Actual source code: test4.c
slepc-3.19.0 2023-03-31
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test the RII solver with a user-provided KSP.\n\n"
12: "This is a simplified version of ex20.\n"
13: "The command line options are:\n"
14: " -n <n>, where <n> = number of grid subdivisions.\n";
16: /*
17: Solve 1-D PDE
18: -u'' = lambda*u
19: on [0,1] subject to
20: u(0)=0, u'(1)=u(1)*lambda*kappa/(kappa-lambda)
21: */
23: #include <slepcnep.h>
25: /*
26: User-defined routines
27: */
28: PetscErrorCode FormFunction(NEP,PetscScalar,Mat,Mat,void*);
29: PetscErrorCode FormJacobian(NEP,PetscScalar,Mat,void*);
31: /*
32: User-defined application context
33: */
34: typedef struct {
35: PetscScalar kappa; /* ratio between stiffness of spring and attached mass */
36: PetscReal h; /* mesh spacing */
37: } ApplicationCtx;
39: int main(int argc,char **argv)
40: {
41: NEP nep;
42: KSP ksp;
43: PC pc;
44: Mat F,J;
45: ApplicationCtx ctx;
46: PetscInt n=128,lag,its;
47: PetscBool terse,flg,cct,herm;
48: PetscReal thres;
50: PetscFunctionBeginUser;
51: PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
52: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
53: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Nonlinear Eigenproblem, n=%" PetscInt_FMT "\n\n",n));
54: ctx.h = 1.0/(PetscReal)n;
55: ctx.kappa = 1.0;
57: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
58: Create a standalone KSP with appropriate settings
59: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
61: PetscCall(KSPCreate(PETSC_COMM_WORLD,&ksp));
62: PetscCall(KSPSetType(ksp,KSPBCGS));
63: PetscCall(KSPGetPC(ksp,&pc));
64: PetscCall(PCSetType(pc,PCBJACOBI));
65: PetscCall(KSPSetFromOptions(ksp));
67: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
68: Prepare nonlinear eigensolver context
69: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
71: PetscCall(NEPCreate(PETSC_COMM_WORLD,&nep));
73: /* Create Function and Jacobian matrices; set evaluation routines */
74: PetscCall(MatCreate(PETSC_COMM_WORLD,&F));
75: PetscCall(MatSetSizes(F,PETSC_DECIDE,PETSC_DECIDE,n,n));
76: PetscCall(MatSetFromOptions(F));
77: PetscCall(MatSeqAIJSetPreallocation(F,3,NULL));
78: PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
79: PetscCall(MatSetUp(F));
80: PetscCall(NEPSetFunction(nep,F,F,FormFunction,&ctx));
82: PetscCall(MatCreate(PETSC_COMM_WORLD,&J));
83: PetscCall(MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,n,n));
84: PetscCall(MatSetFromOptions(J));
85: PetscCall(MatSeqAIJSetPreallocation(J,3,NULL));
86: PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
87: PetscCall(MatSetUp(J));
88: PetscCall(NEPSetJacobian(nep,J,FormJacobian,&ctx));
90: PetscCall(NEPSetType(nep,NEPRII));
91: PetscCall(NEPRIISetKSP(nep,ksp));
92: PetscCall(NEPRIISetMaximumIterations(nep,6));
93: PetscCall(NEPRIISetConstCorrectionTol(nep,PETSC_TRUE));
94: PetscCall(NEPRIISetHermitian(nep,PETSC_TRUE));
95: PetscCall(NEPSetFromOptions(nep));
97: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
98: Solve the eigensystem
99: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
101: PetscCall(NEPSolve(nep));
102: PetscCall(PetscObjectTypeCompare((PetscObject)nep,NEPRII,&flg));
103: if (flg) {
104: PetscCall(NEPRIIGetMaximumIterations(nep,&its));
105: PetscCall(NEPRIIGetLagPreconditioner(nep,&lag));
106: PetscCall(NEPRIIGetDeflationThreshold(nep,&thres));
107: PetscCall(NEPRIIGetConstCorrectionTol(nep,&cct));
108: PetscCall(NEPRIIGetHermitian(nep,&herm));
109: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Maximum inner iterations of RII is %" PetscInt_FMT "\n",its));
110: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Preconditioner rebuilt every %" PetscInt_FMT " iterations\n",lag));
111: if (thres>0.0) PetscCall(PetscPrintf(PETSC_COMM_WORLD," Using deflation threshold=%g\n",(double)thres));
112: if (cct) PetscCall(PetscPrintf(PETSC_COMM_WORLD," Using a constant correction tolerance\n"));
113: if (herm) PetscCall(PetscPrintf(PETSC_COMM_WORLD," Hermitian version of scalar equation\n"));
114: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n"));
115: }
117: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
118: Display solution and clean up
119: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
121: /* show detailed info unless -terse option is given by user */
122: PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
123: if (terse) PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
124: else {
125: PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
126: PetscCall(NEPConvergedReasonView(nep,PETSC_VIEWER_STDOUT_WORLD));
127: PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
128: PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
129: }
131: PetscCall(NEPDestroy(&nep));
132: PetscCall(KSPDestroy(&ksp));
133: PetscCall(MatDestroy(&F));
134: PetscCall(MatDestroy(&J));
135: PetscCall(SlepcFinalize());
136: return 0;
137: }
139: /* ------------------------------------------------------------------- */
140: /*
141: FormFunction - Computes Function matrix T(lambda)
143: Input Parameters:
144: . nep - the NEP context
145: . lambda - the scalar argument
146: . ctx - optional user-defined context, as set by NEPSetFunction()
148: Output Parameters:
149: . fun - Function matrix
150: . B - optionally different preconditioning matrix
151: */
152: PetscErrorCode FormFunction(NEP nep,PetscScalar lambda,Mat fun,Mat B,void *ctx)
153: {
154: ApplicationCtx *user = (ApplicationCtx*)ctx;
155: PetscScalar A[3],c,d;
156: PetscReal h;
157: PetscInt i,n,j[3],Istart,Iend;
158: PetscBool FirstBlock=PETSC_FALSE,LastBlock=PETSC_FALSE;
160: PetscFunctionBeginUser;
161: /*
162: Compute Function entries and insert into matrix
163: */
164: PetscCall(MatGetSize(fun,&n,NULL));
165: PetscCall(MatGetOwnershipRange(fun,&Istart,&Iend));
166: if (Istart==0) FirstBlock=PETSC_TRUE;
167: if (Iend==n) LastBlock=PETSC_TRUE;
168: h = user->h;
169: c = user->kappa/(lambda-user->kappa);
170: d = n;
172: /*
173: Interior grid points
174: */
175: for (i=(FirstBlock? Istart+1: Istart);i<(LastBlock? Iend-1: Iend);i++) {
176: j[0] = i-1; j[1] = i; j[2] = i+1;
177: A[0] = A[2] = -d-lambda*h/6.0; A[1] = 2.0*(d-lambda*h/3.0);
178: PetscCall(MatSetValues(fun,1,&i,3,j,A,INSERT_VALUES));
179: }
181: /*
182: Boundary points
183: */
184: if (FirstBlock) {
185: i = 0;
186: j[0] = 0; j[1] = 1;
187: A[0] = 2.0*(d-lambda*h/3.0); A[1] = -d-lambda*h/6.0;
188: PetscCall(MatSetValues(fun,1,&i,2,j,A,INSERT_VALUES));
189: }
191: if (LastBlock) {
192: i = n-1;
193: j[0] = n-2; j[1] = n-1;
194: A[0] = -d-lambda*h/6.0; A[1] = d-lambda*h/3.0+lambda*c;
195: PetscCall(MatSetValues(fun,1,&i,2,j,A,INSERT_VALUES));
196: }
198: /*
199: Assemble matrix
200: */
201: PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
202: PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
203: if (fun != B) {
204: PetscCall(MatAssemblyBegin(fun,MAT_FINAL_ASSEMBLY));
205: PetscCall(MatAssemblyEnd(fun,MAT_FINAL_ASSEMBLY));
206: }
207: PetscFunctionReturn(PETSC_SUCCESS);
208: }
210: /* ------------------------------------------------------------------- */
211: /*
212: FormJacobian - Computes Jacobian matrix T'(lambda)
214: Input Parameters:
215: . nep - the NEP context
216: . lambda - the scalar argument
217: . ctx - optional user-defined context, as set by NEPSetJacobian()
219: Output Parameters:
220: . jac - Jacobian matrix
221: . B - optionally different preconditioning matrix
222: */
223: PetscErrorCode FormJacobian(NEP nep,PetscScalar lambda,Mat jac,void *ctx)
224: {
225: ApplicationCtx *user = (ApplicationCtx*)ctx;
226: PetscScalar A[3],c;
227: PetscReal h;
228: PetscInt i,n,j[3],Istart,Iend;
229: PetscBool FirstBlock=PETSC_FALSE,LastBlock=PETSC_FALSE;
231: PetscFunctionBeginUser;
232: /*
233: Compute Jacobian entries and insert into matrix
234: */
235: PetscCall(MatGetSize(jac,&n,NULL));
236: PetscCall(MatGetOwnershipRange(jac,&Istart,&Iend));
237: if (Istart==0) FirstBlock=PETSC_TRUE;
238: if (Iend==n) LastBlock=PETSC_TRUE;
239: h = user->h;
240: c = user->kappa/(lambda-user->kappa);
242: /*
243: Interior grid points
244: */
245: for (i=(FirstBlock? Istart+1: Istart);i<(LastBlock? Iend-1: Iend);i++) {
246: j[0] = i-1; j[1] = i; j[2] = i+1;
247: A[0] = A[2] = -h/6.0; A[1] = -2.0*h/3.0;
248: PetscCall(MatSetValues(jac,1,&i,3,j,A,INSERT_VALUES));
249: }
251: /*
252: Boundary points
253: */
254: if (FirstBlock) {
255: i = 0;
256: j[0] = 0; j[1] = 1;
257: A[0] = -2.0*h/3.0; A[1] = -h/6.0;
258: PetscCall(MatSetValues(jac,1,&i,2,j,A,INSERT_VALUES));
259: }
261: if (LastBlock) {
262: i = n-1;
263: j[0] = n-2; j[1] = n-1;
264: A[0] = -h/6.0; A[1] = -h/3.0-c*c;
265: PetscCall(MatSetValues(jac,1,&i,2,j,A,INSERT_VALUES));
266: }
268: /*
269: Assemble matrix
270: */
271: PetscCall(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY));
272: PetscCall(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY));
273: PetscFunctionReturn(PETSC_SUCCESS);
274: }
276: /*TEST
278: test:
279: suffix: 1
280: args: -nep_target 21 -nep_rii_lag_preconditioner 2 -terse
281: requires: !single
283: TEST*/