Actual source code: arpack.c

slepc-3.19.0 2023-03-31
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    This file implements a wrapper to the ARPACK package
 12: */

 14: #include <slepc/private/epsimpl.h>
 15: #include "arpack.h"

 17: PetscErrorCode EPSSetUp_ARPACK(EPS eps)
 18: {
 19:   PetscInt       ncv;
 20:   EPS_ARPACK     *ar = (EPS_ARPACK*)eps->data;

 22:   PetscFunctionBegin;
 23:   EPSCheckDefinite(eps);
 24:   if (eps->ncv!=PETSC_DEFAULT) {
 25:     PetscCheck(eps->ncv>=eps->nev+2,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The value of ncv must be at least nev+2");
 26:   } else eps->ncv = PetscMin(PetscMax(20,2*eps->nev+1),eps->n); /* set default value of ncv */
 27:   if (eps->mpd!=PETSC_DEFAULT) PetscCall(PetscInfo(eps,"Warning: parameter mpd ignored\n"));
 28:   if (eps->max_it==PETSC_DEFAULT) eps->max_it = PetscMax(300,(PetscInt)(2*eps->n/eps->ncv));
 29:   if (!eps->which) PetscCall(EPSSetWhichEigenpairs_Default(eps));
 30:   PetscCheck(eps->which!=EPS_ALL,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
 31:   PetscCheck(eps->which!=EPS_WHICH_USER,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support user-defined ordering of eigenvalues");
 32:   EPSCheckUnsupported(eps,EPS_FEATURE_BALANCE | EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_CONVERGENCE | EPS_FEATURE_STOPPING | EPS_FEATURE_TWOSIDED);
 33:   EPSCheckIgnored(eps,EPS_FEATURE_EXTRACTION);

 35:   ncv = eps->ncv;
 36: #if defined(PETSC_USE_COMPLEX)
 37:   PetscCall(PetscFree(ar->rwork));
 38:   PetscCall(PetscMalloc1(ncv,&ar->rwork));
 39:   ar->lworkl = 3*ncv*ncv+5*ncv;
 40:   PetscCall(PetscFree(ar->workev));
 41:   PetscCall(PetscMalloc1(3*ncv,&ar->workev));
 42: #else
 43:   if (eps->ishermitian) {
 44:     ar->lworkl = ncv*(ncv+8);
 45:   } else {
 46:     ar->lworkl = 3*ncv*ncv+6*ncv;
 47:     PetscCall(PetscFree(ar->workev));
 48:     PetscCall(PetscMalloc1(3*ncv,&ar->workev));
 49:   }
 50: #endif
 51:   PetscCall(PetscFree(ar->workl));
 52:   PetscCall(PetscMalloc1(ar->lworkl,&ar->workl));
 53:   PetscCall(PetscFree(ar->select));
 54:   PetscCall(PetscMalloc1(ncv,&ar->select));
 55:   PetscCall(PetscFree(ar->workd));
 56:   PetscCall(PetscMalloc1(3*eps->nloc,&ar->workd));

 58:   PetscCall(EPSAllocateSolution(eps,0));
 59:   PetscCall(EPS_SetInnerProduct(eps));
 60:   PetscCall(EPSSetWorkVecs(eps,2));
 61:   PetscFunctionReturn(PETSC_SUCCESS);
 62: }

 64: PetscErrorCode EPSSolve_ARPACK(EPS eps)
 65: {
 66:   EPS_ARPACK     *ar = (EPS_ARPACK*)eps->data;
 67:   char           bmat[1],howmny[] = "A";
 68:   const char     *which;
 69:   PetscInt       n,iparam[11],ipntr[14],ido,info,nev,ncv,rvec;
 70: #if !defined(PETSC_HAVE_MPIUNI) && !defined(PETSC_HAVE_MSMPI)
 71:   MPI_Fint       fcomm;
 72: #endif
 73:   PetscScalar    sigmar,*pV,*resid;
 74:   Vec            x,y,w = eps->work[0];
 75:   Mat            A;
 76:   PetscBool      isSinv,isShift;
 77: #if !defined(PETSC_USE_COMPLEX)
 78:   PetscScalar    sigmai = 0.0;
 79: #endif

 81:   PetscFunctionBegin;
 82:   nev = eps->nev;
 83:   ncv = eps->ncv;
 84: #if !defined(PETSC_HAVE_MPIUNI) && !defined(PETSC_HAVE_MSMPI)
 85:   fcomm = MPI_Comm_c2f(PetscObjectComm((PetscObject)eps));
 86: #endif
 87:   n = eps->nloc;
 88:   PetscCall(EPSGetStartVector(eps,0,NULL));
 89:   PetscCall(BVSetActiveColumns(eps->V,0,0));  /* just for deflation space */
 90:   PetscCall(BVCopyVec(eps->V,0,eps->work[1]));
 91:   PetscCall(BVGetArray(eps->V,&pV));
 92:   PetscCall(VecGetArray(eps->work[1],&resid));

 94:   ido  = 0;            /* first call to reverse communication interface */
 95:   info = 1;            /* indicates an initial vector is provided */
 96:   iparam[0] = 1;       /* use exact shifts */
 97:   iparam[2] = eps->max_it;  /* max Arnoldi iterations */
 98:   iparam[3] = 1;       /* blocksize */
 99:   iparam[4] = 0;       /* number of converged Ritz values */

101:   /*
102:      Computational modes ([]=not supported):
103:             symmetric    non-symmetric    complex
104:         1     1  'I'        1  'I'         1  'I'
105:         2     3  'I'        3  'I'         3  'I'
106:         3     2  'G'        2  'G'         2  'G'
107:         4     3  'G'        3  'G'         3  'G'
108:         5   [ 4  'G' ]    [ 3  'G' ]
109:         6   [ 5  'G' ]    [ 4  'G' ]
110:    */
111:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSINVERT,&isSinv));
112:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSHIFT,&isShift));
113:   PetscCall(STGetShift(eps->st,&sigmar));
114:   PetscCall(STGetMatrix(eps->st,0,&A));
115:   PetscCall(MatCreateVecsEmpty(A,&x,&y));

117:   if (isSinv) {
118:     /* shift-and-invert mode */
119:     iparam[6] = 3;
120:     if (eps->ispositive) bmat[0] = 'G';
121:     else bmat[0] = 'I';
122:   } else if (isShift && eps->ispositive) {
123:     /* generalized shift mode with B positive definite */
124:     iparam[6] = 2;
125:     bmat[0] = 'G';
126:   } else {
127:     /* regular mode */
128:     PetscCheck(!eps->ishermitian || !eps->isgeneralized,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Spectral transformation not supported by ARPACK hermitian solver");
129:     iparam[6] = 1;
130:     bmat[0] = 'I';
131:   }

133: #if !defined(PETSC_USE_COMPLEX)
134:   if (eps->ishermitian) {
135:     switch (eps->which) {
136:       case EPS_TARGET_MAGNITUDE:
137:       case EPS_LARGEST_MAGNITUDE:  which = "LM"; break;
138:       case EPS_SMALLEST_MAGNITUDE: which = "SM"; break;
139:       case EPS_TARGET_REAL:
140:       case EPS_LARGEST_REAL:       which = "LA"; break;
141:       case EPS_SMALLEST_REAL:      which = "SA"; break;
142:       default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Wrong value of eps->which");
143:     }
144:   } else {
145: #endif
146:     switch (eps->which) {
147:       case EPS_TARGET_MAGNITUDE:
148:       case EPS_LARGEST_MAGNITUDE:  which = "LM"; break;
149:       case EPS_SMALLEST_MAGNITUDE: which = "SM"; break;
150:       case EPS_TARGET_REAL:
151:       case EPS_LARGEST_REAL:       which = "LR"; break;
152:       case EPS_SMALLEST_REAL:      which = "SR"; break;
153:       case EPS_TARGET_IMAGINARY:
154:       case EPS_LARGEST_IMAGINARY:  which = "LI"; break;
155:       case EPS_SMALLEST_IMAGINARY: which = "SI"; break;
156:       default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Wrong value of eps->which");
157:     }
158: #if !defined(PETSC_USE_COMPLEX)
159:   }
160: #endif

162:   do {

164: #if !defined(PETSC_USE_COMPLEX)
165:     if (eps->ishermitian) {
166:       PetscStackCallExternalVoid("ARPACKsaupd",ARPACKsaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&n,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
167:     } else {
168:       PetscStackCallExternalVoid("ARPACKnaupd",ARPACKnaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&n,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
169:     }
170: #else
171:     PetscStackCallExternalVoid("ARPACKnaupd",ARPACKnaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&n,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,ar->rwork,&info));
172: #endif

174:     if (ido == -1 || ido == 1 || ido == 2) {
175:       if (ido == 1 && iparam[6] == 3 && bmat[0] == 'G') PetscCall(VecPlaceArray(x,&ar->workd[ipntr[2]-1])); /* special case for shift-and-invert with B semi-positive definite*/
176:       else PetscCall(VecPlaceArray(x,&ar->workd[ipntr[0]-1]));
177:       PetscCall(VecPlaceArray(y,&ar->workd[ipntr[1]-1]));

179:       if (ido == -1) {
180:         /* Y = OP * X for for the initialization phase to
181:            force the starting vector into the range of OP */
182:         PetscCall(STApply(eps->st,x,y));
183:       } else if (ido == 2) {
184:         /* Y = B * X */
185:         PetscCall(BVApplyMatrix(eps->V,x,y));
186:       } else { /* ido == 1 */
187:         if (iparam[6] == 3 && bmat[0] == 'G') {
188:           /* Y = OP * X for shift-and-invert with B semi-positive definite */
189:           PetscCall(STMatSolve(eps->st,x,y));
190:         } else if (iparam[6] == 2) {
191:           /* X=A*X Y=B^-1*X for shift with B positive definite */
192:           PetscCall(MatMult(A,x,y));
193:           if (sigmar != 0.0) {
194:             PetscCall(BVApplyMatrix(eps->V,x,w));
195:             PetscCall(VecAXPY(y,sigmar,w));
196:           }
197:           PetscCall(VecCopy(y,x));
198:           PetscCall(STMatSolve(eps->st,x,y));
199:         } else {
200:           /* Y = OP * X */
201:           PetscCall(STApply(eps->st,x,y));
202:         }
203:         PetscCall(BVOrthogonalizeVec(eps->V,y,NULL,NULL,NULL));
204:       }

206:       PetscCall(VecResetArray(x));
207:       PetscCall(VecResetArray(y));
208:     } else PetscCheck(ido==99,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Internal error in ARPACK reverse communication interface (ido=%" PetscInt_FMT ")",ido);

210:   } while (ido != 99);

212:   eps->nconv = iparam[4];
213:   eps->its = iparam[2];

215:   PetscCheck(info!=3,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"No shift could be applied in xxAUPD.\nTry increasing the size of NCV relative to NEV");
216:   PetscCheck(info==0 || info==1,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error reported by ARPACK subroutine xxAUPD (%" PetscInt_FMT ")",info);

218:   rvec = PETSC_TRUE;

220:   if (eps->nconv > 0) {
221: #if !defined(PETSC_USE_COMPLEX)
222:     if (eps->ishermitian) {
223:       PetscStackCallExternalVoid("ARPACKseupd",ARPACKseupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,pV,&n,&sigmar,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&n,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
224:     } else {
225:       PetscStackCallExternalVoid("ARPACKneupd",ARPACKneupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,eps->eigi,pV,&n,&sigmar,&sigmai,ar->workev,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&n,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
226:     }
227: #else
228:     PetscStackCallExternalVoid("ARPACKneupd",ARPACKneupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,pV,&n,&sigmar,ar->workev,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&n,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,ar->rwork,&info));
229: #endif
230:     PetscCheck(info==0,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error reported by ARPACK subroutine xxEUPD (%" PetscInt_FMT ")",info);
231:   }

233:   PetscCall(BVRestoreArray(eps->V,&pV));
234:   PetscCall(VecRestoreArray(eps->work[1],&resid));
235:   if (eps->nconv >= eps->nev) eps->reason = EPS_CONVERGED_TOL;
236:   else eps->reason = EPS_DIVERGED_ITS;

238:   PetscCall(VecDestroy(&x));
239:   PetscCall(VecDestroy(&y));
240:   PetscFunctionReturn(PETSC_SUCCESS);
241: }

243: PetscErrorCode EPSBackTransform_ARPACK(EPS eps)
244: {
245:   PetscBool      isSinv;

247:   PetscFunctionBegin;
248:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSINVERT,&isSinv));
249:   if (!isSinv) PetscCall(EPSBackTransform_Default(eps));
250:   PetscFunctionReturn(PETSC_SUCCESS);
251: }

253: PetscErrorCode EPSReset_ARPACK(EPS eps)
254: {
255:   EPS_ARPACK     *ar = (EPS_ARPACK*)eps->data;

257:   PetscFunctionBegin;
258:   PetscCall(PetscFree(ar->workev));
259:   PetscCall(PetscFree(ar->workl));
260:   PetscCall(PetscFree(ar->select));
261:   PetscCall(PetscFree(ar->workd));
262: #if defined(PETSC_USE_COMPLEX)
263:   PetscCall(PetscFree(ar->rwork));
264: #endif
265:   PetscFunctionReturn(PETSC_SUCCESS);
266: }

268: PetscErrorCode EPSDestroy_ARPACK(EPS eps)
269: {
270:   PetscFunctionBegin;
271:   PetscCall(PetscFree(eps->data));
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: SLEPC_EXTERN PetscErrorCode EPSCreate_ARPACK(EPS eps)
276: {
277:   EPS_ARPACK     *ctx;

279:   PetscFunctionBegin;
280:   PetscCall(PetscNew(&ctx));
281:   eps->data = (void*)ctx;

283:   eps->ops->solve          = EPSSolve_ARPACK;
284:   eps->ops->setup          = EPSSetUp_ARPACK;
285:   eps->ops->setupsort      = EPSSetUpSort_Basic;
286:   eps->ops->destroy        = EPSDestroy_ARPACK;
287:   eps->ops->reset          = EPSReset_ARPACK;
288:   eps->ops->backtransform  = EPSBackTransform_ARPACK;
289:   PetscFunctionReturn(PETSC_SUCCESS);
290: }