
Background
Architecture

Usage and Demos
Future Development

Fuzzing Sucks!
Introducing Sulley Fuzzing Framework

Pedram Amini 1 Aaron Portnoy 2

1pamini@tippingpoint.com

2aportnoy@tippingpoint.com

Black Hat US 2007

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

About Us

Work at TippingPoint’s Digital Vaccine Labs

Responsible for vuln-dev, patch analysis, pen-testing

Keep tabs on us at http://dvlabs.tippingpoint.com

Launched OpenRCE.org over two years ago

How many here are members?

Some interesting updates on the horizon after BlackHat

Creators of PaiMei RE framework

How many here have heard of it?

Lot of exciting developments coming up after BlackHat

Co-authored ”Fuzzing: Brute Force Vulnerability Discovery”

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Talk Outline

Background

Why does fuzzing suck?

How can we make it better?

Sulley’s Architecture

Component Breakdown

Advanced Features

Usage and Walkthrough

Hewlett-Packard Data Protector Audit

Trend Micro Server Protect Audit

Future Development

What’s still on the drawing board

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Is Fuzzing a ”Dead Horse”?

Negative

Entire BlackHat track, 3 dedicated books, more commercial vendors
and still highly effective.

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Old School

antiparser
David McKinney, Python, x-platform, API driven

DFUZ
Diego Bauche, custom language, Unix

SPIKE
Dave Aitel, C, Unix, block based

The list goes on ...
Angel

Fuzzer Framework

Fuzzled

Fuzzy Packet

The Art of Fuzzing

SPIKEfile

...

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

DFUZ FTP Example

Notes

The custom language is easy to understand but very limiting.

port=21/tcp

peer write: @ftp:user("user")

peer read

peer write: @ftp:pass("pass")

peer read

peer write: "CWD /", %random:data(1024,alphanum), 0x0a

peer read

peer write: @ftp:quit()

peer read

repeat=1024

wait=1

No Options

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

SPIKE FTP Example

Notes

SPIKE data representation syntax is very simple, perhaps why it’s the
most commonly used fuzzer?

s_string("HOST ");

s_string_variable("10.20.30.40");

s_string("\r\n");

s_string_variable("USER");

s_string(" ");

s_string_variable("bob");

s_string("\r\n");

s_string("PASS ");

s_string_variable("bob");

s_string("\r\n");

s_string("SITE ");

s_string_variable("SEDV");

s_string("\r\n");

s_string("CWD ");

s_string_variable(".");

s_string("\r\n");

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

New School

Peach
Michael Eddington, Python, x-platform, highly modularized

Codenomicon
Commercial vendor, Java, x-platform, pre-recorded test cases

GPF
Jared Demott, mixed, x-platform, varying fuzz modes

Autodafe
Martin Vuagnoux, C, Unix, next-gen SPIKE

First fuzzer to bundle debugger functionality

Evolutionary Fuzzers
SideWinder, Sherri Sparks et al.

EFS, Jared Demott

Protocol Informatics Framework
Marshall Beddoe, Python, x-platform, automated protocol field
identification tool

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Peach FTP Example

Notes

There is a non trivial learning curve to writing Peach fuzzers.

from Peach import *

from Peach.Transformers import *

from Peach.Generators import *

from Peach.Protocols import *

from Peach.Publishers import *

loginGroup = group.Group()

loginBlock = block.Block()

loginBlock.setGenerators((

static.Static("USER username\r\nPASS "),

dictionary.Dictionary(loginGroup, "dict.txt"),

static.Static("\r\nQUIT\r\n")

))

loginProt = null.NullStdout(ftp.BasicFtp(’127.0.0.1’, 21), loginBlock)

script.Script(loginProt, loginGroup, 0.25).go()

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

GPF FTP Example

Notes

Data representation format is very different from other examples.

Source:S Size:20 Data:220 (vsFTPd 1.1.3)

Source:C Size:12 Data:USER jared

Source:S Size:34 Data:331 Please specify the password.

Source:C Size:12 Data:PASS jared

Source:S Size:33 Data:230 Login successful. Have fun.

Source:C Size:6 Data:QUIT

Source:S Size:14 Data:221 Goodbye.

...

The command line can be a bit unwieldy:

GPF ftp.gpf client localhost 21 ? TCP 8973987234 100000 0 + 6 6 100 100 5000 43 finsih 0 3 auto none -G b

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

So Why Does Fuzzing Hurt So Bad?

The existing tools contribute solid ideas but are limited in usage

Basically all of them are focused solely on data generation

Let’s jump through some fuzzer requirements to get a feel for
what’s missing

Essentially Chapter 5 from the fuzzing book

At each juncture we’ll briefly cover Sulley’s solution

We’ll drill down into the specifics when we cover architecture

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Easy to Use and Powerfully Flexible

Pain

Powerful frameworks have a huge learning curve

Simple frameworks quickly reach limitations

Remedy

Sulley utilizes block based data representation

Sulley fuzzers start simple and don’t have messy syntax

Optional elements and keyword arguments

Fuzzers are written in pure Python and can benefit from the
languages features and ease of use

Development efforts can be easily shared

Can handle challenge-response and prev-packet-length situations

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Reproducibility and Documentation

Pain

Individual test cases must be reproducible

Progress and interim results should be recorded

Remedy

Sulley can replay individual test cases

Sulley keeps a bi-directional PCAP of every transaction

A built in web interface provides interactive feedback

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Reusability

Pain

Non-generic fuzzers can never be used again

Widely used protocol components are re-developed all the time

Remedy

Sulley supports the creation and reuse of complex types and
helper functions

The more Sulley is used, the smarter it gets

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Process State and Process Depth

Pain

None of the existing fuzzers consider state paths

Fuzzing A-B-D vs. A-C-D

Many fuzzers can only scratch a protocol surface

Fuzzing A only

Remedy

In Sulley you build fuzzers in manageable chunks called requests

These requests are tied together in a graph

The graph is automatically walked and each state path and depth
is individually fuzzed

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Tracking, Code Coverage and Metrics

Pain

How much of the target code was exercised?

What code was executed to handle a specific test case?

Remedy

Sulley supports an extensible agent model

Utilizes PaiMei/PyDbg for breakpoint-based and MSR-based code
coverage tracking

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Fault Detection and Recovery

Pain

Most fuzzers rely solely on a lack of response to determine when
something bad happens

ahem ahem Codenomicon

Once a fault is discovered, most fuzzers simply stop!

Mu Security and BreakingPoint take the interesting approach of
power cycling

Remedy

Sulley bundles a debugger monitor agent

Sulley can restore target health and continue testing by:

Restarting the target service

Restoring a VMware snapshot

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Introduction
Past and Present
Pain Points and Solutions

Resource Constraints

Pain

Non-technical constraints such as time and man power often get
in the way

Remedy

Sulley bundles utilities such as a PDML parser to save time

Sulley is designed to allow multiple people to work together easily

The monitoring and self recording features of the framework save
a great deal of time

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Sulley Architecture Diagram

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Four Major Components

Data Generation

You build requests out of primitives and legos

Legos are complex types that extend the framework

Session Management / Driver

Requests are chained together in a graph to form a session

The session class exposes a standalone web interface for
monitoring and control

The driver ties targets, agents and requests together

Agents

Interface with the target for instrumentation and logging purposes

Utilities

Standalone command line utilities that perform a variety of tasks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

General Usage

Sniff some traffic or reverse some protocol parsing binary

Break the target protocol into individual requests

Represent each request with a series of primitives

Individual requests can be tasked out to different people

Setup some targets in conjunction with various agents

Write a driver script which instantiates a session and ties
requests, agents and the targets together

Fuzz!

Review results

Drill Down

Let’s take a look at each individual component in detail...

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Overview

Aitel really had it right

The block based approach to protocol representation is simple,
flexible and powerful

Protocols are represented in Sulley as a collection of primitives,
blocks and block helpers

These elements have many optional arguments

The name optional argument gives you direct access to an
element without having to walk the stack

Refer to the Epydoc generation API documentation for a
complete reference of optional arguments

Begin the definition of a request with:

s initialize("request name")

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Static and Random Primitives

s static() is the simplest primitive adding a constant to the stack

Aliases include s dunno(), s raw() and s unknown()

s binary() is related and should be familiar to SPIKE users:

s binary("0xde 0xad be ef \xca fe 00 01 02 0xba0xdd")

Sulley primitives are driven by heuristics, with the exception of
s random()

s random() used to generate random data of varying lengths

min length and max length are mandatory arguments

num mutations defaults to 25 and specifies how many values to
cycle through prior to returning to default

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Integer Primitives

Simple types for dealing with integer fields

s char(), s short(), s long(), s double()

Convenience aliases exist like byte, word, dword, int, etc...

You can fuzz through the entire valid range

Defaults to a subset of potentially interesting values

To increase throughput

Supports ASCII (signed or unsigned) and binary output rendering

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Strings and Delimiters

s string() supports static sizes, variable padding and custom

Over 1,000 test cases in string fuzz library

Strings are frequently parsed into sub-fields with delimiters

Sulley has a special primitive for delimiters, s delim(), here is an
example:

fuzzes the string: <BODY bgcolor="black">

s_delim("<")

s_string("BODY")

s_delim(" ")

s_string("bgcolor")

s_delim("=")

s_delim("\"")

s_string("black")

s_delim("\"")

s_delim(">")

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Blocks

Primitives (and blocks) can be organized and nested within blocks

Blocks are opened and closed with s block start() and
s block end() respectively

Blocks can be associated with a group, encoder or dependency

Grouping, encoding and dependencies are powerful features we
examine individually

s block start() returns True so you can tab out for readability:

Blocks must be given a name.

if s block start("my block"):

s string("fuzzy")

s block end()

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Groups

Groups tie a block to a defined set of values

The block is cycled through for each value in the group

Useful for representing a valid list of opcodes or verbs:

define a group primitive listing the various HTTP verbs we wish to fuzz.

s group("verbs", values=["GET", "HEAD", "POST", "TRACE"])

define a new block named "body" and associate with the above group.

if s block start("body", group="verbs"):

s delim(" ")

s delim("/")

s string("index.html")

s delim(" ")

s string("HTTP")

s delim("/")

s string("1")

s delim(".")

s string("1")

s static("\r\n\r\n")

s block end("body")

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Encoders

Simple yet powerful block modifier

Connect a function with a block to modify contents post render

Implement compression, custom obfuscation, etc:

def trend xor encode (str):

key = 0xA8534344

pad = 4 - (len(str) % 4)

if pad == 4: pad = 0

str += "\x00" * pad

while str:

dword = struct.unpack("<L", str[:4])[0]

str = str[4:]

dword ^= key

ret += struct.pack("<L", dword)

key = dword

return ret

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Dependencies

Allow you to apply a conditional to the rendering of a block

Done by specifying dep, dep value(s) and dep compare

Block dependencies can be chained together arbitrarily

s_short("opcode", full_range=True)

if s_block_start("auth", dep="opcode", dep_value=10):

s_string("aaron")

s_block_end()

if s_block_start("hostname", dep="opcode", dep_values=[15, 16]):

s_string("aportnoy.openrce.org")

s_block_end()

the rest of the opcodes take a string prefixed with two underscores.

if s_block_start("something", dep="opcode", dep_values=[10, 15, 16], dep_compare="!="):

s_static("__")

s_int(10)

s_block_end()

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Sizers

Use s size() to dynamically measure and render a blocks size

Many optional arguments for flexibility

length of size field, default is 4

endianess of size field, default is little

Output format, ”binary” (default) or ”ascii”

inclusive, whether the sizer should count itself

With ASCII output control signed vs. unsigned

Sizers can also be fuzzed

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Checksums

Similar to a sizer, s checksum() calculates and render the
checksum for a block

Keyword argument algorithm can be one of:

”crc32”

”adler32”

”md5”

”sha1”

or any arbitrary function pointer

endianness can be toggled

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Repeaters

Use s repeat() to handle block repetitions

Useful for fuzzing multi-entry table parsers

Can variable step from min reps to max reps

Alternatively the repeat factor can be tied to another variable

table entry: [type][len][string]

if s block start("table entry"):

s random("\x00\x00", 2, 2)

s size("string field", length=2)

if s block start("string field"):

s string("C" * 10)

s block end()

s block end()

repeat the table entry from 100 to 1,000 reps stepping 50 elements on each iteration.

s repeat("table entry", min reps=100, max reps=1000, step=50)

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Legos

Sulley supports the creation of complex types called Legos

Example Legos include: E-mail addresses, IP addresses, DCERPC,
XDR and ASN.1 / BER primitives, XML tags, etc...

The more Legos you define, the easier fuzzing is in the future

class tag (blocks.block):

def init (self, name, request, value, options=):

blocks.block. init (self, name, request, None, None, None, None)

self.value = value

self.options = options

[delim][string][delim]

self.push(primitives.delim("<"))

self.push(primitives.string(self.value))

self.push(primitives.delim(">"))

example instantiation.

s_lego("tag", "center")

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

pGraph

Python graph abstraction library

Developed originally for PaiMei

Allows for simple graph construction, manipulation and rendering

Rendering formats supported are GML, GraphViz and uDraw

The session class extends from this...

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Session Class

Connect multiple requests in a graph

Register pre and post send callbacks

Assign a callback to each edge

Add multiple network targets

Exposes a custom web interface

Automatically communicates with registered agents

Responsible for walking the graph and fuzzing at each level

Tightly used and related to the creation of drivers

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Session Illustrated

ehlo

helo

mail from rcpt to post_send()datapre_send()

callback_one()

callback_two()

This example demonstrates multiple paths and depths

Callbacks aren’t really needed here

More applicable in cases of RPC, challenge-response, prev-packet
specifies length, etc...

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Interactive Web Interface

View fuzzer progress

View detected faults

Retrieve per-fault crash dump and packet capture

Pause and resume fuzzing

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Agents

A flexible sub-system allows you to create custom agents

Client-server communication is extremely simple over ”PedRPC”

Create a class that extend from pedrpc.server

Instantiate pedrpc.client

Call class members as if they are local

Some agents have already been developed...

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Agent: Netmon

Monitors network traffic and saves PCAPs to disk

Per test case bi-directional packet capture

ERR> USAGE: network monitor.py

<-d|--device DEVICE #> device to sniff on (see list below)

[-f|--filter PCAP FILTER] BPF filter string

[-p|--log path PATH] log directory to store pcaps to

[-l|--log level LEVEL] log level (default 1), increase for more verbosity

[--port PORT] TCP port to bind this agent to

Network Device List:

[0] \Device\NPF GenericDialupAdapter

[1] {2D938150-427D-445F-93D6-A913B4EA20C0} 192.168.181.1

[2] {9AF9AAEC-C362-4642-9A3F-0768CDA60942} 0.0.0.0

[3] {9ADCDA98-A452-4956-9408-0968ACC1F482} 192.168.81.193

...

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Agent: Procmon

PyDbg based fault monitoring engine

Used to monitor target health

Detected faults are catalogued in a ”crash bin”

Allows for simplistic (backtrace driven) fault clustering

More on this later

ERR> USAGE: process monitor.py

<-c|--crash bin FILENAME> filename to serialize crash bin class to

[-p|--proc name NAME] process name to search for and attach to

[-i|--ignore pid PID] ignore this PID when searching for the target process

[-l|--log level LEVEL] log level (default 1), increase for more verbosity

[--port PORT] TCP port to bind this agent to

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Agent: VMControl

Exposes network API for VMWare instrumentation

Simple PedRPC wrapper around vmrun.exe

Start, stop, suspend, snapshot, revert, etc...

Used to restore target health after a fault is induced

ERR> USAGE: vmcontrol.py

<-x|--vmx FILENAME> path to VMX to control

<-r|--vmrun FILENAME> path to vmrun.exe

[-s|--snapshot NAME> set the snapshot name

[-l|--log level LEVEL] log level (default 1), increase for more verbosity

[-i|--interactive] Interactive mode, prompts for input values

[--port PORT] TCP port to bind this agent to

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Driver

The driver is where it all comes together:

Import requests from the request library

Instantiate a session instance

Instantiate and add target instances to the session

Interconnect the requests to form a graph

Start fuzzing

This is where edge and pre/post send callbacks should be defined

The driver is entirely free form, though must of them will follow a
simple and similar structure

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

Example Driver

from sulley import *

from requests import jabber

def init message (sock):

init = ’<?xml version="1.0" encoding="UTF-8" ?>\n’

init += ’<stream:stream to="10.10.20.16" xmlns="jabber:client" xmlns:stream="http://etherx.jabber.org">’

sock.send(init)

sock.recv(1024)

sess = sessions.session(session filename="audits/trillian.session")

target = sessions.target("10.10.20.16", 5298)

target.netmon = pedrpc.client("10.10.20.16", 26001)

target.procmon = pedrpc.client("10.10.20.16", 26002)

target.vmcontrol = pedrpc.client("127.0.0.1", 26003)

start up the target.

target.vmcontrol.restart target()

print "virtual machine up and running"

sess.add target(target)

sess.pre send = init message

sess.connect(s get("chat message"))

sess.fuzz()

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

UtilitiesUser Developed

Session Management

Driver

Data Generation

Legos

Primitives Utils

pGraph Session
R2

Agents

R1

R3

R4 R5

Targets

Filesystem

crashbins

pcaps

...

VMControl Netmon

Procmon ...

Request Library

R1

R2 R3

Sulley Architecture

sequence_honer

pdml_parser

pcap_cleaner

ida_fuzz_library_extender

crashbin_explorer

Blocks

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

crashbin explorer.py

View every test case which caused a fault

List every location where a fault occurred

Retrieve saved crash dumps

Render a graph which clusters faults by stack trace

$./utils/crashbin explorer.py

USAGE: crashbin explorer.py <xxx.crashbin>

[-t|--test #] dump the crash synopsis for a specific test case number

[-g|--graph name] generate a graph of all crash paths, save to ’name’.udg

Pedram will actually demo this in a bit

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

ida fuzz library extender.py

IDA Python script

Simple concept

Enumerate all constant integer comparisons in target binary

Enumerate all constant string comparisons in target binary

Add to fuzz library heuristics

This is a pre-fuzz static analysis script

A more advanced run-time implementation is still in the works

Fuzz library extensions are handled via .fuzz strings and .fuzz ints

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

pcap cleaner.py

Simple utility

Iterates through a crashbin and removes any PCAPs not
associated with a fault

Save on disk space prior to archiving a completed audit

$./utils/pcap cleaner.py

USAGE: pcap cleaner.py <xxx.crashbin> <path to pcaps>

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Overview
Data Representation
Fuzzing Session and Agents
Utilities

pdml parser.py

Convenience utility

Converts PDML dump from Wireshark to a Sulley request

Easier then doing so manually, work is still required of course

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Hewlett-Packard Data Protector
Trend Micro ServerProtect

Hewlett-Packard Data Protector

Simple protocol to reverse and represent

Simple bug (currently 0day, fix is just around the corner)

Good starting example

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Hewlett-Packard Data Protector
Trend Micro ServerProtect

Trend Micro ServerProtect

Microsoft RPC interface

Tons of bugs in this thing

Some have been reported and fixed, others are still pending

Interesting demo since we can show off the fact that Sulley can
fuzz DCE/RPC

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

Sequence ”Honing”

Say test case #100 triggered a fault but replaying it does not

Probably relies on some previous test or sequence of tests

We can automatically deduce the exact sequence required for
replication

This is done, but I’m still playing with the reduction ”algorithm”

Here is how the current incarnation of the approach works...

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

The Honing ”Algorithm”

Start from the last case and step back to find the window

100. 99, 100. 98, 99, 100. 40, 41 ... 99, 100

Start eliminating sequential bundles (ratio to window-size) and
check for fault

Once exhausted, increase granularity to eliminate single test cases
at a time

Sulleys health-restoration methods are used to ensure a ”clean
slate” per test

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

Parallel Fuzzing

Combinatorial explosion is a common fuzzing problem

We can increase throughput by replicating the target, ex:

Run 2 targets in VMWare with PyDbg monitoring

Run a target on real hardware for MSR-based code coverage
recording

Parallel fuzzing is as simple as instantiating and add multiple
targets in your driver code

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

Heuristic Feedback Loop

Along the same lines as the fuzz extender command-line utility

Simple concept that may improve your fuzz:

Attach to the target process and trace

Look for all comparisons to int and string constants

Feed those back to the fuzzer, adding them to the current
primitives fuzz library

There are far more scientific ways of doing this

Hoglund and Halvar both are researching what I call ”path-math”

Was talking to a friend at Microsoft, they already have it

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

Code Coverage Monitor

An agent similar to netmon or procmon, records code coverage
per test case

There are 2 code coverage monitors completed

MSR based

Process Stalker based

Neither are included as they add a lot more requirements (PaiMei)

We’re working on PaiMei 2.0 which will be SQL driven and will
include it then

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

PCAP Binning

Crash binning is great, we can apply it to packets as well

Monitor and parse network responses from target

Group them together as best we can

ex: 404 responses vs. 202 responses from a web server

Most useful when you are fuzzing a target you can’t monitor with
other tools

Say the Xbox for example

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

File Fuzzing

The session class, driver etc. was all designed for network
protocol fuzzing

The data representation stuff however is generic

Peter Silberman has already written a beta file-session for file
fuzzing

Alternatively, you can...

Represent the file in Sulley blocks

Write a 3 line .render() loop to generate your test cases

Use Cody Pierce’s PaiMei FileFuzz module as a testing harness

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

Web Based GUI

Coding up blocks is an easy task, but not easy enough for
widespread use

We’d like to have a drag and drop GUI
Create and nest blocks visually

Insert, re-arrange, etc. primitives

View and modify options for each primitive

Save it off to a request library

Create a session and connect requests

Configure and add targets

Generate the driver automatically

We have no GUI skills, someone else needs to do this

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

Appliance Based Distribution

Extending on the previous though...

With a nice GUI we can move to an appliance model

Distribute Sulley as a virtual machine

Simply start it up, configure over web and attack a target

We can do auto updates, etc...

Maybe one day

Amini, Portnoy Fuzzing Sucks!

Background
Architecture

Usage and Demos
Future Development

Nearly Done
On the Drawing Board
Conclusion

Questions? Comments?

About the tool

About ...

Amini, Portnoy Fuzzing Sucks!

Appendix Slide Count

Total Slide Count

65

Amini, Portnoy Fuzzing Sucks!

	Background
	Introduction
	Past and Present
	Pain Points and Solutions

	Architecture
	Overview
	Data Representation
	Fuzzing Session and Agents
	Utilities

	Usage and Demos
	Hewlett-Packard Data Protector
	Trend Micro ServerProtect

	Future Development
	Nearly Done
	On the Drawing Board
	Conclusion

	Appendix
	Appendix
	Slide Count

