. Note that if
this option is used, then linking must be done manually, since GNAT LINK will
not be able to find the generated file.

GNAT BIND MAIN.ALI /BIND_FILE=C /OUTPUT=Mainprog.C /READ_SOURCES=NONE
The main program Main (source program in ‘MAIN.ADB’) is bound, excluding
source files from the consistency checking, generating the file ‘MAINPROG.C’.

GNAT BIND /NOMAIN math dbase /BIND_FILE=C /OUTPUT=ADA-CONTROL.C
The main program is in a language other than Ada, but calls to subprograms
in packages Math and Dbase appear. This call to GNAT BIND generates the file
‘ADA-CONTROL.C’ containing the adainit and adafinal routines to be called
before and after accessing the Ada units.

Chapter 5: Linking Using GNAT LINK 87

5 Linking Using GNAT LINK

This chapter discusses GNAT LINK, a utility program used to link Ada programs and build an
executable file. This is a simple program that invokes the Unix linker (via the GNAT COMPILE
command) with a correct list of object files and library references. GNAT LINK automatically
determines the list of files and references for the Ada part of a program. It uses the binder
file generated by the binder to determine this list.

5.1 Running GNAT LINK

The form of the GNAT LINK command is
$ GNAT LINK [qualifiers] mainprog[.ALI] [non-Ada objects]
[linker options]
‘mainprog.ALI’ references the ALI file of the main program. The ‘.ALI’ extension of this
file can be omitted. From this reference, GNAT LINK locates the corresponding binder file
‘B$mainprog.ADB’ and, using the information in this file along with the list of non-Ada
objects and linker options, constructs a Unix linker command file to create the executable.

The arguments following ‘mainprog.ALI’ are passed to the linker uninterpreted. They
typically include the names of object files for units written in other languages than Ada and
any library references required to resolve references in any of these foreign language units,
or in pragma Import statements in any Ada units.

linker options is an optional list of linker specific qualifiers. The default linker called by
GNAT LINK is GNAT COMPILE which in turn calls the appropriate system linker usually
called Id. Standard options for the linker such as -1my_lib or -Ldir can be added as is.
For options that are not recognized by GNAT COMPILE as linker options, the GNAT
COMPILE qualifiers -Xlinker or -W1l, shall be used. Refer to the GCC documentation
for details. Here is an example showing how to generate a linker map assuming that the
underlying linker is GNU Id:

$ GNAT LINK my_prog -W1l,-Map,MAPFILE

Using linker options it is possible to set the program stack and heap size. See see
Section 5.3 [Setting Stack Size from GNAT LINK], page 88 and see Section 5.4 [Setting
Heap Size from GNAT LINK], page 89.

GNAT LINK determines the list of objects required by the Ada program and prepends
them to the list of objects passed to the linker. GNAT LINK also gathers any arguments set
by the use of pragma Linker_Options and adds them to the list of arguments presented to
the linker.

GNAT LINK accepts the following types of extra files on the command line: objects (.OBJ),
libraries (.OLB), shareable images (.EXE), and options files (.OPT). These are recognized
and handled according to their extension.

5.2 Qualifiers for GNAT LINK

The following qualifiers are available with the GNAT LINK utility:

/BIND_FILE=ADA
The binder has generated code in Ada. This is the default.

88 GNAT User’s Guide for OpenVMS Alpha

/BIND_FILE=C
If instead of generating a file in Ada, the binder has generated one in C, then
the linker needs to know about it. Use this qualifier to signal to GNAT LINK that
the binder has generated C code rather than Ada code.

-f On some targets, the command line length is limited, and GNAT LINK will gener-
ate a separate file for the linker if the list of object files is too long. The -f flag
forces this file to be generated even if the limit is not exceeded. This is useful
in some cases to deal with special situations where the command line length is
exceeded.

/DEBUG The option to include debugging information causes the Ada bind file (in
other words, ‘B$mainprog.ADB’) to be compiled with /DEBUG. In addition,
the binder does not delete the ‘B$mainprog.ADB’, ‘B$mainprog.0BJ’ and
‘B$mainprog.ALI’ files. Without /DEBUG, the binder removes these files by
default. The same procedure apply if a C bind file was generated using
/BIND_FILE=C GNAT BIND option, in this case the filenames are ‘B_mainprog.C’
and ‘B_mainprog.0BJ’.

/VERBOSE Causes additional information to be output, including a full list of the included
object files. This qualifier option is most useful when you want to see what set
of object files are being used in the link step.

/EXECUTABLE=exec-name
exec-name specifies an alternate name for the generated executable program.
If this qualifier is omitted, the executable has the same name as the main unit.
For example, GNAT LINK TRY.ALI creates an executable called ‘TRY.EXE’.

/DEBUG=TRACEBACK
This qualifier causes sufficient information to be included in the executable file
to allow a traceback, but does not include the full symbol information needed
by the debugger.

/IDENTIFICATION="<string>"
"<string>" specifies the string to be stored in the image file identification field
in the image header. It overrides any pragma Ident specified string.

/NOINHIBIT-EXEC
Generate the executable file even if there are linker warnings.

/NOSTART_FILES
Don’t link in the object file containing the "main" transfer address. Used when
linking with a foreign language main program compiled with a Digital compiler.

/STATIC Prefer linking with object libraries over shareable images, even without /DE-
BUG.

5.3 Setting Stack Size from GNAT LINK

It is possible to specify the program stack size from GNAT LINK. Assuming that the underlying
linker is GNU 1d there is two ways to do so:

Chapter 5: Linking Using GNAT LINK 89

e using -Xlinker linker option
$ GNAT LINK hello -Xlinker --stack=0x10000,0x1000
This set the stack reserve size to 0x10000 bytes and the stack commit size to 0x1000
bytes.
e using -W1 linker option
$ GNAT LINK hello -Wl,--stack=0x1000000

This set the stack reserve size to 0x1000000 bytes. Note that with -W1 option it is not
possible to set the stack commit size because the coma is a separator for this option.

5.4 Setting Heap Size from GNAT LINK

It is possible to specify the program heap size from GNAT LINK. Assuming that the underlying
linker is GNU Id there is two ways to do so:
e using -Xlinker linker option
$ GNAT LINK hello -Xlinker --heap=0x10000,0x1000
This set the heap reserve size to 0x10000 bytes and the heap commit size to 0x1000
bytes.
e using -W1 linker option
$ GNAT LINK hello -Wl,--heap=0x1000000

This set the heap reserve size to 0x1000000 bytes. Note that with -W1 option it is not
possible to set the heap commit size because the coma is a separator for this option.

90

GNAT User’s Guide for OpenVMS Alpha

Chapter 6: The GNAT Make Program GNAT MAKE 91

6 The GNAT Make Program GNAT MAKE

A typical development cycle when working on an Ada program consists of the following steps:
1. Edit some sources to fix bugs.
2. Add enhancements.
3. Compile all sources affected.
4. Rebind and relink.
5. Test.

The third step can be tricky, because not only do the modified files have to be compiled,
but any files depending on these files must also be recompiled. The dependency rules in
Ada can be quite complex, especially in the presence of overloading, use clauses, generics
and inlined subprograms.

GNAT MAKE automatically takes care of the third and fourth steps of this process. It
determines which sources need to be compiled, compiles them, and binds and links the
resulting object files.

Unlike some other Ada make programs, the dependencies are always accurately recom-
puted from the new sources. The source based approach of the GNAT compilation model
makes this possible. This means that if changes to the source program cause corresponding
changes in dependencies, they will always be tracked exactly correctly by GNAT MAKE.

6.1 Running GNAT MAKE

The usual form of the GNAT MAKE command is
$ GNAT MAKE [qualifiers] file_name [file_names] [mode_qualifiers]

The only required argument is one file_name, which specifies a compilation unit that is a
main program. Several file_names can be specified: this will result in several executables
being built. If qualifiers are present, they can be placed before the first file_name,
between file_names or after the last file_name. If mode_qualifiers are present, they must
always be placed after the last file_name and all qualifiers.

If you are using standard file extensions (.ADB and .ADS), then the extension may be
omitted from the file_name arguments. However, if you are using non-standard extensions,
then it is required that the extension be given. A relative or absolute directory path can
be specified in a file_name, in which case, the input source file will be searched for in
the specified directory only. Otherwise, the input source file will first be searched in the
directory where GNAT MAKE was invoked and if it is not found, it will be search on the source
path of the compiler as described in Section 3.3 [Search Paths and the Run-Time Library
(RTL)], page 56.

When several file_names are specified, if an executable needs to be rebuilt and relinked,

all subsequent executables will be rebuilt and relinked, even if this would not be absolutely
necessary.

All GNAT MAKE output (except when you specify /DEPENDENCIES_LIST) is to ‘SYS$ERROR’ .
The output produced by the /DEPENDENCIES_LIST qualifier is send to ‘SYS$OUTPUT’.

92

GNAT User’s Guide for OpenVMS Alpha

6.2 Qualifiers for GNAT MAKE

You may specify any of the following qualifiers to GNAT MAKE:

/ALL_FILES

/ACTIONS=B

/ACTIONS=C

/MAPPING

/FORCE_COM

Consider all files in the make process, even the GNAT internal system files (for
example, the predefined Ada library files), as well as any locked files. Locked
files are files whose ALI file is write-protected. By default, GNAT MAKE does
not check these files, because the assumption is that the GNAT internal files
are properly up to date, and also that any write protected ALI files have been
properly installed. Note that if there is an installation problem, such that one
of these files is not up to date, it will be properly caught by the binder. You
may have to specify this qualifier if you are working on GNAT itself. /ALL_
FILES is also useful in conjunction with /FORCE_COMPILE if you need to re-
compile an entire application, including run-time files, using special configura-
tion pragma settings, such as a non-standard Float_Representation pragma.
By default GNAT MAKE /ALL_FILES compiles all GNAT internal files with the
/CHECKS=SUPPRESS_ALL /STYLE_CHECKS=GNAT qualifier.

IND

Bind only. Can be combined with /ACTIONS=COMPILE to do compilation and
binding, but no link. Can be combined with /ACTIONS=LINK to do binding
and linking. When not combined with /ACTIONS=COMPILE all the units in the
closure of the main program must have been previously compiled and must
be up to date. The root unit specified by file_name may be given without
extension, with the source extension or, if no GNAT Project File is specified,
with the ALI file extension.

OMPILE

Compile only. Do not perform binding, except when /ACTIONS=BIND is
also specified. Do not perform linking, except if both /ACTIONS=BIND and
/ACTIONS=LINK are also specified. If the root unit specified by file_name is
not a main unit, this is the default. Otherwise GNAT MAKE will attempt binding
and linking unless all objects are up to date and the executable is more recent
than the objects.

Use a mapping file. A mapping file is a way to communicate to the compiler two
mappings: from unit names to file names (without any directory information)
and from file names to path names (with full directory information). These
mappings are used by the compiler to short-circuit the path search. When
GNAT MAKE is invoked with this qualifier, it will create a mapping file, initially
populated by the project manager, if -P is used, otherwise initially empty. Each
invocation of the compiler will add the newly accessed sources to the mapping
file. This will improve the source search during the next invocation of the
compiler.

PILE
Force recompilations. Recompile all sources, even though some object files may
be up to date, but don’t recompile predefined or GNAT internal files or locked

Chapter 6: The GNAT Make Program GNAT MAKE 93

/IN_PLACE

files (files with a write-protected ALI file), unless the /ALL_FILES qualifier is
also specified.

In normal mode, GNAT MAKE compiles all object files and ALI files into the cur-
rent directory. If the /IN_PLACE qualifier is used, then instead object files and
ALI files that already exist are overwritten in place. This means that once a
large project is organized into separate directories in the desired manner, then
GNAT MAKE will automatically maintain and update this organization. If no ALI
files are found on the Ada object path (Section 3.3 [Search Paths and the Run-
Time Library (RTL)], page 56), the new object and ALI files are created in
the directory containing the source being compiled. If another organization
is desired, where objects and sources are kept in different directories, a useful
technique is to create dummy ALI files in the desired directories. When detect-
ing such a dummy file, GNAT MAKE will be forced to recompile the corresponding
source file, and it will be put the resulting object and ALI files in the directory
where it found the dummy file.

/PROCESSES=n

/CONTINUE_

Use n processes to carry out the (re)compilations. On a multiprocessor machine
compilations will occur in parallel. In the event of compilation errors, messages
from various compilations might get interspersed (but GNAT MAKE will give you
the full ordered list of failing compiles at the end). If this is problematic, rerun
the make process with n set to 1 to get a clean list of messages.

ON_ERROR

Keep going. Continue as much as possible after a compilation error. To ease
the programmer’s task in case of compilation errors, the list of sources for which
the compile fails is given when GNAT MAKE terminates.

If GNAT MAKE is invoked with several ‘file_names’ and with this qualifier, if
there are compilation errors when building an executable, GNAT MAKE will not
attempt to build the following executables.

/ACTIONS=LINK

Link only. Can be combined with /ACTIONS=BIND to binding and linking. Link-
ing will not be performed if combined with /ACTIONS=COMPILE but not with
/ACTIONS=BIND. When not combined with /ACTIONS=BIND all the units in the
closure of the main program must have been previously compiled and must be
up to date, and the main program need to have been bound. The root unit spec-
ified by file_name may be given without extension, with the source extension
or, if no GNAT Project File is specified, with the ALI file extension.

/MINIMAL_RECOMPILATION

Specifies that the minimum necessary amount of recompilations be performed.
In this mode GNAT MAKE ignores time stamp differences when the only modifica-
tions to a source file consist in adding/removing comments, empty lines, spaces
or tabs. This means that if you have changed the comments in a source file or
have simply reformatted it, using this qualifier will tell GNAT MAKE not to

94

GNAT User’s Guide for OpenVMS Alpha

recompile files that depend on it (provided other sources on which these files
depend have undergone no semantic modifications). Note that the debugging
information may be out of date with respect to the sources if the -m qualifier
causes a compilation to be switched, so the use of this qualifier represents a
trade-off between compilation time and accurate debugging information.

/DEPENDENCIES_LIST

Check if all objects are up to date. If they are, output the object dependences
to ‘SYS$0UTPUT’ in a form that can be directly exploited in a ‘Makefile’. By
default, each source file is prefixed with its (relative or absolute) directory
name. This name is whatever you specified in the various /SOURCE_SEARCH
and /SEARCH qualifiers. If you use GNAT MAKE /DEPENDENCIES_LIST /QUIET
(see below), only the source file names, without relative paths, are output. If
you just specify the /DEPENDENCIES_LIST qualifier, dependencies of the GNAT
internal system files are omitted. This is typically what you want. If you also
specify the /ALL_FILES qualifier, dependencies of the GNAT internal files are
also listed. Note that dependencies of the objects in external Ada libraries (see
qualifier /SKIP_MISSING=dir in the following list) are never reported.

/DO_0OBJECT_CHECK

Don’t compile, bind, or link. Checks if all objects are up to date. If they
are not, the full name of the first file that needs to be recompiled is printed.
Repeated use of this option, followed by compiling the indicated source file, will
eventually result in recompiling all required units.

/EXECUTABLE=exec_name

/QUIET

Output executable name. The name of the final executable program will be
exec_name. If the /EXECUTABLE qualifier is omitted the default name for the
executable will be the name of the input file in appropriate form for an exe-
cutable file on the host system.

This qualifier cannot be used when invoking GNAT MAKE with several
‘file_names’.

Quiet. When this flag is not set, the commands carried out by GNAT MAKE are
displayed.

/SWITCH_CHECK/

/UNIQUE

/REASONS

/NOMAIN

Recompile if compiler qualifiers have changed since last compilation. All com-
piler qualifiers but -I and -o are taken into account in the following way: orders
between different “first letter” qualifiers are ignored, but orders between same
qualifiers are taken into account. For example, -0 /OPTIMIZE=ALL is different
than /OPTIMIZE=ALL -0, but -g -0 is equivalent to -0 -g.

Unique. Recompile at most the main file. It implies -c. Combined with -f, it is
equivalent to calling the compiler directly.

Verbose. Displays the reason for all recompilations GNAT MAKE decides are nec-
essary.

No main subprogram. Bind and link the program even if the unit name given
on the command line is a package name. The resulting executable will execute

Chapter 6: The GNAT Make Program GNAT MAKE 95

the elaboration routines of the package and its closure, then the finalization
routines.

GNAT COMPILE qualifiers
Any qualifier that cannot be recognized as a qualifier for GNAT MAKE but is
recognizable as a valid qualifier for GNAT COMPILE is automatically treated as a
compiler qualifier, and passed on to all compilations that are carried out.

Source and library search path qualifiers:

/SOURCE_SEARCH=dir
When looking for source files also look in directory dir. The order in which

source files search is undertaken is described in Section 3.3 [Search Paths and
the Run-Time Library (RTL)], page 56.

/SKIP_MISSING=dir

Consider dir as being an externally provided Ada library. Instructs GNAT MAKE
to skip compilation units whose ‘. ALI’ files have been located in directory dir.
This allows you to have missing bodies for the units in dir and to ignore out of
date bodies for the same units. You still need to specify the location of the specs
for these units by using the qualifiers /SOURCE_SEARCH=dir or /SEARCH=dir.
Note: this qualifier is provided for compatibility with previous versions of GNAT
MAKE. The easier method of causing standard libraries to be excluded from
consideration is to write-protect the corresponding ALI files.

/0BJECT_SEARCH=dir
When searching for library and object files, look in directory dir. The order in

which library files are searched is described in Section 4.11 [Search Paths for
GNAT BIND], page 85.

/CONDITIONAL_SQURCE_SEARCH=dir
Equivalent to /SKIP_MISSING=dir /SOURCE_SEARCH=dir.

/SEARCH=dir
Equivalent to /OBJECT_SEARCH=dir /SOURCE_SEARCH=dir.

/NOCURRENT_DIRECTORY
Do not look for source files in the directory containing the source file named in
the command line. Do not look for ALI or object files in the directory where
GNAT MAKE was invoked.

/LIBRARY_SEARCH=dir
Add directory dir to the list of directories in which the linker will search for
libraries. This is equivalent to /LINKER_QUALIFIERS /LIBRARY_SEARCH=dir.

/NOSTD_INCLUDES
Do not look for source files in the system default directory.

/NOSTD_LIBRARIES
Do not look for library files in the system default directory.

/RUNTIME_SYSTEM=rts-path
Specifies the default location of the runtime library. We look for the runtime in
the following directories, and stop as soon as a valid runtime is found ("adain-
clude" or "ada_source_path", and "adalib" or "ada_object_path" present):

96 GNAT User’s Guide for OpenVMS Alpha

e <current directory>/$rts_path
o <default-search-dir>/3$rts_path
o <default-search-dir>/rts-$rts_path

The selected path is handled like a normal RTS path.

6.3 Mode Qualifiers for GNAT MAKE

The mode qualifiers (referred to as mode_qualifiers) allow the inclusion of qualifiers that are
to be passed to the compiler itself, the binder or the linker. The effect of a mode qualifier
is to cause all subsequent qualifiers up to the end of the qualifier list, or up to the next

mode qualifier, to be interpreted as qualifiers to be passed on to the designated component
of GNAT.

/COMPILER_QUALIFIERS qualifiers
Compiler qualifiers. Here qualifiers is a list of qualifiers that are valid qualifiers
for GNAT COMPILE. They will be passed on to all compile steps performed by
GNAT MAKE.

/BINDER_QUALIFIERS qualifiers
Binder qualifiers. Here qualifiers is a list of qualifiers that are valid qualifiers
for GNAT COMPILE. They will be passed on to all bind steps performed by GNAT
MAKE.

/LINKER_QUALIFIERS qualifiers
Linker qualifiers. Here qualifiers is a list of qualifiers that are valid qualifiers
for GNAT COMPILE. They will be passed on to all link steps performed by GNAT
MAKE.

6.4 Notes on the Command Line

This section contains some additional useful notes on the operation of the GNAT MAKE command.

e If GNAT MAKE finds no ALI files, it recompiles the main program and all other units
required by the main program. This means that GNAT MAKE can be used for the initial
compile, as well as during subsequent steps of the development cycle.

e If you enter GNAT MAKE file.ADB, where ‘file.ADB’ is a subunit or body of a generic
unit, GNAT MAKE recompiles ‘file.ADB’ (because it finds no ALI) and stops, issuing a
warning.

e In GNAT MAKE the qualifier /SEARCH is used to specify both source and library file paths.
Use /SOURCE_SEARCH instead if you just want to specify source paths only and /0BJECT_
SEARCH if you want to specify library paths only.

e GNAT MAKE examines both an ALI file and its corresponding object file for consistency.
If an ALI is more recent than its corresponding object, or if the object file is missing,
the corresponding source will be recompiled. Note that GNAT MAKE expects an ALI and
the corresponding object file to be in the same directory.

Chapter 6: The GNAT Make Program GNAT MAKE 97

e GNAT MAKE will ignore any files whose ALI file is write-protected. This may conveniently
be used to exclude standard libraries from consideration and in particular it means that
the use of the /FORCE_COMPILE qualifier will not recompile these files unless /ALL_FILES
is also specified.

e GNAT MAKE has been designed to make the use of Ada libraries particularly convenient.
Assume you have an Ada library organized as follows: [OBJ_DIR] contains the objects
and ALI files for of your Ada compilation units, whereas [[NCLUDE_DIR] contains the
specs of these units, but no bodies. Then to compile a unit stored in MAIN.ADB, which
uses this Ada library you would just type

$ GNAT MAKE /SOURCE_SEARCH=[INCLUDE_DIR]
/SKIP_MISSING=[0BJ_DIR] main

e Using GNAT MAKE along with the /MINIMAL_RECOMPILATION qualifier provides a mech-
anism for avoiding unnecessary rcompilations. Using this qualifier, you can update the
comments/format of your source files without having to recompile everything. Note,
however, that adding or deleting lines in a source files may render its debugging info
obsolete. If the file in question is a spec, the impact is rather limited, as that debugging
info will only be useful during the elaboration phase of your program. For bodies the
impact can be more significant. In all events, your debugger will warn you if a source
file is more recent than the corresponding object, and alert you to the fact that the
debugging information may be out of date.

6.5 How GNAT MAKE Works

Generally GNAT MAKE automatically performs all necessary recompilations and you don’t need
to worry about how it works. However, it may be useful to have some basic understanding of
the GNAT MAKE approach and in particular to understand how it uses the results of previous
compilations without incorrectly depending on them.

First a definition: an object file is considered up to date if the corresponding ALI file
exists and its time stamp predates that of the object file and if all the source files listed in
the dependency section of this ALI file have time stamps matching those in the ALI file.
This means that neither the source file itself nor any files that it depends on have been
modified, and hence there is no need to recompile this file.

GNAT MAKE works by first checking if the specified main unit is up to date. If so, no
compilations are required for the main unit. If not, GNAT MAKE compiles the main program
to build a new ALI file that reflects the latest sources. Then the ALI file of the main unit
is examined to find all the source files on which the main program depends, and GNAT MAKE
recursively applies the above procedure on all these files.

This process ensures that GNAT MAKE only trusts the dependencies in an existing ALI
file if they are known to be correct. Otherwise it always recompiles to determine a new,
guaranteed accurate set of dependencies. As a result the program is compiled "upside down"
from what may be more familiar as the required order of compilation in some other Ada
systems. In particular, clients are compiled before the units on which they depend. The
ability of GNAT to compile in any order is critical in allowing an order of compilation to be
chosen that guarantees that GNAT MAKE will recompute a correct set of new dependencies if
necessary.

98 GNAT User’s Guide for OpenVMS Alpha

When invoking GNAT MAKE with several file_names, if a unit is imported by several of the
executables, it will be recompiled at most once.

6.6 Examples of GNAT MAKE Usage

GNAT MAKE HELLO.ADB
Compile all files necessary to bind and link the main program ‘HELLO.ADB’
(containing unit Hello) and bind and link the resulting object files to generate
an executable file ‘HELLO.EXE’.

GNAT MAKE mainl main2 main3
Compile all files necessary to bind and link the main programs ‘MAIN1.ADB’
(containing unit Main1), ‘MAIN2.ADB’ (containing unit Main2) and ‘MAIN3.ADB’
(containing unit Main3) and bind and link the resulting object files to generate
three executable files ‘MAIN1.EXE’, ‘MAIN2.EXE’ and ‘MAIN3.EXE’.

GNAT MAKE Main_Unit /QUIET /COMPILER_QUALIFIERS /OPTIMIZE=ALL
/BINDER_QUALIFIERS /ORDER_OF_ELABORATION
Compile all files necessary to bind and link the main program unit Main_Unit
(from file ‘MAIN_UNIT.ADB’). All compilations will be done with optimization
level 2 and the order of elaboration will be listed by the binder. GNAT MAKE will
operate in quiet mode, not displaying commands it is executing.

Chapter 7: Renaming Files Using GNAT CHOP 99

7 Renaming Files Using GNAT CHOP

This chapter discusses how to handle files with multiple units by using the GNAT CHOP utility.
This utility is also useful in renaming files to meet the standard GNAT default file naming
conventions.

7.1 Handling Files with Multiple Units

The basic compilation model of GNAT requires that a file submitted to the compiler have only
one unit and there be a strict correspondence between the file name and the unit name.

The GNAT CHOP utility allows both of these rules to be relaxed, allowing GNAT to process
files which contain multiple compilation units and files with arbitrary file names. GNAT CHOP
reads the specified file and generates one or more output files, containing one unit per file.
The unit and the file name correspond, as required by GNAT.

If you want to permanently restructure a set of "foreign" files so that they match the
GNAT rules, and do the remaining development using the GNAT structure, you can simply
use GNAT CHOP once, generate the new set of files and work with them from that point on.

Alternatively, if you want to keep your files in the "foreign" format, perhaps to main-
tain compatibility with some other Ada compilation system, you can set up a procedure
where you use GNAT CHOP each time you compile, regarding the source files that it writes as
temporary files that you throw away.

7.2 Operating GNAT CHOP in Compilation Mode

The basic function of GNAT CHOP is to take a file with multiple units and split it into separate
files. The boundary between files is reasonably clear, except for the issue of comments
and pragmas. In default mode, the rule is that any pragmas between units belong to the
previous unit, except that configuration pragmas always belong to the following unit. Any
comments belong to the following unit. These rules almost always result in the right choice
of the split point without needing to mark it explicitly and most users will find this default
to be what they want. In this default mode it is incorrect to submit a file containing only
configuration pragmas, or one that ends in configuration pragmas, to GNAT CHOP.

However, using a special option to activate "compilation mode", GNAT CHOP can perform
another function, which is to provide exactly the semantics required by the RM for handling
of configuration pragmas in a compilation. In the absence of configuration pragmas (at the
main file level), this option has no effect, but it causes such configuration pragmas to be
handled in a quite different manner.

First, in compilation mode, if GNAT CHOP is given a file that consists of only configura-
tion pragmas, then this file is appended to the ‘GNAT.ADC’ file in the current directory. This
behavior provides the required behavior described in the RM for the actions to be taken
on submitting such a file to the compiler, namely that these pragmas should apply to all
subsequent compilations in the same compilation environment. Using GNAT, the current
directory, possibly containing a ‘GNAT.ADC’ file is the representation of a compilation en-
vironment. For more information on the ‘GNAT.ADC’ file, see the section on handling of
configuration pragmas see Section 8.1 [Handling of Configuration Pragmas]|, page 103.

100 GNAT User’s Guide for OpenVMS Alpha

Second, in compilation mode, if GNAT CHOP is given a file that starts with configuration
pragmas, and contains one or more units, then these configuration pragmas are prepended
to each of the chopped files. This behavior provides the required behavior described in the
RM for the actions to be taken on compiling such a file, namely that the pragmas apply to
all units in the compilation, but not to subsequently compiled units.

Finally, if configuration pragmas appear between units, they are appended to the previ-
ous unit. This results in the previous unit being illegal, since the compiler does not accept
configuration pragmas that follow a unit. This provides the required RM behavior that
forbids configuration pragmas other than those preceding the first compilation unit of a
compilation.

For most purposes, GNAT CHOP will be used in default mode. The compilation mode
described above is used only if you need exactly accurate behavior with respect to com-
pilations, and you have files that contain multiple units and configuration pragmas. In
this circumstance the use of GNAT CHOP with the compilation mode qualifier provides the
required behavior, and is for example the mode in which GNAT processes the ACVC tests.

7.3 Command Line for GNAT CHOP

The GNAT CHOP command has the form:
$ GNAT CHOP qualifiers file name [file name file name ...]
[directory]
The only required argument is the file name of the file to be chopped. There are no
restrictions on the form of this file name. The file itself contains one or more Ada units,
in normal GNAT format, concatenated together. As shown, more than one file may be
presented to be chopped.

When run in default mode, GNAT CHOP generates one output file in the current directory
for each unit in each of the files.

directory, if specified, gives the name of the directory to which the output files will be
written. If it is not specified, all files are written to the current directory.

For example, given a file called ‘hellofiles’ containing

~
procedure hello;

with Text_I0; use Text_IO;
procedure hello is
begin

Put_Line ("Hello");
end hello;
N

the command
$ GNAT CHOP HELLOFILES.

generates two files in the current directory, one called ‘HELLO.ADS’ containing the single line
that is the procedure spec, and the other called ‘HELLO.ADB’ containing the remaining text.
The original file is not affected. The generated files can be compiled in the normal manner.

Chapter 7: Renaming Files Using GNAT CHOP 101

7.4 Qualifiers for GNAT CHOP

GNAT CHOP recognizes the following qualifiers:

/COMPILATION
Causes GNAT CHOP to operate in compilation mode, in which configuration prag-
mas are handled according to strict RM rules. See previous section for a full
description of this mode.

/HELP Causes GNAT CHOP to generate a brief help summary to the standard output file
showing usage information.

/FILE_NAME_MAX_LENGTH=mm
Limit generated file names to the specified number mm of characters. This is
useful if the resulting set of files is required to be interoperable with systems
which limit the length of file names. If no value is given, or if no /FILE_NAME_
MAX_LENGTH qualifier is given, a default of 39, suitable for OpenVMS Alpha
Systems, is assumed

/PRESERVE
Causes the file creation time stamp of the input file to be preserved and used
for the time stamp of the output file(s). This may be useful for preserving
coherency of time stamps in an enviroment where GNAT CHOP is used as part of
a standard build process.

/QUIET Causes output of informational messages indicating the set of generated files to
be suppressed. Warnings and error messages are unaffected.

/REFERENCE

Generate Source_Reference pragmas. Use this qualifier if the output files are
regarded as temporary and development is to be done in terms of the original
unchopped file. This qualifier causes Source_Reference pragmas to be inserted
into each of the generated files to refers back to the original file name and
line number. The result is that all error messages refer back to the original
unchopped file. In addition, the debugging information placed into the object
file (when the /DEBUG qualifier of GNAT COMPILE or GNAT MAKE is specified) also
refers back to this original file so that tools like profilers and debuggers will give
information in terms of the original unchopped file.

If the original file to be chopped itself contains a Source_Reference pragma
referencing a third file, then GNAT CHOP respects this pragma, and the gen-
erated Source_Reference pragmas in the chopped file refer to the original file,
with appropriate line numbers. This is particularly useful when GNAT CHOP is
used in conjunction with GNAT PREPROCESS to compile files that contain pre-
processing statements and multiple units.

/VERBOSE Causes GNAT CHOP to operate in verbose mode. The version number and copy-
right notice are output, as well as exact copies of the GNAT1 commands
spawned to obtain the chop control information.

/OVERWRITE
Overwrite existing file names. Normally GNAT CHOP regards it as a fatal error if
there is already a file with the same name as a file it would otherwise output,

102 GNAT User’s Guide for OpenVMS Alpha

in other words if the files to be chopped contain duplicated units. This qualifier
bypasses this check, and causes all but the last instance of such duplicated units
to be skipped.

7.5 Examples of GNAT CHOP Usage

GNAT CHOP /OVERWRITE HELLO_S.ADA [ICHBIAH.FILES]
Chops the source file ‘“HELLO_S.ADA’. The output files will be placed in the
directory ‘[ICHBIAH.FILES]’, overwriting any files with matching names in
that directory (no files in the current directory are modified).

GNAT CHOP ARCHIVE.
Chops the source file ‘ARCHIVE.’ into the current directory. One useful appli-
cation of GNAT CHOP is in sending sets of sources around, for example in email
messages. The required sources are simply concatenated (for example, using a
VMS APPEND/NEW command), and then GNAT CHOP is used at the other end to
reconstitute the original file names.

GNAT CHOP filel file2 file3 direc
Chops all units in files ‘filel’, ‘file2’, ‘file3d’, placing the resulting files in
the directory ‘direc’. Note that if any units occur more than once anywhere
within this set of files, an error message is generated, and no files are written.
To override this check, use the /OVERWRITE qualifier, in which case the last
occurrence in the last file will be the one that is output, and earlier duplicate
occurrences for a given unit will be skipped.

Chapter 8: Configuration Pragmas 103

8 Configuration Pragmas

In Ada 95, configuration pragmas include those pragmas described as such in the Ada 95 Refer-
ence Manual, as well as implementation-dependent pragmas that are configuration pragmas.
See the individual descriptions of pragmas in the GNAT Reference Manual for details on
these additional GNAT-specific configuration pragmas. Most notably, the pragma Source_
File_Name, which allows specifying non-default names for source files, is a configuration
pragma. The following is a complete list of configuration pragmas recognized by GNAT:

Ada_83

Ada_95
C_Pass_By_Copy
Component_Alignment
Discard_Names
Elaboration_Checks
Eliminate
Extend_System
Extensions_Allowed
External_Name_Casing
Float_Representation
Initialize_Scalars
License
Locking_Policy
Long_Float
No_Run_Time
Normalize_Scalars
Polling
Propagate_Exceptions
Queuing_Policy
Ravenscar
Restricted_Run_Time
Restrictions
Reviewable
Source_File_Name
Style_Checks
Suppress
Task_Dispatching_Policy
Unsuppress
Use_VADS_Size
Warnings
Validity_Checks

8.1 Handling of Configuration Pragmas

Configuration pragmas may either appear at the start of a compilation unit, in which case
they apply only to that unit, or they may apply to all compilations performed in a given
compilation environment.

GNAT also provides the GNAT CHOP utility to provide an automatic way to handle config-
uration pragmas following the semantics for compilations (that is, files with multiple units),
described in the RM. See section see Section 7.2 [Operating GNAT CHOP in Compilation
Mode], page 99 for details. However, for most purposes, it will be more convenient to
edit the ‘GNAT.ADC’ file that contains configuration pragmas directly, as described in the
following section.

In

104 GNAT User’s Guide for OpenVMS Alpha

8.2 The Configuration Pragmas Files

GNAT a compilation environment is defined by the current directory at the time that
a compile command is given. This current directory is searched for a file whose name
is ‘GNAT.ADC’. If this file is present, it is expected to contain one or more configuration
pragmas that will be applied to the current compilation. However, if the qualifier ‘~gnatA’
is used, ‘GNAT.ADC’ is not considered.

Configuration pragmas may be entered into the ‘GNAT.ADC’ file either by running GNAT
CHOP on a source file that consists only of configuration pragmas, or more conveniently by
direct editing of the ‘GNAT.ADC’ file, which is a standard format source file.

In addition to ‘GNAT.ADC’, one additional file containing configuration pragmas may be
applied to the current compilation using the qualifier ‘~gnatec’path. path must designate
an existing file that contains only configuration pragmas. These configuration pragmas
are in addition to those found in ‘GNAT.ADC’ (provided ‘GNAT.ADC’ is present and qualifier
‘-gnatA’ is not used).

¢

It is allowed to specify several qualifiers ‘~gnatec’, however only the last one on the

command line will be taken into account.

Of special interest to GNAT OpenVMS Alpha is the following configuration pragma:

E)ragma Extend_System (Aux_DEC); }

In the presence of this pragma, GNAT adds to the definition of the predefined package
SYSTEM all the additional types and subprograms that are defined in DEC Ada. See see
Chapter 22 [Compatibility with DEC Ada], page 221 for details.

Chapter 9: Handling Arbitrary File Naming Conventions Using gnatname 105

9 Handling Arbitrary File Naming Conventions
Using gnatname

9.1 Arbitrary File Naming Conventions

The GNAT compiler must be able to know the source file name of a compilation unit. When
using the standard GNAT default file naming conventions (. ADS for specs, .ADB for bodies),
the GNAT compiler does not need additional information.

When the source file names do not follow the standard GNAT default file naming conven-
tions, the GNAT compiler must be given additional information through a configuration
pragmas file (see Chapter 8 [Configuration Pragmas|, page 103) or a project file. When the
non standard file naming conventions are well-defined, a small number of pragmas Source_
File_Name specifying a naming pattern (see Section 2.5 [Alternative File Naming Schemes],
page 16) may be sufficient. However, if the file naming conventions are irregular or arbi-
trary, a number of pragma Source_File_Name for individual compilation units must be
defined. To help maintain the correspondence between compilation unit names and source
file names within the compiler, GNAT provides a tool gnatname to generate the required
pragmas for a set of files.

9.2 Running gnatname

The usual form of the gnatname command is

$ gnatname [qualifiers] naming pattern [naming patterns]

All of the arguments are optional. If invoked without any argument, gnatname will display
its usage.

When used with at least one naming pattern, gnatname will attempt to find all the compila-
tion units in files that follow at least one of the naming patterns. To find these compilation
units, gnatname will use the GNAT compiler in syntax-check-only mode on all regular files.

One or several Naming Patterns may be given as arguments to gnatname. Each Naming
Pattern is enclosed between double quotes. A Naming Pattern is a regular expression similar
to the wildcard patterns used in file names by the Unix shells or the DOS prompt.

Examples of Naming Patterns are

"x.[12] .ADA"
"x.ad[sb]*"
"body_*" "spec_*"

For a more complete description of the syntax of Naming Patterns, see the second kind of
regular expressions described in ‘G-REGEXP.ADS’ (the "Glob" regular expressions).

When invoked with no qualifiers, gnatname will create a configuration pragmas file
‘GNAT.ADC’ in the current working directory, with pragmas Source_File_Name for each file
that contains a valid Ada unit.

106

GNAT User’s Guide for OpenVMS Alpha

9.3 Qualifiers for gnatname

Qualifiers for gnatname must precede any specified Naming Pattern.

You may specify any of the following qualifiers to gnatname:

-c‘file’

-d‘dir’

-D¢file’

Create a configuration pragmas file ‘file’ (instead of the default ‘GNAT.ADC’).
There may be zero, one or more space between -c and ‘file’. ‘file’ may
include directory information. ‘file’ must be writeable. There may be only
one qualifier —~c. When a qualifier —c is specified, no qualifier -P may be specified
(see below).

Look for source files in directory ‘dir’. There may be zero, one or more spaces
between -d and ‘dir’. When a qualifier -d is specified, the current working
directory will not be searched for source files, unless it is explictly specified
with a -d or -D qualifier. Several qualifiers -d may be specified. If ‘dir’ is a
relative path, it is relative to the directory of the configuration pragmas file
specified with qualifier -c, or to the directory of the project file specified with
qualifier =P or, if neither qualifier —-c nor qualifier -P are specified, it is relative
to the current working directory. The directory specified with qualifier ~c must
exist and be readable.

Look for source files in all directories listed in text file ‘file’. There may
be zero, one or more spaces between -d and ‘dir’. ‘file’ must be an existing,
readable text file. Each non empty line in ‘file’ must be a directory. Specifying
qualifier -D is equivalent to specifying as many qualifiers -d as there are non
empty lines in ‘file’.

Output usage (help) information. The output is written to ‘SYS$OUTPUT .

Create or update project file ‘proj’. There may be zero, one or more space
between -P and ‘proj’. ‘proj’ may include directory information. ‘proj’ must
be writeable. There may be only one qualifier -P. When a qualifier -P is
specified, no qualifier —~c may be specified.

Verbose mode. Output detailed explanation of behavior to ‘SYS$0UTPUT’. This
includes name of the file written, the name of the directories to search and, for
each file in those directories whose name matches at least one of the Naming
Patterns, an indication of whether the file contains a unit, and if so the name
of the unit.

Very Verbose mode. In addition to the output produced in verbose mode, for
each file in the searched directories whose name matches none of the Naming
Patterns, an indication is given that there is no match.

-x ‘pattern’

Excluded patterns. Using this qualifier, it is possible to exclude some files
that would match the name patterns. For example, "gnatname -x "*_NT.ADA"
"x,ADA" will look for Ada units in all files with the ‘.ADA’ extension, except
those whose names end with ‘_NT.ADA’.

Chapter 9: Handling Arbitrary File Naming Conventions Using gnatname 107

9.4 Examples of gnatname Usage

$ gnatname -c /home/me/NAMES.ADC -d sources "[a-z]*.ADAx"

In this example, the directory ‘/home/me’ must already exist and be writeable. In addi-
tion, the directory ‘/home/me/sources’ (specified by -d sources) must exist and be read-
able. Note the optional spaces after -c and -d.

$ gnatname -P/home/me/proj -x "*_NT_BODY.ADA" -dsources -dsources/plus -Dcommon_dirs.txt "body_x*" "spec_»

Note that several qualifiers -d may be used, even in conjunction with one or several
qualifiers -D. Several Naming Patterns and one excluded pattern are used in this example.

108 GNAT User’s Guide for OpenVMS Alpha

Chapter 10: GNAT Project Manager 109

10 GNAT Project Manager

10.1 Introduction

This chapter describes GNAT’s Project Manager, a facility that lets you configure various
properties for a collection of source files. In particular, you can specify:

e The directory or set of directories containing the source files, and/or the names of the
specific source files themselves

e The directory in which the compiler’s output (‘ALI’ files, object files, tree files) will be
placed

e The directory in which the executable programs will be placed

e Qualifier settings for any of the project-enabled tools (GNAT MAKE, compiler, binder,
linker, GNAT LIST, GNAT XREF, GNAT FIND); you can apply these settings either globally
or to individual units

e The source files containing the main subprogram(s) to be built
e The source programming language(s) (currently Ada and/or C)

e Source file naming conventions; you can specify these either globally or for individual
units

10.1.1 Project Files

A project is a specific set of values for these properties. You can define a project’s settings
in a project file, a text file with an Ada-like syntax; a property value is either a string or
a list of strings. Properties that are not explicitly set receive default values. A project
file may interrogate the values of external variables (user-defined command-line qualifiers
or environment variables), and it may specify property settings conditionally, based on the
value of such variables.

In simple cases, a project’s source files depend only on other source files in the same
project, or on the predefined libraries. ("Dependence" is in the technical sense; for example,
one Ada unit "with"ing another.) However, the Project Manager also allows much more
sophisticated arrangements, with the source files in one project depending on source files in
other projects:

e One project can import other projects containing needed source files.
e You can organize GNAT projects in a hierarchy: a child project can extend a parent

project, inheriting the parent’s source files and optionally overriding any of them with
alternative versions

More generally, the Project Manager lets you structure large development efforts into hier-
archical subsystems, with build decisions deferred to the subsystem level and thus different
compilation environments (qualifier settings) used for different subsystems.

The Project Manager is invoked through the ‘~Pprojectfile’ qualifier to GNAT MAKE or
to the gnat front driver. If you want to define (on the command line) an external variable
that is queried by the project file, additionally use the ‘-Xvbl=value’ qualifier. The Project

110 GNAT User’s Guide for OpenVMS Alpha

Manager parses and interprets the project file, and drives the invoked tool based on the
project settings.

The Project Manager supports a wide range of development strategies, for systems of
all sizes. Some typical practices that are easily handled:

e Using a common set of source files, but generating object files in different directories
via different qualifier settings

e Using a mostly-shared set of source files, but with different versions of some unit or
units

The destination of an executable can be controlled inside a project file using the ‘-0’ qual-
ifier. In the absence of such a qualifier either inside the project file or on the command
line, any executable files generated by GNAT MAKE will be placed in the directory Exec_Dir
specified in the project file. If no Exec_Dir is specified, they will be placed in the object
directory of the project.

You can use project files to achieve some of the effects of a source versioning system (for
example, defining separate projects for the different sets of sources that comprise different
releases) but the Project Manager is independent of any source configuration management
tools that might be used by the developers.

The next section introduces the main features of GNAT’s project facility through a
sequence of examples; subsequent sections will present the syntax and semantics in more
detail.

10.2 Examples of Project Files

This section illustrates some of the typical uses of project files and explains their basic structure
and behavior.

10.2.1 Common Sources with Different Qualifiers and Different
Output Directories

Assume that the Ada source files ‘PACK.ADS’, ‘PACK.ADB’, and ‘PROC.ADB’ are in the ‘/common’
directory. The file ‘PROC. ADB’ contains an Ada main subprogram Proc that "with"s package
Pack. We want to compile these source files under two sets of qualifiers:

e When debugging, we want to pass the ‘-g’ qualifier to GNAT MAKE, and the
‘/CHECKS=ASSERTIONS’, ‘/CHECKS=0VERFLOW’, and ‘/CHECKS=ELABORATION’ qualifiers
to the compiler; the compiler’s output is to appear in ‘/common/debug’

e When preparing a release version, we want to pass the ‘/OPTIMIZE=ALL’ qualifier to
the compiler; the compiler’s output is to appear in ‘/common/release’

The GNAT project files shown below, respectively ‘debug.gpr’ and ‘release.gpr’ in the
‘/common’ directory, achieve these effects.
Diagrammatically:

/ common
debug.gpr
release.gpr
PACK.ADS
PACK.ADB
PROC. ADB

Chapter 10: GNAT Project Manager 111

/common/debug {-g, /CHECKS=ASSERTIONS, /CHECKS=0VERFLOW, /CHECKS=ELABORATION}
PROC.ALI, PROC.0BJ
PACK.ALI, PACK.OBJ

/common/release {/0PTIMIZE=ALL}
PROC.ALI, PROC.0BJ
PACK.ALI, PACK.O0BJ

Here are the project files:
project Debug is
for Object_Dir use "debug";
for Main use ("proc");

package Builder is
for Default_Qualifiers ("Ada") use ("-g");
end Builder;

package Compiler is
for Default_Qualifiers ("Ada")

use ("-fstack-check", "/CHECKS=ASSERTIONS", "/CHECKS=0VERFLOW", "/CHECKS=ELABORATION");I
end Compiler;
end Debug;

project Release is
for Object_Dir use "release";
for Exec_Dir use ".";
for Main use ("proc");

package Compiler is
for Default_Qualifiers ("Ada") use ("/OPTIMIZE=ALL");
end Compiler;
end Release;
The name of the project defined by ‘debug.gpr’ is "Debug" (case insensitive), and analo-
gously the project defined by ‘release.gpr’ is "Release". For consistency the file should
have the same name as the project, and the project file’s extension should be "gpr". These
conventions are not required, but a warning is issued if they are not followed.
If the current directory is ‘/temp’, then the command
GNAT MAKE -P/common/debug.gpr

generates object and ALI files in ‘/common/debug’, and the proc executable also in
‘/common/debug’, using the qualifier settings defined in the project file.
Likewise, the command
GNAT MAKE -P/common/release.gpr

generates object and ALI files in ‘/common/release’, and the proc executable in ‘/common’,
using the qualifier settings from the project file.

Source Files

If a project file does not explicitly specify a set of source directories or a set of source files,
then by default the project’s source files are the Ada source files in the project file directory.
Thus ‘PACK.ADS’, ‘PACK.ADB’, and ‘PROC.ADB’ are the source files for both projects.

Specifying the Object Directory

Several project properties are modeled by Ada-style attributes; you define the property by
supplying the equivalent of an Ada attribute definition clause in the project file. A project’s

112 GNAT User’s Guide for OpenVMS Alpha

object directory is such a property; the corresponding attribute is Object_Dir, and its value
is a string expression. A directory may be specified either as absolute or as relative; in the
latter case, it is relative to the project file directory. Thus the compiler’s output is directed
to ‘/common/debug’ (for the Debug project) and to ‘/common/release’ (for the Release
project). If Object_Dir is not specified, then the default is the project file directory.

Specifying the Exec Directory

A project’s exec directory is another property; the corresponding attribute is Exec_Dir, and
its value is also a string expression, either specified as relative or absolute. If Exec_Dir
is not specified, then the default is the object directory (which may also be the project
file directory if attribute Object_Dir is not specified). Thus the executable is placed in
‘/common/debug’ for the Debug project (attribute Exec_Dir not specified) and in ‘/common’
for the Release project.

Project File Packages

A GNAT tool integrated with the Project Manager is modeled by a corresponding package
in the project file. The Debug project defines the packages Builder (for GNAT MAKE) and
Compiler; the Release project defines only the Compiler package.

The Ada package syntax is not to be taken literally. Although packages in project files
bear a surface resemblance to packages in Ada source code, the notation is simply a way to
convey a grouping of properties for a named entity. Indeed, the package names permitted
in project files are restricted to a predefined set, corresponding to the project-aware tools,
and the contents of packages are limited to a small set of constructs. The packages in the
example above contain attribute definitions.

Specifying Qualifier Settings

Qualifier settings for a project-aware tool can be specified through attributes in the package
corresponding to the tool. The example above illustrates one of the relevant attributes,
Default_Qualifiers, defined in the packages in both project files. Unlike simple attributes
like Source_Dirs, Default_Qualifiers is known as an associative array. When you define
this attribute, you must supply an "index" (a literal string), and the effect of the attribute
definition is to set the value of the "array" at the specified "index". For the Default_
Qualifiers attribute, the index is a programming language (in our case, Ada) , and the
value specified (after use) must be a list of string expressions.

The attributes permitted in project files are restricted to a predefined set. Some may
appear at project level, others in packages. For any attribute that is an associate array, the
index must always be a literal string, but the restrictions on this string (e.g., a file name or
a language name) depend on the individual attribute. Also depending on the attribute, its
specified value will need to be either a string or a string list.

In the Debug project, we set the qualifiers for two tools, GNAT MAKE and the compiler,
and thus we include corresponding packages, with each package defining the Default_
Qualifiers attribute with index "Ada". Note that the package corresponding to GNAT MAKE
is named Builder. The Release project is similar, but with just the Compiler package.

Chapter 10: GNAT Project Manager 113

In project Debug above the qualifiers starting with ‘~gnat’ that are specified in package
Compiler could have been placed in package Builder, since GNAT MAKE transmits all such
qualifiers to the compiler.

Main Subprograms

One of the properties of a project is its list of main subprograms (actually a list of names of
source files containing main subprograms, with the file extension optional. This property
is captured in the Main attribute, whose value is a list of strings. If a project defines the
Main attribute, then you do not need to identify the main subprogram(s) when invoking
GNAT MAKE (see Section 10.13.1 [GNAT MAKE and Project Files], page 132).

Source File Naming Conventions

Since the project files do not specify any source file naming conventions, the GNAT defaults
are used. The mechanism for defining source file naming conventions — a package named
Naming — will be described below (see Section 10.10 [Naming Schemes], page 129).

Source Language(s)

Since the project files do not specify a Languages attribute, by default the GNAT tools assume
that the language of the project file is Ada. More generally, a project can comprise source
files in Ada, C, and/or other languages.

10.2.2 Using External Variables

Instead of supplying different project files for debug and release, we can define a single project
file that queries an external variable (set either on the command line or via an environment
variable) in order to conditionally define the appropriate settings. Again, assume that the
source files ‘PACK.ADS’, ‘PACK.ADB’, and ‘PROC.ADB’ are located in directory ‘/common’. The
following project file, ‘build.gpr’, queries the external variable named STYLE and defines
an object directory and qualifier settings based on whether the value is "deb" (debug) or
"rel" (release), where the default is "deb".

project Build is
for Main use ("proc");

type Style_Type is ("deb", "rel");
Style : Style_Type := external ("STYLE", "deb");

case Style is
when "deb" =>
for Object_Dir use "debug";

when "rel" =>
for Object_Dir use "release";
for Exec_Dir use ".";
end case;

114 GNAT User’s Guide for OpenVMS Alpha

package Builder is

case Style is
when "deb" =>
for Default_Qualifiers ("Ada") use ("-g");
end case;

end Builder;

package Compiler is

case Style is
when "deb" =>
for Default_Qualifiers ("Ada") use ("/CHECKS=ASSERTIONS", "/CHECKS=0OVERFLOW", "/CHECKS=ELABORATIC

when "rel" =>
for Default_Qualifiers ("Ada") use ("/OPTIMIZE=ALL");
end case;

end Compiler;

end Build;
Style_Type is an example of a string type, which is the project file analog of an Ada
enumeration type but containing string literals rather than identifiers. Style is declared as
a variable of this type.

The form external ("STYLE", "deb") is known as an external reference; its first argu-
ment is the name of an external variable, and the second argument is a default value to
be used if the external variable doesn’t exist. You can define an external variable on the
command line via the ‘=X’ qualifier, or you can use an environment variable as an external
variable.

Each case construct is expanded by the Project Manager based on the value of Style.
Thus the command

GNAT MAKE -P/common/build.gpr -XSTYLE=deb

is equivalent to the GNAT MAKE invocation using the project file ‘debug.gpr’ in the earlier
example. So is the command

GNAT MAKE -P/common/build.gpr

since "deb" is the default for STYLE.
Analogously,
GNAT MAKE -P/common/build.gpr -XSTYLE=rel

is equivalent to the GNAT MAKE invocation using the project file ‘release.gpr’ in the earlier
example.

10.2.3 Importing Other Projects

A compilation unit in a source file in one project may depend on compilation units in source
files in other projects. To obtain this behavior, the dependent project must import the
projects containing the needed source files. This effect is embodied in syntax similar to an
Ada with clause, but the "with"ed entities are strings denoting project files.

As an example, suppose that the two projects GUI_Proj and Comm_Proj are defined in
the project files ‘gui_proj.gpr’ and ‘comm_proj.gpr’ in directories ‘/gui’ and ‘/comm’,
respectively. Assume that the source files for GUI_Proj are ‘GUI.ADS’ and ‘GUI.ADB’, and

Chapter 10: GNAT Project Manager 115

that the source files for Comm_Proj are ‘COMM.ADS’ and ‘COMM.ADB’, with each set of files
located in its respective project file directory. Diagrammatically:
/gui
gui_proj.gpr
GUI.ADS
GUI.ADB

/comm
comm_proj.gpr
COMM. ADS
COMM. ADB
We want to develop an application in directory ‘/app’ that "with"s the packages GUI and
Comm, using the properties of the corresponding project files (e.g. the qualifier settings and
object directory). Skeletal code for a main procedure might be something like the following;:

with GUI, Comm;
procedure App_Main is

begiﬁ'
end.Aép_Main;
Here is a project file, ‘app_proj.gpr’, that achieves the desired effect:

with "/gui/gui_proj", "/comm/comm_proj";
project App_Proj is
for Main use ("app_main");
end App_Proj;
Building an executable is achieved through the command:

GNAT MAKE -P/app/app_proj
which will generate the app_main executable in the directory where ‘app_proj.gpr’ resides.

If an imported project file uses the standard extension (gpr) then (as illustrated above)
the with clause can omit the extension.

Our example specified an absolute path for each imported project file. Alternatively,
you can omit the directory if either

e The imported project file is in the same directory as the importing project file, or

e You have defined an environment variable ADA_PROJECT_PATH that includes the direc-
tory containing the needed project file.

Thus, if we define ADA_PROJECT_PATH to include ‘/gui’ and ‘/comm’, then our project file
‘app_proj.gpr’ could be written as follows:

with "gui_proj", "comm_proj";

project App_Proj is

for Main use ("app_main");

end App_Proj;
Importing other projects raises the possibility of ambiguities. For example, the same unit
might be present in different imported projects, or it might be present in both the importing
project and an imported project. Both of these conditions are errors. Note that in the
current version of the Project Manager, it is illegal to have an ambiguous unit even if the
unit is never referenced by the importing project. This restriction may be relaxed in a
future release.

116 GNAT User’s Guide for OpenVMS Alpha

10.2.4 Extending a Project

A common situation in large software systems is to have multiple implementations for a common
interface; in Ada terms, multiple versions of a package body for the same specification. For
example, one implementation might be safe for use in tasking programs, while another might
only be used in sequential applications. This can be modeled in GNAT using the concept
of project extension. If one project (the "child") extends another project (the "parent")
then by default all source files of the parent project are inherited by the child, but the child
project can override any of the parent’s source files with new versions, and can also add
new files. This facility is the project analog of extension in Object-Oriented Programming.
Project hierarchies are permitted (a child project may be the parent of yet another project),
and a project that inherits one project can also import other projects.

As an example, suppose that directory ‘/seq’ contains the project file ‘seq_proj.gpr’
and the source files ‘PACK.ADS’, ‘PACK.ADB’, and ‘PROC.ADB’:

/seq
PACK.ADS
PACK.ADB
PROC.ADB

seq_proj.gpr
Note that the project file can simply be empty (that is, no attribute or package is defined):
project Seq_Proj is
end Seq_Proj;
implying that its source files are all the Ada source files in the project directory.

Suppose we want to supply an alternate version of ‘PACK.ADB’, in directory ‘/tasking’,
but use the existing versions of ‘PACK.ADS’ and ‘PROC.ADB’. We can define a project
Tasking_Proj that inherits Seq_Proj:

/tasking
PACK.ADB
tasking_proj.gpr

project Tasking Proj extends "/seq/seq_proj" is
end Tasking_Proj;

The version of ‘PACK.ADB’ used in a build depends on which project file is specified.

Note that we could have designed this using project import rather than project inheri-
tance; a base project would contain the sources for ‘PACK.ADS’ and ‘PROC. ADB’, a sequential
project would import base and add ‘PACK.ADB’, and likewise a tasking project would im-
port base and add a different version of ‘PACK.ADB’. The choice depends on whether other
sources in the original project need to be overridden. If they do, then project extension is
necessary, otherwise, importing is sufficient.

10.3 Project File Syntax

This section describes the structure of project files.

A project may be an independent project, entirely defined by a single project file. Any
Ada source file in an independent project depends only on the predefined library and other
Ada source files in the same project.

A project may also depend on other projects, in either or both of the following ways:

Chapter 10: GNAT Project Manager 117

e It may import any number of projects

e It may extend at most one other project
The dependence relation is a directed acyclic graph (the subgraph reflecting the "extends"
relation is a tree).

A project’s immediate sources are the source files directly defined by that project, ei-
ther implicitly by residing in the project file’s directory, or explicitly through any of the
source-related attributes described below. More generally, a project proj’s sources are the
immediate sources of proj together with the immediate sources (unless overridden) of any
project on which proj depends (either directly or indirectly).

10.3.1 Basic Syntax

As seen in the earlier examples, project files have an Ada-like syntax. The minimal project file
is:

project Empty is
end Empty;

The identifier Empty is the name of the project. This project name must be present after
the reserved word end at the end of the project file, followed by a semi-colon.

Any name in a project file, such as the project name or a variable name, has the same
syntax as an Ada identifier.

The reserved words of project files are the Ada reserved words plus extends, external,
and project. Note that the only Ada reserved words currently used in project file syntax
are:

e case
e end

e for

e is

e others
e package
e renames
e type

e use

e when

e with

Comments in project files have the same syntax as in Ada, two consecutives hyphens through
the end of the line.

10.3.2 Packages

A project file may contain packages. The name of a package must be one of the identifiers
(case insensitive) from a predefined list, and a package with a given name may only appear
once in a project file. The predefined list includes the following packages:

118 GNAT User’s Guide for OpenVMS Alpha

e Naming

e Builder

e Compiler

e Binder

e Linker

e Finder

e Cross_Reference

e GNAT LIST
(The complete list of the package names and their attributes can be found in file
‘PRJ-ATTR. ADB’).

In its simplest form, a package may be empty:
project Simple is
package Builder is
end Builder;
end Simple;

A package may contain attribute declarations, variable declarations and case constructions,
as will be described below.

When there is ambiguity between a project name and a package name, the name always
designates the project. To avoid possible confusion, it is always a good idea to avoid naming
a project with one of the names allowed for packages or any name that starts with gnat.

10.3.3 Expressions

An expression is either a string expression or a string list expression.
A string expression is either a simple string expression or a compound string exrpression.

A simple string expression is one of the following:

A literal string; e.g."comm/my_proj.gpr"

A string-valued variable reference (see Section 10.3.5 [Variables], page 119)
A string-valued attribute reference (see Section 10.3.6 [Attributes|, page 120)

e An external reference (see Section 10.7 [External References in Project Files|, page 127)
A compound string expression is a concatenation of string expressions, using "&"
Path & "/" & File_Name & ".ADS"

A string list expression is either a simple string list expression or a compound string list
exXPTeSSion.

A simple string list expression is one of the following;:
e A parenthesized list of zero or more string expressions, separated by commas
File_Names := (File_Name, "GNAT.ADC", File_Name & ".orig");
Empty_List := O;
e A string list-valued variable reference
e A string list-valued attribute reference
A compound string list expression is the concatenation (using "&") of a simple string list

expression and an expression. Note that each term in a compound string list expression,
except the first, may be either a string expression or a string list expression.

Chapter 10: GNAT Project Manager 119

File_Name_List := () & File_Name; -- One string in this list
Extended_File_Name_List := File_Name_List & (File_Name & ".orig");
-- Two strings

Big_List := File_Name_List & Extended_File_Name_List;

-- Concatenation of two string lists: three strings

Illegal_List := "GNAT.ADC" & Extended_File_Name_List;

-- 1Illegal: must start with a string list

10.3.4 String Types

The value of a variable may be restricted to a list of string literals. The restricted list of string
literals is given in a string type declaration.

Here is an example of a string type declaration:
type 0S is ("NT, "nt", "Unix", "Linux", "other 0S");

Variables of a string type are called typed variables; all other variables are called untyped
variables. Typed variables are particularly useful in case constructions (see Section 10.3.8
[case Constructions], page 122).

A string type declaration starts with the reserved word type, followed by the name of the
string type (case-insensitive), followed by the reserved word is, followed by a parenthesized
list of one or more string literals separated by commas, followed by a semicolon.

The string literals in the list are case sensitive and must all be different. They may
include any graphic characters allowed in Ada, including spaces.

A string type may only be declared at the project level, not inside a package.

A string type may be referenced by its name if it has been declared in the same project
file, or by its project name, followed by a dot, followed by the string type name.

10.3.5 Variables

A variable may be declared at the project file level, or in a package. Here are some examples
of variable declarations:

This_0S : 0S := externmal ("0S"); -- a typed variable declaration
That_0S := "Linux"; -- an untyped variable declaration

A typed variable declaration includes the variable name, followed by a colon, followed by
the name of a string type, followed by :=, followed by a simple string expression.

An untyped variable declaration includes the variable name, followed by :=, followed by
an expression. Note that, despite the terminology, this form of "declaration" resembles
more an assignment than a declaration in Ada. It is a declaration in several senses:

e The variable name does not need to be defined previously

e The declaration establishes the kind (string versus string list) of the variable, and later
declarations of the same variable need to be consistent with this
A string variable declaration (typed or untyped) declares a variable whose value is a string.
This variable may be used as a string expression.

"readme.txt";
File_Name & ".saved";

File_Name
Saved_File_Name :

A string list variable declaration declares a variable whose value is a list of strings. The list
may contain any number (zero or more) of strings.

120 GNAT User’s Guide for OpenVMS Alpha

Empty_List := ();

List_With_One_Element := ("/STYLE=");

List_With_Two_Elements := List_With_One_Element & "/STYLE=GNAT";

Long_List := ("MAIN.ADA", "PACK1_.ADA", "PACK1.ADA", "PACK2_.ADA"
"PACK2.ADA", "UTIL_.ADA", "UTIL.ADA");

The same typed variable may not be declared more than once at project level, and it may
not be declared more than once in any package; it is in effect a constant or a readonly
variable.

The same untyped variable may be declared several times. In this case, the new value
replaces the old one, and any subsequent reference to the variable uses the new value. How-
ever, as noted above, if a variable has been declared as a string, all subsequent declarations
must give it a string value. Similarly, if a variable has been declared as a string list, all
subsequent declarations must give it a string list value.

A wvariable reference may take several forms:
e The simple variable name, for a variable in the current package (if any) or in the current
project
e A context name, followed by a dot, followed by the variable name.
A context may be one of the following:
e The name of an existing package in the current project
e The name of an imported project of the current project

e The name of an ancestor project (i.e., a project extended by the current project, either
directly or indirectly)

e An imported/parent project name, followed by a dot, followed by a package name

A variable reference may be used in an expression.

10.3.6 Attributes

A project (and its packages) may have attributes that define the project’s properties. Some
attributes have values that are strings; others have values that are string lists.

There are two categories of attributes: simple attributes and associative arrays (see
Section 10.3.7 [Associative Array Attributes|, page 122).

The names of the attributes are restricted; there is a list of project attributes, and a list
of package attributes for each package. The names are not case sensitive.

The project attributes are as follows (all are simple attributes):

Attribute Name Value
Source_Files string list
Source_Dirs string list
Source_List_File string
Object_Dir string
Exec_Dir string
Main string list
Languages string list
Library_Dir string

Library_Name string

Chapter 10: GNAT Project Manager

Library_Kind string
Library_Elaboration string
Library_Version string

The attributes for package Naming are as follows (see

121

Section 10.10 [Naming Schemes],

page 129):

Attribute Name Category Index Value

Specification_Suffix associative language name string
array

Implementation_Suffix associative language name string
array

Separate_Suffix simple n/a string
attribute

Casing simple n/a string
attribute

Dot_Replacement simple n/a string
attribute

Specification associative Ada unit name string
array

Implementation associative Ada unit name string
array

Specification_Exceptions associative language name string list
array

Implementation_Exceptions associative language name string list
array

The attributes for package Builder, Compiler, Binder, Linker, Cross_Reference, and
Finder are as follows (see Section 10.13.1.1 [Qualifiers and Project Files|, page 132).

Attribute Name Category Index Value

Default_Qualifiers associative language name string list
array

Qualifiers associative file name string list
array

In addition, package Builder has a single string attribute Local_Configuration_Pragmas
and package Builder has a single string attribute Global_Configuration_Pragmas.

The attribute for package Glide are not documented: they are for internal use only.

Each simple attribute has a default value: the empty string (for string-valued attributes)
and the empty list (for string list-valued attributes).

Similar to variable declarations, an attribute declaration defines a new value for an
attribute.

Examples of simple attribute declarations:
for Object_Dir use "objects";
for Source_Dirs use ("units", "test/drivers");
A simple attribute declaration starts with the reserved word for, followed by the name of
the attribute, followed by the reserved word use, followed by an expression (whose kind
depends on the attribute), followed by a semicolon.

Attributes may be referenced in expressions. The general form for such a reference
is <entity>’<attribute>: the entity for which the attribute is defined, followed by an

122 GNAT User’s Guide for OpenVMS Alpha

apostrophe, followed by the name of the attribute. For associative array attributes, a
litteral string between parentheses need to be supplied as index.
Examples are:

project’0Object_Dir
Naming’Dot_Replacement
Imported_Project’Source_Dirs
Imported_Project.Naming’Casing
Builder’Default_Qualifiers("Ada")

The entity may be:
e project for an attribute of the current project
e The name of an existing package of the current project
e The name of an imported project
e The name of a parent project (extended by the current project)
e An imported/parent project name, followed by a dot, followed by a package name

Example:
project Prj is
for Source_Dirs use project’Source_Dirs & "units";
for Source_Dirs use project’Source_Dirs & "test/drivers"
end Prj;
In the first attribute declaration, initially the attribute Source_Dirs has the default value:
an empty string list. After this declaration, Source_Dirs is a string list of one element:
"units". After the second attribute declaration Source_Dirs is a string list of two elements:
"units" and "test/drivers".

Note: this example is for illustration only. In practice, the project file would contain
only one attribute declaration:

for Source_Dirs use ("units", "test/drivers");

10.3.7 Associative Array Attributes

Some attributes are defined as associative arrays. An associative array may be regarded as a
function that takes a string as a parameter and delivers a string or string list value as its
result.

Here are some examples of associative array attribute declarations:

for Implementation ("main") use "MAIN.ADA";
for Qualifiers ("MAIN.ADA") use ("-v", "/REPORT_ERRORS=VERBOSE");
for Qualifiers ("MAIN.ADA") use Builder’Qualifiers ("MAIN.ADA") & "-g";

Like untyped variables and simple attributes, associative array attributes may be declared
several times. Each declaration supplies a new value for the attribute, replacing the previous
setting.

10.3.8 case Constructions

A case construction is used in a project file to effect conditional behavior. Here is a typical
example:

Chapter 10: GNAT Project Manager 123

project MyProj is
type 0S_Type is ("Linux", "Unix", "NT", "VMS");

0S : 0S_Type := external ("0S", "Linux");

package Compiler is
case 0S is
when "Linux" | "Unix" =>
for Default_Qualifiers ("Ada") use ("-gnath");
when "NT" =>
for Default_Qualifiers ("Ada") use ("/POLLING_ENABLE");
when others =>
end case;
end Compiler;
end MyProj;
The syntax of a case construction is based on the Ada case statement (although there is
no null construction for empty alternatives).

Following the reserved word case there is the case variable (a typed string variable), the
reserved word is, and then a sequence of one or more alternatives. Each alternative com-
prises the reserved word when, either a list of literal strings separated by the "|" character
or the reserved word others, and the "=>" token. Each literal string must belong to the
string type that is the type of the case variable. An others alternative, if present, must
occur last. The end case; sequence terminates the case construction.

After each =>, there are zero or more constructions. The only constructions allowed in
a case construction are other case constructions and attribute declarations. String type
declarations, variable declarations and package declarations are not allowed.

The value of the case variable is often given by an external reference (see Section 10.7
[External References in Project Files], page 127).

10.4 Objects and Sources in Project Files

Each project has exactly one object directory and one or more source directories. The source
directories must contain at least one source file, unless the project file explicitly specifies
that no source files are present (see Section 10.4.4 [Source File Names|, page 124).

10.4.1 Object Directory

The object directory for a project is the directory containing the compiler’s output (such as
‘ALT’ files and object files) for the project’s immediate sources. Note that for inherited
sources (when extending a parent project) the parent project’s object directory is used.

The object directory is given by the value of the attribute Object_Dir in the project
file.

for Object_Dir use "objects";

The attribute Object_Dir has a string value, the path name of the object directory. The
path name may be absolute or relative to the directory of the project file. This directory
must already exist, and be readable and writable.

By default, when the attribute Object_Dir is not given an explicit value or when its
value is the empty string, the object directory is the same as the directory containing the
project file.

124 GNAT User’s Guide for OpenVMS Alpha

10.4.2 Exec Directory

The exec directory for a project is the directory containing the executables for the project’s
main subprograms.
The exec directory is given by the value of the attribute Exec_Dir in the project file.
for Exec_Dir use "executables";
The attribute Exec_Dir has a string value, the path name of the exec directory. The path
name may be absolute or relative to the directory of the project file. This directory must
already exist, and be writable.

By default, when the attribute Exec_Dir is not given an explicit value or when its value
is the empty string, the exec directory is the same as the object directory of the project file.

10.4.3 Source Directories

The source directories of a project are specified by the project file attribute Source_Dirs.

This attribute’s value is a string list. If the attribute is not given an explicit value, then
there is only one source directory, the one where the project file resides.
A Source_Dirs attribute that is explicitly defined to be the empty list, as in

for Source_Dirs use ();
indicates that the project contains no source files.

Otherwise, each string in the string list designates one or more source directories.
for Source_Dirs use ("sources", "test/drivers");
If a string in the list ends with "/**", then the directory whose path name precedes the
two asterisks, as well as all its subdirectories (recursively), are source directories.
for Source_Dirs use ("/system/sources/*x");
Here the directory /system/sources and all of its subdirectories (recursively) are source
directories.

To specify that the source directories are the directory of the project file and all of its
subdirectories, you can declare Source_Dirs as follows:

for Source_Dirs use ("./*x");

Each of the source directories must exist and be readable.

10.4.4 Source File Names

In a project that contains source files, their names may be specified by the attributes Source_
Files (a string list) or Source_List_File (a string). Source file names never include any
directory information.

If the attribute Source_Files is given an explicit value, then each element of the list is
a source file name.
for Source_Files use ("MAIN.ADB");
for Source_Files use ("MAIN.ADB", "PACK1.ADS", "PACK2.ADB");
If the attribute Source_Files is not given an explicit value, but the attribute Source_
List_File is given a string value, then the source file names are contained in the text file

Chapter 10: GNAT Project Manager 125

whose path name (absolute or relative to the directory of the project file) is the value of
the attribute Source_List_File.

Each line in the file that is not empty or is not a comment contains a source file name.
A comment line starts with two hyphens.

for Source_List_File use "source_list.txt";

By default, if neither the attribute Source_Files nor the attribute Source_List_File is
given an explicit value, then each file in the source directories that conforms to the project’s
naming scheme (see Section 10.10 [Naming Schemes|, page 129) is an immediate source of
the project.

A warning is issued if both attributes Source_Files and Source_List_File are given
explicit values. In this case, the attribute Source_Files prevails.

Each source file name must be the name of one and only one existing source file in one
of the source directories.

A Source_Files attribute defined with an empty list as its value indicates that there
are no source files in the project.

Except for projects that are clearly specified as containing no Ada source files (Source_
Dirs or Source_Files specified as an empty list, or Languages specified without "Ada" in
the list)

for Source_Dirs use ();
for Source_Files use ();
for Languages use ("C", "C++");

a project must contain at least one immediate source.

Projects with no source files are useful as template packages (see Section 10.8 [Packages
in Project Files|, page 127) for other projects; in particular to define a package Naming (see
Section 10.10 [Naming Schemes], page 129).

10.5 Importing Projects

An immediate source of a project P may depend on source files that are neither immediate
sources of P nor in the predefined library. To get this effect, P must import the projects
that contain the needed source files.

with "projectl", "utilities.gpr";
with "/namings/apex.gpr";
project Main is

As can be seen in this example, the syntax for importing projects is similar to the syntax
for importing compilation units in Ada. However, project files use literal strings instead of
names, and the with clause identifies project files rather than packages.

Each literal string is the file name or path name (absolute or relative) of a project file.
If a string is simply a file name, with no path, then its location is determined by the project
path:

e If the environment variable ADA_PROJECT_PATH exists, then the project path includes
all the directories in this environment variable, plus the directory of the project file.

e If the environment variable ADA_PROJECT_PATH does not exist, then the project path
contains only one directory, namely the one where the project file is located.

126 GNAT User’s Guide for OpenVMS Alpha

If a relative pathname is used as in
with "tests/proj";

then the path is relative to the directory where the importing project file is located. Any
symbolic link will be fully resolved in the directory of the importing project file before the
imported project file is looked up.

3

When the with’ed project file name does not have an extension, the default is ‘. gpr’.
If a file with this extension is not found, then the file name as specified in the with clause
(no extension) will be used. In the above example, if a file projectl.gpr is found, then it
will be used; otherwise, if a file projectl exists then it will be used; if neither file exists,
this is an error.

A warning is issued if the name of the project file does not match the name of the project;
this check is case insensitive.

Any source file that is an immediate source of the imported project can be used by the
immediate sources of the importing project, and recursively. Thus if A imports B, and B
imports C, the immediate sources of A may depend on the immediate sources of C, even if
A does not import C explicitly. However, this is not recommended, because if and when B
ceases to import C, some sources in A will no longer compile.

A side effect of this capability is that cyclic dependences are not permitted: if A imports
B (directly or indirectly) then B is not allowed to import A.

10.6 Project Extension

During development of a large system, it is sometimes necessary to use modified versions of
some of the source files without changing the original sources. This can be achieved through
a facility known as project extension.

project Modified_Utilities extends "/baseline/utilities.gpr" is ...

The project file for the project being extended (the parent) is identified by the literal string
that follows the reserved word extends, which itself follows the name of the extending
project (the child).

By default, a child project inherits all the sources of its parent. However, inherited
sources can be overridden: a unit with the same name as one in the parent will hide the
original unit. Inherited sources are considered to be sources (but not immediate sources) of
the child project; see Section 10.3 [Project File Syntax], page 116.

An inherited source file retains any qualifiers specified in the parent project.

For example if the project Utilities contains the specification and the body of an
Ada package Util_I0, then the project Modified_Utilities can contain a new body for
package Util_I0. The original body of Util_IO0 will not be considered in program builds.
However, the package specification will still be found in the project Utilities.

A child project can have only one parent but it may import any number of other projects.

A project is not allowed to import directly or indirectly at the same time a child project
and any of its ancestors.

Chapter 10: GNAT Project Manager 127

10.7 External References in Project Files

A project file may contain references to external variables; such references are called external
references.

An external variable is either defined as part of the environment (an environment variable
in Unix, for example) or else specified on the command line via the ‘-Xvbl=value’ qualifier.
If both, then the command line value is used.

An external reference is denoted by the built-in function external, which returns a
string value. This function has two forms:

e external (external_variable_name)

e external (external_variable_name, default_value)

Each parameter must be a string literal. For example:

external ("USER")

external ("0S", "Linux")
In the form with one parameter, the function returns the value of the external variable given
as parameter. If this name is not present in the environment, then the returned value is an
empty string.

In the form with two string parameters, the second parameter is the value returned when
the variable given as the first parameter is not present in the environment. In the example
above, if "0S" is not the name of an environment variable and is not passed on the command
line, then the returned value will be "Linux".

An external reference may be part of a string expression or of a string list expression, to
define variables or attributes.

type Mode_Type is ("Debug", "Release");
Mode : Mode_Type := external ("MODE");
case Mode is

when "Debug" =>

10.8 Packages in Project Files

The package is the project file feature that defines the settings for project-aware tools. For
each such tool you can declare a corresponding package; the names for these packages are
preset (see Section 10.3.2 [Packages|, page 117) but are not case sensitive. A package may
contain variable declarations, attribute declarations, and case constructions.

project Proj is

package Builder is -- used by GNAT MAKE
for Default_Qualifiers ("Ada") use ("-v", "-g");
end Builder;
end Proj;

A package declaration starts with the reserved word package, followed by the package name
(case insensitive), followed by the reserved word is. It ends with the reserved word end,
followed by the package name, finally followed by a semi-colon.

Most of the packages have an attribute Default_Qualifiers. This attribute is an
associative array, and its value is a string list. The index of the associative array is the

128 GNAT User’s Guide for OpenVMS Alpha

name of a programming language (case insensitive). This attribute indicates the qualifier
or qualifiers to be used with the corresponding tool.

Some packages also have another attribute, Qualifiers, an associative array whose
value is a string list. The index is the name of a source file. This attribute indicates the
qualifier or qualifiers to be used by the corresponding tool when dealing with this specific
file.

Further information on these qualifier-related attributes is found in Section 10.13.1.1
[Qualifiers and Project Files], page 132.

A package may be declared as a renaming of another package; e.g., from the project file
for an imported project.

with "/global/apex.gpr";
project Example is
package Naming renames Apex.Naming;

ené.ﬁxample;
Packages that are renamed in other project files often come from project files that have no

sources: they are just used as templates. Any modification in the template will be reflected
automatically in all the project files that rename a package from the template.

In addition to the tool-oriented packages, you can also declare a package named Naming
to establish specialized source file naming conventions (see Section 10.10 [Naming Schemes],
page 129).

10.9 Variables from Imported Projects

An attribute or variable defined in an imported or parent project can be used in expressions in

the importing / extending project. Such an attribute or variable is prefixed with the name
of the project and (if relevant) the name of package where it is defined.

with "imported";

project Main extends "base" is
Varl := Imported.Var;
Var2

Base.Var & ".new";

package Builder is
for Default_Qualifiers ("Ada") use Imported.Builder.Ada_Qualifiers &
"/STYLE=GNAT" & "-v";
end Builder;

package Compiler is
for Default_Qualifiers ("Ada") use Base.Compiler.Ada_Qualifiers;
end Compiler;
end Main;

In this example:
e Varl is a copy of the variable Var defined in the project file ‘"imported.gpr"’

e the value of Var2 is a copy of the value of variable Var defined in the project file
‘base.gpr’, concatenated with ".new"

e attribute Default_Qualifiers ("Ada") in package Builder is a string list that in-
cludes in its value a copy of variable Ada_Qualifiers defined in the Builder package
in project file ‘imported.gpr’ plus two new elements: ‘"/STYLE=GNAT"’ and ‘"-v"’;

Chapter 10: GNAT Project Manager 129

e attribute Default_Qualifiers ("Ada") in package Compiler is a copy of the variable
Ada_Qualifiers defined in the Compiler package in project file ‘base.gpr’, the project
being extended.

10.10 Naming Schemes

Sometimes an Ada software system is ported from a foreign compilation environment to GNAT,
with file names that do not use the default GNAT conventions. Instead of changing all the
file names (which for a variety of reasons might not be possible), you can define the relevant
file naming scheme in the Naming package in your project file. For example, the following
package models the Apex file naming rules:

package Naming is
for Casing use "lowercase";
for Dot_Replacement use ".";
for Specification_Suffix ("Ada") wuse ".1.ADA";
for Implementation_Suffix ("Ada") use ".2.ADA";
end Naming;

You can define the following attributes in package Naming:
Casing This must be a string with one of the three values "lowercase", "uppercase"
or "mixedcase"; these strings are case insensitive.
If Casing is not specified, then the default is "lowercase".
Dot_Replacement
This must be a string whose value satisfies the following conditions:
e It must not be empty
e It cannot start or end with an alphanumeric character
e [t cannot be a single underscore
e [t cannot start with an underscore followed by an alphanumeric

e [t cannot contain a dot ’ .’ except if it the entire string is "."
If Dot _Replacement is not specified, then the default is "-".

Specification_Suffix
This is an associative array (indexed by the programming language name, case
insensitive) whose value is a string that must satisfy the following conditions:

e It must not be empty
e [t cannot start with an alphanumeric character

e [t cannot start with an underscore followed by an alphanumeric character
If Specification_Suffix ("Ada") is not specified, then the default is ".ADS".

Implementation_Suffix
This is an associative array (indexed by the programming language name, case
insensitive) whose value is a string that must satisfy the following conditions:

e [t must not be empty
e It cannot start with an alphanumeric character

e [t cannot start with an underscore followed by an alphanumeric character

130 GNAT User’s Guide for OpenVMS Alpha

e It cannot be a suffix of Specification_Suffix
If Implementation_Suffix ("Ada") is not specified, then the default is ".ADB".

Separate_Suffix
This must be a string whose value satisfies the same conditions as
Implementation_Suffix.

If Separate_Suffix ("Ada") is not specified, then it defaults to same value as
Implementation_Suffix ("Ada").

Specification
You can use the Specification attribute, an associative array, to define the
source file name for an individual Ada compilation unit’s spec. The array index
must be a string literal that identifies the Ada unit (case insensitive). The value
of this attribute must be a string that identifies the file that contains this unit’s
spec (case sensitive or insensitive depending on the operating system).
for Specification ("MyPack.MyChild") use "mypack.mychild.spec";

Implementation
You can use the Implementation attribute, an associative array, to define the
source file name for an individual Ada compilation unit’s body (possibly a
subunit). The array index must be a string literal that identifies the Ada unit
(case insensitive). The value of this attribute must be a string that identifies
the file that contains this unit’s body or subunit (case sensitive or insensitive
depending on the operating system).
for Implementation ("MyPack.MyChild") use "mypack.mychild.body";

10.11 Library Projects

Library projects are projects whose object code is placed in a library. (Note that this facility
is not yet supported on all platforms)

To create a library project, you need to define in its project file two project-level at-
tributes: Library_Name and Library_Dir. Additionally, you may define the library-related
attributes Library_Kind, Library_Version and Library_Elaboration.

The Library_Name attribute has a string value that must start with a letter and include
only letters and digits.

The Library_Dir attribute has a string value that designates the path (absolute or rel-
ative) of the directory where the library will reside. It must designate an existing directory,
and this directory needs to be different from the project’s object directory. It also needs to
be writable.

If both Library_Name and Library_Dir are specified and are legal, then the project file
defines a library project. The optional library-related attributes are checked only for such
project files.

The Library_Kind attribute has a string value that must be one of the following (case
insensitive): "static", "dynamic" or "relocatable". If this attribute is not specified, the
library is a static library. Otherwise, the library may be dynamic or relocatable. Depending
on the operating system, there may or may not be a distinction between dynamic and
relocatable libraries. For example, on Unix there is no such distinction.

Chapter 10: GNAT Project Manager 131

The Library_Version attribute has a string value whose interpretation is platform
dependent. On Unix, it is used only for dynamic/relocatable libraries as the internal name
of the library (the "soname"). If the library file name (built from the Library_Name) is
different from the Library_Version, then the library file will be a symbolic link to the
actual file whose name will be Library_Version.

Example (on Unix):

project Plib is

Version := "1";

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Kind use "relocatable";

for Library_Version use "libdummy.so." & Version;

end Plib;
Directory ‘lib_dir’ will contain the internal library file whose name will be
‘libdummy.so.1’; and ‘libdummy.so’ will be a symbolic link to ‘1ibdummy.so.1’.

When GNAT MAKE detects that a project file (not the main project file) is a library project
file, it will check all immediate sources of the project and rebuild the library if any of the
sources have been recompiled. All ‘ALI’ files will also be copied from the object directory
to the library directory. To build executables, GNAT MAKE will use the library rather than
the individual object files.

10.12 Qualifiers Related to Project Files

The following qualifiers are used by GNAT tools that support project files:

‘-Pproject’
Indicates the name of a project file. This project file will be parsed with the
verbosity indicated by ‘-vPx’, if any, and using the external references indicated
by ‘=X’ qualifiers, if any.
There must be only one ‘~P’ qualifier on the command line.

Since the Project Manager parses the project file only after all the qualifiers on
the command line are checked, the order of the qualifiers ‘-P’, ‘~Vpx’ or ‘-X’ is
not significant.

‘~Xname=value’
Indicates that external variable name has the value value. The Project Manager
will use this value for occurrences of external (name) when parsing the project
file.

If name or value includes a space, then name=value should be put between
quotes.

-X0S=NT

-X"user=John Doe"
Several ‘-X’ qualifiers can be used simultaneously. If several ‘-X’ qualifiers
specify the same name, only the last one is used.
An external variable specified with a ‘=X’ qualifier takes precedence over the
value of the same name in the environment.

132 GNAT User’s Guide for OpenVMS Alpha

-vPx’ Indicates the verbosity of the parsing of GNAT project files. ‘-vP0’ means
Default (no output for syntactically correct project files); ‘-~vP1’ means Medium;
‘-vP2’ means High. The default is Default. If several ‘-vPx’ qualifiers are
present, only the last one is used.

10.13 Tools Supporting Project Files

10.13.1 GNAT MAKE and Project Files

This section covers two topics related to GNAT MAKE and project files: defining qualifiers for
GNAT MAKE and for the tools that it invokes; and the use of the Main attribute.

10.13.1.1 Qualifiers and Project Files

For each of the packages Builder, Compiler, Binder, and Linker, you can specify a
Default_Qualifiers attribute, a Qualifiers attribute, or both; as their names imply,
these qualifier-related attributes affect which qualifiers are used for which files when GNAT
MAKE is invoked. As will be explained below, these package-contributed qualifiers precede
the qualifiers passed on the GNAT MAKE command line.

The Default_Qualifiers attribute is an associative array indexed by language name

(case insensitive) and returning a string list. For example:

package Compiler is

for Default_Qualifiers ("Ada") use ("/STYLE=", "-v");

end Compiler;
The Qualifiers attribute is also an associative array, indexed by a file name (which may
or may not be case sensitive, depending on the operating system) and returning a string
list. For example:

package Builder is
for Qualifiers ("MAIN1.ADB") use ("/OPTIMIZE=ALL");
for Qualifiers ("MAIN2.ADB") use ("-g");
end Builder;
For the Builder package, the file names should designate source files for main subprograms.
For the Binder and Linker packages, the file names should designate ‘ALI’ or source files for
main subprograms. In each case just the file name (without explicit extension) is acceptable.

For each tool used in a program build (GNAT MAKE, the compiler, the binder, and the
linker), its corresponding package contributes a set of qualifiers for each file on which the
tool is invoked, based on the qualifier-related attributes defined in the package. In particular,
the qualifiers that each of these packages contributes for a given file f comprise:

e the value of attribute Qualifiers (f), if it is specified in the package for the given
file,

e otherwise, the value of Default_Qualifiers ("Ada"), if it is specified in the package.

If neither of these attributes is defined in the package, then the package does not contribute
any qualifiers for the given file.

Chapter 10: GNAT Project Manager 133

When GNAT MAKE is invoked on a file, the qualifiers comprise two sets, in the following
order: those contributed for the file by the Builder package; and the qualifiers passed on
the command line.

When GNAT MAKE invokes a tool (compiler, binder, linker) on a file, the qualifiers passed
to the tool comprise three sets, in the following order:

1. the applicable qualifiers contributed for the file by the Builder package in the project
file supplied on the command line;

2. those contributed for the file by the package (in the relevant project file — see below)
corresponding to the tool; and

3. the applicable qualifiers passed on the command line.

The term applicable qualifiers reflects the fact that GNAT MAKE qualifiers may or may not be
passed to individual tools, depending on the individual qualifier.

GNAT MAKE may invoke the compiler on source files from different projects. The Project
Manager will use the appropriate project file to determine the Compiler package for each
source file being compiled. Likewise for the Binder and Linker packages.

As an example, consider the following package in a project file:
project Projl is
package Compiler is
for Default_Qualifiers ("Ada") use ("-g");
for Qualifiers ("A.ADB") use ("/OPTIMIZE=SOME");
for Qualifiers ("B.ADB") use ("/OPTIMIZE=ALL", "/STYLE=");
end Compiler;
end Proji;

If GNAT MAKE is invoked with this project file, and it needs to compile, say, the files ‘A.ADB’,
‘B.ADB’, and ‘C.ADB’, then ‘A.ADB’ will be compiled with the qualifier ‘/0PTIMIZE=SOME’,
‘B.ADB’ with qualifiers ‘/0PTIMIZE=ALL’ and ‘/STYLE=’, and ‘C.ADB’ with ‘-g’.

Another example illustrates the ordering of the qualifiers contributed by different pack-
ages:
project Proj2 is
package Builder is
for Qualifiers ("MAIN.ADB") use ("-g", "/OPTIMIZE=SOME", "-f");
end Builder;

package Compiler is
for Qualifiers ("MAIN.ADB") use ("/OPTIMIZE=ALL");
end Compiler;
end Proj2;

If you issue the command:
GNAT MAKE -PProj2 /OPTIMIZE=NONE main

then the compiler will be invoked on ‘MAIN.ADB’ with the following sequence of qualifiers
-g /OPTIMIZE=SOME /OPTIMIZE=ALL /OPTIMIZE=NONE

with the last ‘-0’ qualifier having precedence over the earlier ones; several other qualifiers
(such as ‘-c’) are added implicitly.

The qualifiers ‘-g’ and ‘/0PTIMIZE=SOME’ are contributed by package Builder,
‘/0PTIMIZE=ALL’ is contributed by the package Compiler and ‘/OPTIMIZE=NONE’ comes
from the command line.

The ‘-g’ qualifier will also be passed in the invocation of GNAT LINK.

A final example illustrates qualifier contributions from packages in different project files:

134 GNAT User’s Guide for OpenVMS Alpha

project Proj3 is
for Source_Files use ("PACK.ADS", "PACK.ADB");
package Compiler is
for Default_Qualifiers ("Ada") use ("/CHECKS=ASSERTIONS");
end Compiler;
end Proj3;
with "Proj3";
project Proj4 is
for Source_Files use ("FOO_MAIN.ADB", "BAR_MAIN.ADB");
package Builder is
for Qualifiers ("FOO_MAIN.ADB") use ("-s", "-g");
end Builder;
end Proj4;

-— Ada source file:
with Pack;
procedure Foo_Main is

end Foo_Main;
If the command is
GNAT MAKE -PProj4 FOO_MAIN.ADB /COMPILER_QUALIFIERS /CHECKS=0VERFLOW

then the qualifiers passed to the compiler for ‘FOO_MAIN.ADB’ are ‘-g’ (contributed
by the package Proj4.Builder) and ‘/CHECKS=0VERFLOW (passed on the command
line). When the imported package Pack is compiled, the qualifiers used are ‘-g’ from
Proj4.Builder, ‘/CHECKS=ASSERTIONS’ (contributed from package Proj3.Compiler, and
‘/CHECKS=0VERFLOW’ from the command line.

10.13.1.2 Project Files and Main Subprograms

When using a project file, you can invoke GNAT MAKE with several main subprograms, by speci-
fying their source files on the command line. Each of these needs to be an immediate source
file of the project.

GNAT MAKE -Pprj mainl main2 main3

When using a project file, you can also invoke GNAT MAKE without explicitly specifying any
main, and the effect depends on whether you have defined the Main attribute. This attribute
has a string list value, where each element in the list is the name of a source file (the file
extension is optional) containing a main subprogram.

If the Main attribute is defined in a project file as a non-empty string list and the qualifier
‘-u’ is not used on the command line, then invoking GNAT MAKE with this project file but
without any main on the command line is equivalent to invoking GNAT MAKE with all the file
names in the Main attribute on the command line.

Example:

project Prj is
for Main use ("maini", "main2", "main3");
end Prj;

With this project file, "GNAT MAKE -Pprj" is equivalent to "GNAT MAKE -Pprj mainl main2
main3".

When the project attribute Main is not specified, or is specified as an empty string list, or
when the qualifier ‘-u’ is used on the command line, then invoking GNAT MAKE with no main
on the command line will result in all immediate sources of the project file being checked,

Chapter 10: GNAT Project Manager 135

and potentially recompiled. Depending on the presence of the qualifier ‘-u’, sources from

other project files on which the immediate sources of the main project file depend are also
checked and potentially recompiled. In other words, the ‘-u’ qualifier is applied to all of
the immediate sources of themain project file.

10.13.2 The GNAT Driver and Project Files

A number of GNAT tools, other than GNAT MAKE are project-aware: GNAT BIND, GNAT FIND,
GNAT LINK, GNAT LIST and GNAT XREF. However, none of these tools can be invoked directly
with a project file qualifier (-P). They need to be invoke through the gnat driver.

The gnat driver is a front-end that accepts a number of commands and call the corre-
sponding tool. It has been designed initially for VMS to convert VMS style qualifiers to
Unix style qualifiers, but it is now available to all the GNAT supported platforms.

On non VMS platforms, the gnat driver accepts the following commands (case insensi-

tive):

e BIND to invoke GNAT BIND

e CHOP to invoke GNAT CHOP

e COMP or COMPILE to invoke the compiler

e ELIM to invoke GNAT ELIM

e FIND to invoke GNAT FIND

e KR or KRUNCH to invoke GNAT KRUNCH

e LINK to invoke GNAT LINK

e LS or LIST to invoke GNAT LIST

e MAKE to invoke GNAT MAKE

e NAME to invoke gnatname

e PREP or PREPROCESS to invoke GNAT PREPROCESS

e PSTA or STANDARD to invoke GNAT STANDARD

e STUB to invoke GNAT STUB

e XREF to invoke GNAT XREF

Note that the compiler is invoked using the command GNAT MAKE -f -u.

Following the command, you may put qualifiers and arguments for the invoked tool.

gnat bind -C MAIN.ALI
gnat ls -a main
gnat chop foo.txt

In addition, for command BIND, FIND, LS or LIST, LINK and XREF, the project file
related qualifiers (=P, -X and -vPx) may be used in addition to the qualifiers of the invoking
tool.

For each of these command, there is possibly a package in the main project that corresponds
to the invoked tool.

e package Binder for command BIND (invoking GNAT BIND)
e package Finder for command FIND (invoking GNAT FIND)
e package GNAT LIST for command LS or LIST (invoking GNAT LIST)

136 GNAT User’s Guide for OpenVMS Alpha

e package Linker for command LINK (invoking GNAT LINK)
e package Cross_Reference for command XREF (invoking GNAT LINK)

Package GNAT LIST has a unique attribute Qualifiers, a simple variable with a string list
value. It contains qualifiers for the invocation of GNAT LIST.
project Projl is
package GNAT LIST is
for Qualifiers use ("-a", "-v");
end GNAT LIST;
end Proji;
All other packages contains a qualifier Default_Qualifiers, an associative array, indexed
by the programming language (case insensitive) and having a string list value. Default_
Qualifiers ("Ada") contains the qualifiers for the invocation of the tool corresponding to
the package.

project Proj is
for Source_Dirs use ("./**");

package GNAT LIST is
for Qualifiers use ("-a", "-v");
end GNAT LIST;

package Binder is
for Default_Qualifiers ("Ada") use ("-C", "-e");
end Binder;

package Linker is
for Default_Qualifiers ("Ada") use ("-C");
end Linker;

package Finder is
for Default_Qualifiers ("Ada") use ("-a", "-f");
end Finder;

package Cross_Reference is
for Default_Qualifiers ("Ada") use ("-a", "-f", "-4", "-u");
end Cross_Reference;
end Proj;
With the above project file, commands such as

gnat 1ls -Pproj main

gnat xref -Pproj main

gnat bind -Pproj MAIN.ALI
will set up the environment properly and invoke the tool with the qualifiers found in the
package corresponding to the tool.

10.14 An Extended Example

Suppose that we have two programs, progl and prog2, with the sources in the respective di-
rectories. We would like to build them with a single GNAT MAKE command, and we would
like to place their object files into ‘.build’ subdirectories of the source directories. Fur-
thermore, we would like to have to have two separate subdirectories in ‘.build’ — ‘release’

Chapter 10: GNAT Project Manager 137

and ‘debug’ — which will contain the object files compiled with different set of compilation
flags.

In other words, we have the following structure:
main

|- progil

| |- .build

| | debug

| | release

|- prog2

|- .build

| debug
| release

Here are the project files that we need to create in a directory ‘main’ to maintain this
structure:

1. We create a Common project with a package Compiler that specifies the compilation
qualifiers:

File "common.gpr":
project Common is

for Source_Dirs use (); -- No source files

type Build_Type is ("release", "debug");
Build : Build_Type := External ("BUILD", "debug");
package Compiler is
case Build is
when "release" =>
for Default_Qualifiers ("Ada") use ("/OPTIMIZE=ALL");

when "debug" «=>
for Default_Qualifiers ("Ada") use ("-g");
end case;

end Compiler;

end Common;
2. We create separate projects for the two programs:
File "progl.gpr":

with "common";
project Progi is

for Source_Dirs use ("progi");
for Object_Dir wuse "progl/.build/" & Common.Build;

package Compiler renames Common.Compiler;

end Progl;
File "prog2.gpr":

with "common";
project Prog?2 is

for Source_Dirs use ("prog2");
for Object_Dir wuse "prog2/.build/" & Common.Build;

package Compiler renames Common.Compiler;

end Prog2;

138 GNAT User’s Guide for OpenVMS Alpha

3. We create a wrapping project Main:

File "main.gpr":

with "common";
with "progl";
with "prog2";
project Main is

package Compiler renames Common.Compiler;

end Main;

4. Finally we need to create a dummy procedure that withs (either explicitly or implicitly)
all the sources of our two programs.

Now we can build the programs using the command
GNAT MAKE -Pmain dummy

for the Debug mode, or
GNAT MAKE -Pmain -XBUILD=release

for the Release mode.

10.15 Project File Complete Syntax

project ::=
context_clause project_declaration

context_clause ::=
{with_clause}

with_clause ::=
with literal_string { , literal_string } ;

project_declaration ::=
project <project_>simple_name [extends literal_string] is
{declarative_item}
end <project_>simple_name;

declarative_item ::=
package_declaration |
typed_string_declaration |
other_declarative_item

package_declaration ::=
package <package_>simple_name package_completion

package_completion ::=
package_body | package_renaming

package body ::=
is
{other_declarative_item}
end <package_>simple_name ;

package_renaming ::==
renames <project_>simple_name.<package_>simple_name ;

Chapter 10: GNAT Project Manager 139

typed_string_declaration ::=
type <typed_string_>_simple_name is
(literal_string {, literal_string});

other_declarative_item ::=
attribute_declaration |
typed_variable_declaration
variable_declaration |
case_construction

attribute_declaration ::=
for attribute use expression ;

attribute ::=
<simple_attribute_>simple_name |
<associative_array_attribute_>simple_name (literal_string)

typed_variable_declaration ::=
<typed_variable_>simple_name : <typed_string_>name := string_expression ;

variable_declaration ::=
<variable_>simple_name := expression;

expression ::=
term {& term}

term ::=
literal_string |
string_list |
<variable_>name |
external_value |
attribute_reference

literal_string ::=
(same as Ada)

string_list ::=
(<string_>expression { , <string_>expression 1})

external_value ::=
external (literal_string [, literal_string])

attribute_reference ::=
attribute_parent ’ <simple_attribute_>simple_name [(literal_string)]

attribute_parent ::=
project |
<project_or_package>simple_name |
<project_>simple_name . <package_>simple_name

case_construction ::=
case <typed_variable_>name is
{case_item}
end case ;

case_item ::=
when discrete_choice_list => {case_construction | attribute_declaration}

140

discrete_choice_list ::=
literal_string {| literal_string}

name ::=
simple_name {. simple_name}

simple_name ::=
identifier (same as Ada)

GNAT User’s Guide for OpenVMS Alpha

Chapter 11: Elaboration Order Handling in GNAT 141

11 Elaboration Order Handling in GNAT

This chapter describes the handling of elaboration code in Ada 95 and in GNAT, and dis-
cusses how the order of elaboration of program units can be controlled in GNAT, either
automatically or with explicit programming features.

11.1 Elaboration Code in Ada 95

Ada 95 provides rather general mechanisms for executing code at elaboration time, that is to
say before the main program starts executing. Such code arises in three contexts:

Initializers for variables.
Variables declared at the library level, in package specs or bodies, can require
initialization that is performed at elaboration time, as in:

[Sqrt_Half : Float := Sqrt (0.5); }

Package initialization code
Code in a BEGIN-END section at the outer level of a package body is executed
as part of the package body elaboration code.

Library level task allocators
Tasks that are declared using task allocators at the library level start executing
immediately and hence can execute at elaboration time.

Subprogram calls are possible in any of these contexts, which means that any arbitrary part
of the program may be executed as part of the elaboration code. It is even possible to write
a program which does all its work at elaboration time, with a null main program, although
stylistically this would usually be considered an inappropriate way to structure a program.

An important concern arises in the context of elaboration code: we have to be sure that
it is executed in an appropriate order. What we have is a series of elaboration code sections,
potentially one section for each unit in the program. It is important that these execute in
the correct order. Correctness here means that, taking the above example of the declaration
of Sqrt_Half, if some other piece of elaboration code references Sqrt_Half, then it must
run after the section of elaboration code that contains