
GNAT Reference Manual
GNAT, The GNU Ada 95 Compiler

GNAT Version for GCC 3.3.4

Ada Core Technologies, Inc.

Copyright c© 1995-2001, Free Software Foundation
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU Free Documenta-
tion License”, with the Front-Cover Texts being “GNAT Reference Manual”, and with no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

About This Guide 1

About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the standard.

Ada 95 is designed to be highly portable,and guarantees that, for most programs, Ada
95 compilers behave in exactly the same manner on different machines. However, since Ada
95 is designed to be used in a wide variety of applications, it also contains a number of
system dependent features to Functbe used in interfacing to the external world.

Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

What This Reference Manual Contains

This reference manual contains the following chapters:
• Chapter 1 [Implementation Defined Pragmas], page 3 lists GNAT implementation-

dependent pragmas, which can be used to extend and enhance the functionality of the
compiler.

• Chapter 2 [Implementation Defined Attributes], page 41 lists GNAT implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler.

• Chapter 3 [Implementation Advice], page 51 provides information on generally desirable
behavior which are not requirements that all compilers must follow since it cannot be
provided on all systems, or which may be undesirable on some systems.

• Chapter 4 [Implementation Defined Characteristics], page 75 provides a guide to min-
imizing implementation dependent features.

• Chapter 5 [Intrinsic Subprograms], page 99 describes the intrinsic subprograms imple-
mented by GNAT, and how they can be imported into user application programs.

• Chapter 6 [Representation Clauses and Pragmas], page 103 describes in detail the way
that GNAT represents data, and in particular the exact set of representation clauses
and pragmas that is accepted.

• Chapter 7 [Standard Library Routines], page 125 provides a listing of packages and a
brief description of the functionality that is provided by Ada’s extensive set of standard
library routines as implemented by GNAT.

• Chapter 8 [The Implementation of Standard I/O], page 133 details how the GNAT
implementation of the input-output facilities.

• Chapter 10 [Interfacing to Other Languages], page 159 describes how programs written
in Ada using GNAT can be interfaced to other programming languages.

• Chapter 14 [Specialized Needs Annexes], page 167 describes the GNAT implementation
of all of the special needs annexes.

• Chapter 15 [Compatibility Guide], page 169 includes sections on compatibility of GNAT
with other Ada 83 and Ada 95 compilation systems, to assist in porting code from other
environments.

2 GNAT Reference Manual

This reference manual assumes that you are familiar with Ada 95 language, as described
in the International Standard ANSI/ISO/IEC-8652:1995, Jan 1995.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
• Functions, utility program names, standard names, and classes.
• Option flags

• ‘File Names’, ‘button names’, and ‘field names’.
• Variables.
• Emphasis.
• [optional information or parameters]
• Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters ‘$
’ (dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the ‘$’ replaced by whatever prompt
character you are using.

Related Information

See the following documents for further information on GNAT:
• GNAT User’s Guide, which provides information on how to use the GNAT compiler

system.
• Ada 95 Reference Manual, which contains all reference material for the Ada 95 pro-

gramming language.
• Ada 95 Annotated Reference Manual, which is an annotated version of the standard

reference manual cited above. The annotations describe detailed aspects of the design
decision, and in particular contain useful sections on Ada 83 compatibility.

• DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains
specific information on compatibility between GNAT and DEC Ada 83 systems.

• DEC Ada, Language Reference Manual, part number AA-PYZAB-TK which describes
in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

Chapter 1: Implementation Defined Pragmas 3

1 Implementation Defined Pragmas

Ada 95 defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada 95 Reference Manual.

In addition, Ada 95 allows implementations to define additional pragmas whose meaning
is defined by the implementation. GNAT provides a number of these implementation-
dependent pragmas which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas may not be portable to other compilers
(although GNAT implements this set of pragmas on all platforms). Therefore if portabil-
ity to other compilers is an important consideration, the use of these pragmas should be
minimized.

pragma Abort_Defer
Syntax:

pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled
sequence of statements (right after the begin). It has the effect of deferring
aborts for the sequence of statements (but not for the declarations or handlers,
if any, associated with this statement sequence).

pragma Ada_83
Syntax:

pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which
it applies, regardless of the mode set by the command line switches. In Ada
83 mode, GNAT attempts to be as compatible with the syntax and semantics
of Ada 83, as defined in the original Ada 83 Reference Manual as possible.
In particular, the new Ada 95 keywords are not recognized, optional package
bodies are allowed, and generics may name types with unknown discriminants
without using the (<>) notation. In addition, some but not all of the additional
restrictions of Ada 83 are enforced.
Ada 83 mode is intended for two purposes. Firstly, it allows existing legacy
Ada 83 code to be compiled and adapted to GNAT with less effort. Secondly,
it aids in keeping code backwards compatible with Ada 83. However, there is
no guarantee that code that is processed correctly by GNAT in Ada 83 mode
will in fact compile and execute with an Ada 83 compiler, since GNAT does
not enforce all the additional checks required by Ada 83.

pragma Ada_95
Syntax:

pragma Ada_95;

A configuration pragma that establishes Ada 95 mode for the unit to which it
applies, regardless of the mode set by the command line switches. This mode
is set automatically for the Ada and System packages and their children, so you
need not specify it in these contexts. This pragma is useful when writing a

4 GNAT Reference Manual

reusable component that itself uses Ada 95 features, but which is intended to
be usable from either Ada 83 or Ada 95 programs.

pragma Annotate
Syntax:

pragma Annotate (IDENTIFIER {, ARG});

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. identifier identifies the type of an-
notation. GNAT verifies this is an identifier, but does not otherwise analyze it.
The arg argument can be either a string literal or an expression. String literals
are assumed to be of type Standard.String. Names of entities are simply an-
alyzed as entity names. All other expressions are analyzed as expressions, and
must be unambiguous.
The analyzed pragma is retained in the tree, but not otherwise processed by
any part of the GNAT compiler. This pragma is intended for use by external
tools, including ASIS.

pragma Assert
Syntax:

pragma Assert (

boolean_EXPRESSION

[, static_string_EXPRESSION])

The effect of this pragma depends on whether the corresponding command line
switch is set to activate assertions. The pragma expands into code equivalent
to the following:

if assertions-enabled then

if not boolean_EXPRESSION then

System.Assertions.Raise_Assert_Failure

(string_EXPRESSION);

end if;

end if;

The string argument, if given, is the message that will be associated with the
exception occurrence if the exception is raised. If no second argument is given,
the default message is ‘file:nnn ’, where file is the name of the source file
containing the assert, and nnn is the line number of the assert. A pragma is
not a statement, so if a statement sequence contains nothing but a pragma
assert, then a null statement is required in addition, as in:

...

if J > 3 then

pragma Assert (K > 3, "Bad value for K");

null;

end if;

Note that, as with the if statement to which it is equivalent, the type of the
expression is either Standard.Boolean, or any type derived from this standard
type.
If assertions are disabled (switch -gnata not used), then there is no effect
(and in particular, any side effects from the expression are suppressed). More
precisely it is not quite true that the pragma has no effect, since the expression

Chapter 1: Implementation Defined Pragmas 5

is analyzed, and may cause types to be frozen if they are mentioned here for
the first time.
If assertions are enabled, then the given expression is tested, and if it is False
then System.Assertions.Raise_Assert_Failure is called which results in the
raising of Assert_Failure with the given message.
If the boolean expression has side effects, these side effects will turn on and
off with the setting of the assertions mode, resulting in assertions that have an
effect on the program. You should generally avoid side effects in the expression
arguments of this pragma. However, the expressions are analyzed for semantic
correctness whether or not assertions are enabled, so turning assertions on and
off cannot affect the legality of a program.

pragma Ast_Entry
Syntax:

pragma AST_Entry (entry_IDENTIFIER);

This pragma is implemented only in the OpenVMS implementation of GNAT.
The argument is the simple name of a single entry; at most one AST_Entry
pragma is allowed for any given entry. This pragma must be used in conjunction
with the AST_Entry attribute, and is only allowed after the entry declaration
and in the same task type specification or single task as the entry to which it
applies. This pragma specifies that the given entry may be used to handle an
OpenVMS asynchronous system trap (AST) resulting from an OpenVMS system
service call. The pragma does not affect normal use of the entry. For further
details on this pragma, see the DEC Ada Language Reference Manual, section
9.12a.

pragma C_Pass_By_Copy
Syntax:

pragma C_Pass_By_Copy

([Max_Size =>] static_integer_EXPRESSION);

Normally the default mechanism for passing C convention records to C conven-
tion subprograms is to pass them by reference, as suggested by RM B.3(69).
Use the configuration pragma C_Pass_By_Copy to change this default, by re-
quiring that record formal parameters be passed by copy if all of the following
conditions are met:
• The size of the record type does not exceed

static integer expression.
• The record type has Convention C.
• The formal parameter has this record type, and the subprogram has a

foreign (non-Ada) convention.

If these conditions are met the argument is passed by copy, i.e. in a manner
consistent with what C expects if the corresponding formal in the C prototype
is a struct (rather than a pointer to a struct).
You can also pass records by copy by specifying the convention C_Pass_By_
Copy for the record type, or by using the extended Import and Export pragmas,
which allow specification of passing mechanisms on a parameter by parameter
basis.

6 GNAT Reference Manual

pragma Comment
Syntax:

pragma Comment (static_string_EXPRESSION);

This is almost identical in effect to pragma Ident. It allows the placement of a
comment into the object file and hence into the executable file if the operating
system permits such usage. The difference is that Comment, unlike Ident, has
no limit on the length of the string argument, and no limitations on placement
of the pragma (it can be placed anywhere in the main source unit).

pragma Common_Object
Syntax:

pragma Common_Object (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]

[, [Size =>] EXTERNAL_SYMBOL])

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

This pragma enables the shared use of variables stored in overlaid linker areas
corresponding to the use of COMMON in Fortran. The single object local name is
assigned to the area designated by the External argument. You may define a
record to correspond to a series of fields. The size argument is syntax checked
in GNAT, but otherwise ignored.
Common_Object is not supported on all platforms. If no support is available,
then the code generator will issue a message indicating that the necessary at-
tribute for implementation of this pragma is not available.

pragma Complex_Representation
Syntax:

pragma Complex_Representation

([Entity =>] LOCAL_NAME);

The Entity argument must be the name of a record type which has two fields of
the same floating-point type. The effect of this pragma is to force gcc to use the
special internal complex representation form for this record, which may be more
efficient. Note that this may result in the code for this type not conforming
to standard ABI (application binary interface) requirements for the handling
of record types. For example, in some environments, there is a requirement for
passing records by pointer, and the use of this pragma may result in passing
this type in floating-point registers.

pragma Component_Alignment
Syntax:

pragma Component_Alignment (

[Form =>] ALIGNMENT_CHOICE

[, [Name =>] type_LOCAL_NAME]);

ALIGNMENT_CHOICE ::=

Component_Size

| Component_Size_4

| Storage_Unit

Chapter 1: Implementation Defined Pragmas 7

| Default

Specifies the alignment of components in array or record types. The meaning
of the Form argument is as follows:

Component_Size
Aligns scalar components and subcomponents of the array or record
type on boundaries appropriate to their inherent size (naturally
aligned). For example, 1-byte components are aligned on byte
boundaries, 2-byte integer components are aligned on 2-byte bound-
aries, 4-byte integer components are aligned on 4-byte boundaries
and so on. These alignment rules correspond to the normal rules
for C compilers on all machines except the VAX.

Component_Size_4
Naturally aligns components with a size of four or fewer bytes.
Components that are larger than 4 bytes are placed on the next
4-byte boundary.

Storage_Unit
Specifies that array or record components are byte aligned, i.e.
aligned on boundaries determined by the value of the constant
System.Storage_Unit.

Default Specifies that array or record components are aligned on default
boundaries, appropriate to the underlying hardware or operating
system or both. For OpenVMS VAX systems, the Default choice
is the same as the Storage_Unit choice (byte alignment). For all
other systems, the Default choice is the same as Component_Size
(natural alignment).

If the Name parameter is present, type local name must refer to a local
record or array type, and the specified alignment choice applies to the
specified type. The use of Component_Alignment together with a pragma
Pack causes the Component_Alignment pragma to be ignored. The use of
Component_Alignment together with a record representation clause is only
effective for fields not specified by the representation clause.
If the Name parameter is absent, the pragma can be used as either a configuration
pragma, in which case it applies to one or more units in accordance with the
normal rules for configuration pragmas, or it can be used within a declarative
part, in which case it applies to types that are declared within this declarative
part, or within any nested scope within this declarative part. In either case
it specifies the alignment to be applied to any record or array type which has
otherwise standard representation.
If the alignment for a record or array type is not specified (using pragma Pack,
pragma Component_Alignment, or a record rep clause), the GNAT uses the
default alignment as described previously.

pragma Convention_Identifier
Syntax:

8 GNAT Reference Manual

pragma Convention_Identifier (

[Name =>] IDENTIFIER,

[Convention =>] convention_IDENTIFIER);

This pragma provides a mechanism for supplying synonyms for existing conven-
tion identifiers. The Name identifier can subsequently be used as a synonym for
the given convention in other pragmas (including for example pragma Import
or another Convention_Identifier pragma). As an example of the use of this,
suppose you had legacy code which used Fortran77 as the identifier for Fortran.
Then the pragma:

pragma Convention_Indentifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code,
avoiding the need to modify the sources. As another example, you could use
this to parametrize convention requirements according to systems. Suppose you
needed to use Stdcall on windows systems, and C on some other system, then
you could define a convention identifier Library and use a single Convention_
Identifier pragma to specify which convention would be used system-wide.

pragma CPP_Class
Syntax:

pragma CPP_Class ([Entity =>] LOCAL_NAME);

The argument denotes an entity in the current declarative region that is declared
as a tagged or untagged record type. It indicates that the type corresponds to
an externally declared C++ class type, and is to be laid out the same way that
C++ would lay out the type.

If (and only if) the type is tagged, at least one component in the record must
be of type Interfaces.CPP.Vtable_Ptr, corresponding to the C++ Vtable (or
Vtables in the case of multiple inheritance) used for dispatching.

Types for which CPP_Class is specified do not have assignment or equality
operators defined (such operations can be imported or declared as subprograms
as required). Initialization is allowed only by constructor functions (see pragma
CPP_Constructor).

Pragma CPP_Class is intended primarily for automatic generation using an au-
tomatic binding generator tool. See Section 10.2 [Interfacing to C++], page 160
for related information.

pragma CPP_Constructor
Syntax:

pragma CPP_Constructor ([Entity =>] LOCAL_NAME);

This pragma identifies an imported function (imported in the usual way with
pragma Import) as corresponding to a C++ constructor. The argument is a
name that must have been previously mentioned in a pragma Import with
Convention = CPP, and must be of one of the following forms:

• function Fname return T’Class

• function Fname (...) return T’Class

where T is a tagged type to which the pragma CPP_Class applies.

Chapter 1: Implementation Defined Pragmas 9

The first form is the default constructor, used when an object of type T is
created on the Ada side with no explicit constructor. Other constructors (in-
cluding the copy constructor, which is simply a special case of the second form
in which the one and only argument is of type T), can only appear in two
contexts:
• On the right side of an initialization of an object of type T.
• In an extension aggregate for an object of a type derived from T.

Although the constructor is described as a function that returns a value on the
Ada side, it is typically a procedure with an extra implicit argument (the object
being initialized) at the implementation level. GNAT issues the appropriate
call, whatever it is, to get the object properly initialized.
In the case of derived objects, you may use one of two possible forms for declar-
ing and creating an object:
• New_Object : Derived_T

• New_Object : Derived_T := (constructor-function-call with ...)

In the first case the default constructor is called and extension fields if any
are initialized according to the default initialization expressions in the Ada
declaration. In the second case, the given constructor is called and the extension
aggregate indicates the explicit values of the extension fields.
If no constructors are imported, it is impossible to create any objects on the
Ada side. If no default constructor is imported, only the initialization forms
using an explicit call to a constructor are permitted.
Pragma CPP_Constructor is intended primarily for automatic generation using
an automatic binding generator tool. See Section 10.2 [Interfacing to C++],
page 160 for more related information.

pragma CPP_Virtual
Syntax:

pragma CPP_Virtual

[Entity =>] ENTITY,

[, [Vtable_Ptr =>] vtable_ENTITY,]

[, [Position =>] static_integer_EXPRESSION])

This pragma serves the same function as pragma Import in that case of a
virtual function imported from C++. The Entity argument must be a prim-
itive subprogram of a tagged type to which pragma CPP_Class applies. The
Vtable Ptr argument specifies the Vtable Ptr component which contains the
entry for this virtual function. The Position argument is the sequential number
counting virtual functions for this Vtable starting at 1.
The Vtable_Ptr and Position arguments may be omitted if there is one
Vtable Ptr present (single inheritance case) and all virtual functions are im-
ported. In that case the compiler can deduce both these values.
No External_Name or Link_Name arguments are required for a virtual function,
since it is always accessed indirectly via the appropriate Vtable entry.
Pragma CPP_Virtual is intended primarily for automatic generation using
an automatic binding generator tool. See Section 10.2 [Interfacing to C++],
page 160 for related information.

10 GNAT Reference Manual

pragma CPP_Vtable
Syntax:

pragma CPP_Vtable (

[Entity =>] ENTITY,

[Vtable_Ptr =>] vtable_ENTITY,

[Entry_Count =>] static_integer_EXPRESSION);

Given a record to which the pragma CPP_Class applies, this pragma can be
specified for each component of type CPP.Interfaces.Vtable_Ptr. Entity
is the tagged type, Vtable Ptr is the record field of type Vtable_Ptr, and
Entry Count is the number of virtual functions on the C++ side. Not all of
these functions need to be imported on the Ada side.
You may omit the CPP_Vtable pragma if there is only one Vtable_Ptr com-
ponent in the record and all virtual functions are imported on the Ada side
(the default value for the entry count in this case is simply the total number of
virtual functions).
Pragma CPP_Vtable is intended primarily for automatic generation using an au-
tomatic binding generator tool. See Section 10.2 [Interfacing to C++], page 160
for related information.

pragma Debug
Syntax:

pragma Debug (PROCEDURE_CALL_WITHOUT_SEMICOLON);

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=

PROCEDURE_NAME

| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART

The argument has the syntactic form of an expression, meeting the syntactic
requirements for pragmas.
If assertions are not enabled on the command line, this pragma has no effect.
If asserts are enabled, the semantics of the pragma is exactly equivalent to the
procedure call statement corresponding to the argument with a terminating
semicolon. Pragmas are permitted in sequences of declarations, so you can
use pragma Debug to intersperse calls to debug procedures in the middle of
declarations.

pragma Elaboration_Checks
Syntax:

pragma Elaboration_Checks (RM | Static);

This is a configuration pragma that provides control over the elaboration model
used by the compilation affected by the pragma. If the parameter is RM,
then the dynamic elaboration model described in the Ada Reference Manual
is used, as though the -gnatE switch had been specified on the command line.
If the parameter is Static, then the default GNAT static model is used. This
configuration pragma overrides the setting of the command line. For full details
on the elaboration models used by the GNAT compiler, see section “Elaboration
Order Handling in GNAT” in the GNAT User’s Guide.

pragma Eliminate
Syntax:

Chapter 1: Implementation Defined Pragmas 11

pragma Eliminate (

[Unit_Name =>] IDENTIFIER |

SELECTED_COMPONENT);

pragma Eliminate (

[Unit_Name =>] IDENTIFIER |

SELECTED_COMPONENT,

[Entity =>] IDENTIFIER |

SELECTED_COMPONENT |

STRING_LITERAL

[,[Parameter_Types =>] PARAMETER_TYPES]

[,[Result_Type =>] result_SUBTYPE_NAME]

[,[Homonym_Number =>] INTEGER_LITERAL]);

PARAMETER_TYPES ::= (SUBTYPE_NAME {, SUBTYPE_NAME})

SUBTYPE_NAME ::= STRING_LITERAL

This pragma indicates that the given entity is not used outside the compilation
unit it is defined in. The entity may be either a subprogram or a variable.
If the entity to be eliminated is a library level subprogram, then the first form of
pragma Eliminate is used with only a single argument. In this form, the Unit_
Name argument specifies the name of the library level unit to be eliminated.
In all other cases, both Unit_Name and Entity arguments are required. item is
an entity of a library package, then the first argument specifies the unit name,
and the second argument specifies the particular entity. If the second argument
is in string form, it must correspond to the internal manner in which GNAT
stores entity names (see compilation unit Namet in the compiler sources for
details).
The remaining parameters are optionally used to distinguish between over-
loaded subprograms. There are two ways of doing this.
Use Parameter_Types and Result_Type to specify the profile of the subpro-
gram to be eliminated in a manner similar to that used for the extended Import
and Export pragmas, except that the subtype names are always given as string
literals, again corresponding to the internal manner in which GNAT stores en-
tity names.
Alternatively, the Homonym_Number parameter is used to specify which over-
loaded alternative is to be eliminated. A value of 1 indicates the first subpro-
gram (in lexical order), 2 indicates the second etc.
The effect of the pragma is to allow the compiler to eliminate the code or data
associated with the named entity. Any reference to an eliminated entity outside
the compilation unit it is defined in, causes a compile time or link time error.
The parameters of this pragma may be given in any order, as long as the usual
rules for use of named parameters and position parameters are used.
The intention of pragma Eliminate is to allow a program to be compiled in a
system independent manner, with unused entities eliminated, without the re-
quirement of modifying the source text. Normally the required set of Eliminate
pragmas is constructed automatically using the gnatelim tool. Elimination of
unused entities local to a compilation unit is automatic, without requiring the
use of pragma Eliminate.

12 GNAT Reference Manual

Note that the reason this pragma takes string literals where names might be
expected is that a pragma Eliminate can appear in a context where the relevant
names are not visible.

pragma Export_Exception
Syntax:

pragma Export_Exception (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL,]

[, [Form =>] Ada | VMS]

[, [Code =>] static_integer_EXPRESSION]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

This pragma is implemented only in the OpenVMS implementation of GNAT.
It causes the specified exception to be propagated outside of the Ada program,
so that it can be handled by programs written in other OpenVMS languages.
This pragma establishes an external name for an Ada exception and makes
the name available to the OpenVMS Linker as a global symbol. For further
details on this pragma, see the DEC Ada Language Reference Manual, section
13.9a3.2.

pragma Export_Function ...
Syntax:

pragma Export_Function (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]

[, [Parameter_Types =>] PARAMETER_TYPES]

[, [Result_Type =>] result_SUBTYPE_MARK]

[, [Mechanism =>] MECHANISM]

[, [Result_Mechanism =>] MECHANISM_NAME]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=

null

| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANISM ::=

MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=

[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=

Value

| Reference

| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

Chapter 1: Implementation Defined Pragmas 13

Use this pragma to make a function externally callable and optionally provide
information on mechanisms to be used for passing parameter and result values.
We recommend, for the purposes of improving portability, this pragma always
be used in conjunction with a separate pragma Export, which must precede the
pragma Export_Function. GNAT does not require a separate pragma Export,
but if none is present, Convention Ada is assumed, which is usually not what
is wanted, so it is usually appropriate to use this pragma in conjunction with
a Export or Convention pragma that specifies the desired foreign convention.
Pragma Export_Function (and Export, if present) must appear in the same
declarative region as the function to which they apply.
internal name must uniquely designate the function to which the pragma ap-
plies. If more than one function name exists of this name in the declarative part
you must use the Parameter_Types and Result_Type parameters is mandatory
to achieve the required unique designation. subtype marks in these parameters
must exactly match the subtypes in the corresponding function specification,
using positional notation to match parameters with subtype marks. Passing by
descriptor is supported only on the OpenVMS ports of GNAT.

pragma Export_Object ...
Syntax:

pragma Export_Object

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]

[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

This pragma designates an object as exported, and apart from the extended
rules for external symbols, is identical in effect to the use of the normal Export
pragma applied to an object. You may use a separate Export pragma (and you
probably should from the point of view of portability), but it is not required.
Size is syntax checked, but otherwise ignored by GNAT.

pragma Export_Procedure ...
Syntax:

pragma Export_Procedure (

[Internal =>] LOCAL_NAME

[, [External =>] EXTERNAL_SYMBOL]

[, [Parameter_Types =>] PARAMETER_TYPES]

[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=

null

| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANISM ::=

MECHANISM_NAME

14 GNAT Reference Manual

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=

[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=

Value

| Reference

| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Export_Function except that it applies to a proce-
dure rather than a function and the parameters Result_Type and Result_
Mechanism are not permitted. GNAT does not require a separate pragma
Export, but if none is present, Convention Ada is assumed, which is usually
not what is wanted, so it is usually appropriate to use this pragma in conjunc-
tion with a Export or Convention pragma that specifies the desired foreign
convention.

pragma Export_Valued_Procedure
Syntax:

pragma Export_Valued_Procedure (

[Internal =>] LOCAL_NAME

[, [External =>] EXTERNAL_SYMBOL]

[, [Parameter_Types =>] PARAMETER_TYPES]

[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=

null

| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANISM ::=

MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=

[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=

Value

| Reference

| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Export_Procedure except that the first parameter
of local name, which must be present, must be of mode OUT, and externally
the subprogram is treated as a function with this parameter as the result of
the function. GNAT provides for this capability to allow the use of OUT and IN
OUT parameters in interfacing to external functions (which are not permitted in
Ada functions). GNAT does not require a separate pragma Export, but if none

Chapter 1: Implementation Defined Pragmas 15

is present, Convention Ada is assumed, which is almost certainly not what is
wanted since the whole point of this pragma is to interface with foreign language
functions, so it is usually appropriate to use this pragma in conjunction with a
Export or Convention pragma that specifies the desired foreign convention.

pragma Extend_System
Syntax:

pragma Extend_System ([Name =>] IDENTIFIER);

This pragma is used to provide backwards compatibility with other implemen-
tations that extend the facilities of package System. In GNAT, System contains
only the definitions that are present in the Ada 95 RM. However, other imple-
mentations, notably the DEC Ada 83 implementation, provide many extensions
to package System.
For each such implementation accommodated by this pragma, GNAT provides
a package Aux_xxx , e.g. Aux_DEC for the DEC Ada 83 implementation, which
provides the required additional definitions. You can use this package in two
ways. You can with it in the normal way and access entities either by selection
or using a use clause. In this case no special processing is required.
However, if existing code contains references such as System.xxx where xxx
is an entity in the extended definitions provided in package System, you may
use this pragma to extend visibility in System in a non-standard way that
provides greater compatibility with the existing code. Pragma Extend_System
is a configuration pragma whose single argument is the name of the package
containing the extended definition (e.g. Aux_DEC for the DEC Ada case). A unit
compiled under control of this pragma will be processed using special visibility
processing that looks in package System.Aux_xxx where Aux_xxx is the pragma
argument for any entity referenced in package System, but not found in package
System.
You can use this pragma either to access a predefined System extension supplied
with the compiler, for example Aux_DEC or you can construct your own extension
unit following the above definition. Note that such a package is a child of System
and thus is considered part of the implementation. To compile it you will have
to use the appropriate switch for compiling system units. See the GNAT User’s
Guide for details.

pragma External
Syntax:

pragma External (

[Convention =>] convention_IDENTIFIER,

[Entity =>] local_NAME

[, [External_Name =>] static_string_EXPRESSION]

[, [Link_Name =>] static_string_EXPRESSION]);

This pragma is identical in syntax and semantics to pragma Export as defined
in the Ada Reference Manual. It is provided for compatibility with some Ada
83 compilers that used this pragma for exactly the same purposes as pragma
Export before the latter was standardized.

pragma External_Name_Casing
Syntax:

16 GNAT Reference Manual

pragma External_Name_Casing (

Uppercase | Lowercase

[, Uppercase | Lowercase | As_Is]);

This pragma provides control over the casing of external names associated with
Import and Export pragmas. There are two cases to consider:

Implicit external names
Implicit external names are derived from identifiers. The most com-
mon case arises when a standard Ada 95 Import or Export pragma
is used with only two arguments, as in:

pragma Import (C, C_Routine);

Since Ada is a case insensitive language, the spelling of the identifier
in the Ada source program does not provide any information on the
desired casing of the external name, and so a convention is needed.
In GNAT the default treatment is that such names are converted
to all lower case letters. This corresponds to the normal C style
in many environments. The first argument of pragma External_
Name_Casing can be used to control this treatment. If Uppercase
is specified, then the name will be forced to all uppercase letters.
If Lowercase is specified, then the normal default of all lower case
letters will be used.
This same implicit treatment is also used in the case of extended
DEC Ada 83 compatible Import and Export pragmas where an
external name is explicitly specified using an identifier rather than
a string.

Explicit external names
Explicit external names are given as string literals. The most com-
mon case arises when a standard Ada 95 Import or Export pragma
is used with three arguments, as in:

pragma Import (C, C_Routine, "C_routine");

In this case, the string literal normally provides the exact casing
required for the external name. The second argument of pragma
External_Name_Casing may be used to modify this behavior. If
Uppercase is specified, then the name will be forced to all upper-
case letters. If Lowercase is specified, then the name will be forced
to all lowercase letters. A specification of As_Is provides the nor-
mal default behavior in which the casing is taken from the string
provided.

This pragma may appear anywhere that a pragma is valid. In particular, it can
be used as a configuration pragma in the ‘gnat.adc’ file, in which case it applies
to all subsequent compilations, or it can be used as a program unit pragma, in
which case it only applies to the current unit, or it can be used more locally to
control individual Import/Export pragmas.
It is primarily intended for use with OpenVMS systems, where many compilers
convert all symbols to upper case by default. For interfacing to such compilers
(e.g. the DEC C compiler), it may be convenient to use the pragma:

Chapter 1: Implementation Defined Pragmas 17

pragma External_Name_Casing (Uppercase, Uppercase);

to enforce the upper casing of all external symbols.

pragma Finalize_Storage_Only
Syntax:

pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME);

This pragma allows the compiler not to emit a Finalize call for objects defined at
the library level. This is mostly useful for types where finalization is only used
to deal with storage reclamation since in most environments it is not necessary
to reclaim memory just before terminating execution, hence the name.

pragma Float_Representation
Syntax:

pragma Float_Representation (FLOAT_REP);

FLOAT_REP ::= VAX_Float | IEEE_Float

This pragma is implemented only in the OpenVMS implementation of GNAT.
It allows control over the internal representation chosen for the predefined float-
ing point types declared in the packages Standard and System. For further
details on this pragma, see the DEC Ada Language Reference Manual, section
3.5.7a. Note that to use this pragma, the standard runtime libraries must be re-
compiled. See the description of the GNAT LIBRARY command in the OpenVMS
version of the GNAT Users Guide for details on the use of this command.

pragma Ident
Syntax:

pragma Ident (static_string_EXPRESSION);

This pragma provides a string identification in the generated object file, if the
system supports the concept of this kind of identification string. The maximum
permitted length of the string literal is 31 characters. This pragma is allowed
only in the outermost declarative part or declarative items of a compilation
unit. On OpenVMS systems, the effect of the pragma is identical to the effect
of the DEC Ada 83 pragma of the same name.

pragma Import_Exception
Syntax:

pragma Import_Exception (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL,]

[, [Form =>] Ada | VMS]

[, [Code =>] static_integer_EXPRESSION]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

This pragma is implemented only in the OpenVMS implementation of GNAT.
It allows OpenVMS conditions (for example, from OpenVMS system services
or other OpenVMS languages) to be propagated to Ada programs as Ada ex-
ceptions. The pragma specifies that the exception associated with an exception
declaration in an Ada program be defined externally (in non-Ada code). For

18 GNAT Reference Manual

further details on this pragma, see the DEC Ada Language Reference Manual,
section 13.9a.3.1.

pragma Import_Function ...
Syntax:

pragma Import_Function (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]

[, [Parameter_Types =>] PARAMETER_TYPES]

[, [Result_Type =>] SUBTYPE_MARK]

[, [Mechanism =>] MECHANISM]

[, [Result_Mechanism =>] MECHANISM_NAME]

[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=

null

| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANISM ::=

MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=

[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=

Value

| Reference

| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is used in conjunction with a pragma Import to specify addi-
tional information for an imported function. The pragma Import (or equiva-
lent pragma Interface) must precede the Import_Function pragma and both
must appear in the same declarative part as the function specification.

The Internal Name argument must uniquely designate the function to which
the pragma applies. If more than one function name exists of this name in the
declarative part you must use the Parameter_Types and Result Type param-
eters to achieve the required unique designation. Subtype marks in these pa-
rameters must exactly match the subtypes in the corresponding function spec-
ification, using positional notation to match parameters with subtype marks.

You may optionally use the Mechanism and Result Mechanism parameters to
specify passing mechanisms for the parameters and result. If you specify a single
mechanism name, it applies to all parameters. Otherwise you may specify a
mechanism on a parameter by parameter basis using either positional or named
notation. If the mechanism is not specified, the default mechanism is used.

Passing by descriptor is supported only on the to OpenVMS ports of GNAT.

Chapter 1: Implementation Defined Pragmas 19

First_Optional_Parameter applies only to OpenVMS ports of GNAT. It
specifies that the designated parameter and all following parameters are op-
tional, meaning that they are not passed at the generated code level (this is
distinct from the notion of optional parameters in Ada where the parameters
are passed anyway with the designated optional parameters). All optional pa-
rameters must be of mode IN and have default parameter values that are either
known at compile time expressions, or uses of the ’Null_Parameter attribute.

pragma Import_Object
Syntax:

pragma Import_Object

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL],

[, [Size =>] EXTERNAL_SYMBOL])

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

This pragma designates an object as imported, and apart from the extended
rules for external symbols, is identical in effect to the use of the normal Import
pragma applied to an object. Unlike the subprogram case, you need not use a
separate Import pragma, although you may do so (and probably should do so
from a portability point of view). size is syntax checked, but otherwise ignored
by GNAT.

pragma Import_Procedure
Syntax:

pragma Import_Procedure (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]

[, [Parameter_Types =>] PARAMETER_TYPES]

[, [Mechanism =>] MECHANISM]

[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=

null

| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANISM ::=

MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=

[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=

Value

| Reference

| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

20 GNAT Reference Manual

This pragma is identical to Import_Function except that it applies to a pro-
cedure rather than a function and the parameters Result_Type and Result_
Mechanism are not permitted.

pragma Import_Valued_Procedure ...
Syntax:

pragma Import_Valued_Procedure (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]

[, [Parameter_Types =>] PARAMETER_TYPES]

[, [Mechanism =>] MECHANISM]

[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=

null

| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANISM ::=

MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=

[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=

Value

| Reference

| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Import_Procedure except that the first parameter
of local name, which must be present, must be of mode OUT, and externally
the subprogram is treated as a function with this parameter as the result of
the function. The purpose of this capability is to allow the use of OUT and IN
OUT parameters in interfacing to external functions (which are not permitted in
Ada functions). You may optionally use the Mechanism parameters to specify
passing mechanisms for the parameters. If you specify a single mechanism
name, it applies to all parameters. Otherwise you may specify a mechanism on
a parameter by parameter basis using either positional or named notation. If
the mechanism is not specified, the default mechanism is used.
Note that it is important to use this pragma in conjunction with a separate
pragma Import that specifies the desired convention, since otherwise the default
convention is Ada, which is almost certainly not what is required.

pragma Initialize_Scalars
Syntax:

pragma Initialize_Scalars;

This pragma is similar to Normalize_Scalars conceptually but has two im-
portant differences. First, there is no requirement for the pragma to be used

Chapter 1: Implementation Defined Pragmas 21

uniformly in all units of a partition, in particular, it is fine to use this just for
some or all of the application units of a partition, without needing to recompile
the run-time library.
In the case where some units are compiled with the pragma, and some without,
then a declaration of a variable where the type is defined in package Standard or
is locally declared will always be subject to initialization, as will any declaration
of a scalar variable. For composite variables, whether the variable is initialized
may also depend on whether the package in which the type of the variable is
declared is compiled with the pragma.
The other important difference is that there is control over the value used for
initializing scalar objects. At bind time, you can select whether to initialize
with invalid values (like Normalize Scalars), or with high or low values, or with
a specified bit pattern. See the users guide for binder options for specifying
these cases.
This means that you can compile a program, and then without having to recom-
pile the program, you can run it with different values being used for initializing
otherwise uninitialized values, to test if your program behavior depends on the
choice. Of course the behavior should not change, and if it does, then most
likely you have an erroneous reference to an uninitialized value.
Note that pragma Initialize_Scalars is particularly useful in conjunction
with the enhanced validity checking that is now provided in GNAT, which
checks for invalid values under more conditions. Using this feature (see de-
scription of the -gnatv flag in the users guide) in conjunction with pragma
Initialize_Scalars provides a powerful new tool to assist in the detection of
problems caused by uninitialized variables.

pragma Inline_Always
Syntax:

pragma Inline_Always (NAME [, NAME]);

Similar to pragma Inline except that inlining is not subject to the use of option
-gnatn for inter-unit inlining.

pragma Inline_Generic
Syntax:

pragma Inline_Generic (generic_package_NAME)

This is implemented for compatibility with DEC Ada 83 and is recognized, but
otherwise ignored, by GNAT. All generic instantiations are inlined by default
when using GNAT.

pragma Interface
Syntax:

pragma Interface (

[Convention =>] convention_identifier,

[Entity =>] local_name

[, [External_Name =>] static_string_expression],

[, [Link_Name =>] static_string_expression]);

This pragma is identical in syntax and semantics to the standard Ada 95 pragma
Import. It is provided for compatibility with Ada 83. The definition is upwards

22 GNAT Reference Manual

compatible both with pragma Interface as defined in the Ada 83 Reference
Manual, and also with some extended implementations of this pragma in certain
Ada 83 implementations.

pragma Interface_Name
Syntax:

pragma Interface_Name (

[Entity =>] LOCAL_NAME

[, [External_Name =>] static_string_EXPRESSION]

[, [Link_Name =>] static_string_EXPRESSION]);

This pragma provides an alternative way of specifying the interface name for
an interfaced subprogram, and is provided for compatibility with Ada 83 com-
pilers that use the pragma for this purpose. You must provide at least one of
External Name or Link Name.

pragma License
Syntax:

pragma License (Unrestricted | GPL | Modified_GPL | Restricted);

This pragma is provided to allow automated checking for appropriate license
conditions with respect to the standard and modified GPL. A pragma License,
which is a configuration pragma that typically appears at the start of a source
file or in a separate ‘gnat.adc’ file, specifies the licensing conditions of a unit
as follows:
• Unrestricted This is used for a unit that can be freely used with no license

restrictions. Examples of such units are public domain units, and units
from the Ada Reference Manual.

• GPL This is used for a unit that is licensed under the unmodified GPL,
and which therefore cannot be with’ed by a restricted unit.

• Modified GPL This is used for a unit licensed under the GNAT modified
GPL that includes a special exception paragraph that specifically permits
the inclusion of the unit in programs without requiring the entire program
to be released under the GPL. This is the license used for the GNAT run-
time which ensures that the run-time can be used freely in any program
without GPL concerns.

• Restricted This is used for a unit that is restricted in that it is not permitted
to depend on units that are licensed under the GPL. Typical examples
are proprietary code that is to be released under more restrictive license
conditions. Note that restricted units are permitted to with units which
are licensed under the modified GPL (this is the whole point of the modified
GPL).

Normally a unit with no License pragma is considered to have an unknown
license, and no checking is done. However, standard GNAT headers are recog-
nized, and license information is derived from them as follows.

A GNAT license header starts with a line containing 78 hyphens. The fol-
lowing comment text is searched for the appearence of any of the following
strings.

Chapter 1: Implementation Defined Pragmas 23

If the string “GNU General Public License” is found, then the unit is
assumed to have GPL license, unless the string “As a special exception”
follows, in which case the license is assumed to be modified GPL.

If one of the strings “This specification is adapated from the Ada Semantic
Interface” or “This specification is derived from the Ada Reference Manual”
is found then the unit is assumed to be unrestricted.

These default actions means that a program with a restricted license pragma
will automatically get warnings if a GPL unit is inappropriately with’ed. For
example, the program:

with Sem_Ch3;

with GNAT.Sockets;

procedure Secret_Stuff is

...

end Secret_Stuff

if compiled with pragma License (Restricted) in a ‘gnat.adc’ file will gener-
ate the warning:

1. with Sem_Ch3;

|

>>> license of withed unit "Sem_Ch3" is incompatible

2. with GNAT.Sockets;

3. procedure Secret_Stuff is

Here we get a warning on Sem_Ch3 since it is part of the GNAT compiler and
is licensed under the GPL, but no warning for GNAT.Sockets which is part of
the GNAT run time, and is therefore licensed under the modified GPL.

pragma Link_With
Syntax:

pragma Link_With (static_string_EXPRESSION {,static_string_EXPRESSION});

This pragma is provided for compatibility with certain Ada 83 compilers. It has
exactly the same effect as pragma Linker_Options except that spaces occurring
within one of the string expressions are treated as separators. For example, in
the following case:

pragma Link_With ("-labc -ldef");

results in passing the strings -labc and -ldef as two separate arguments to
the linker. In addition pragma Link With allows multiple arguments, with the
same effect as successive pragmas.

pragma Linker_Alias
Syntax:

pragma Linker_Alias (

[Entity =>] LOCAL_NAME

[Alias =>] static_string_EXPRESSION);

This pragma establishes a linker alias for the given named entity. For further
details on the exact effect, consult the GCC manual.

pragma Linker_Section
Syntax:

24 GNAT Reference Manual

pragma Linker_Section (

[Entity =>] LOCAL_NAME

[Section =>] static_string_EXPRESSION);

This pragma specifies the name of the linker section for the given entity. For
further details on the exact effect, consult the GCC manual.

pragma No_Run_Time
Syntax:

pragma No_Run_Time;

This is a configuration pragma that makes sure the user code does not use nor
need anything from the GNAT run time. This is mostly useful in context where
code certification is required. Please consult the GNAT Pro High-Integrity
Edition User’s Guide for additional information.

pragma Normalize_Scalars
Syntax:

pragma Normalize_Scalars;

This is a language defined pragma which is fully implemented in GNAT. The
effect is to cause all scalar objects that are not otherwise initialized to be ini-
tialized. The initial values are implementation dependent and are as follows:

Standard.Character
Objects whose root type is Standard.Character are initialized to
Character’Last. This will be out of range of the subtype only if the
subtype range excludes this value.

Standard.Wide_Character
Objects whose root type is Standard.Wide Character are initialized
to Wide Character’Last. This will be out of range of the subtype
only if the subtype range excludes this value.

Integer types
Objects of an integer type are initialized to base type’First, where
base type is the base type of the object type. This will be out of
range of the subtype only if the subtype range excludes this value.
For example, if you declare the subtype:

subtype Ityp is integer range 1 .. 10;

then objects of type x will be initialized to Integer’First, a negative
number that is certainly outside the range of subtype Ityp.

Real types
Objects of all real types (fixed and floating) are initialized to
base type’First, where base Type is the base type of the object
type. This will be out of range of the subtype only if the subtype
range excludes this value.

Modular types
Objects of a modular type are initialized to typ’Last. This will be
out of range of the subtype only if the subtype excludes this value.

Chapter 1: Implementation Defined Pragmas 25

Enumeration types
Objects of an enumeration type are initialized to all one-bits, i.e.
to the value 2 ** typ’Size - 1. This will be out of range of the
enumeration subtype in all cases except where the subtype contains
exactly 2**8, 2**16, or 2**32 elements.

pragma Long_Float
Syntax:

pragma Long_Float (FLOAT_FORMAT);

FLOAT_FORMAT ::= D_Float | G_Float

This pragma is implemented only in the OpenVMS implementation of GNAT.
It allows control over the internal representation chosen for the predefined type
Long_Float and for floating point type representations with digits specified
in the range 7 through 15. For further details on this pragma, see the DEC
Ada Language Reference Manual, section 3.5.7b. Note that to use this pragma,
the standard runtime libraries must be recompiled. See the description of the
GNAT LIBRARY command in the OpenVMS version of the GNAT User’s Guide
for details on the use of this command.

pragma Machine_Attribute ...
Syntax:

pragma Machine_Attribute (

[Attribute_Name =>] string_EXPRESSION,

[Entity =>] LOCAL_NAME);

Machine dependent attributes can be specified for types and/or declarations.
Currently only subprogram entities are supported. This pragma is semanti-
cally equivalent to __attribute__((string_expression)) in GNU C, where
string_expression is recognized by the GNU C macros VALID_MACHINE_
TYPE_ATTRIBUTE and VALID_MACHINE_DECL_ATTRIBUTE which are defined in
the configuration header file ‘tm.h’ for each machine. See the GCC manual for
further information.

pragma Main_Storage
Syntax:

pragma Main_Storage

(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);

MAIN_STORAGE_OPTION ::=

[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION

| [TOP_GUARD =>] static_SIMPLE_EXPRESSION

This pragma is provided for compatibility with OpenVMS Vax Systems. It has
no effect in GNAT, other than being syntax checked. Note that the pragma
also has no effect in DEC Ada 83 for OpenVMS Alpha Systems.

pragma No_Return
Syntax:

pragma No_Return (procedure_LOCAL_NAME);

procedure local NAME must refer to one or more procedure declarations in
the current declarative part. A procedure to which this pragma is applied

26 GNAT Reference Manual

may not contain any explicit return statements, and also may not contain any
implicit return statements from falling off the end of a statement sequence. One
use of this pragma is to identify procedures whose only purpose is to raise an
exception.
Another use of this pragma is to suppress incorrect warnings about missing
returns in functions, where the last statement of a function statement sequence
is a call to such a procedure.

pragma Passive
Syntax:

pragma Passive ([Semaphore | No]);

Syntax checked, but otherwise ignored by GNAT. This is recognized for com-
patibility with DEC Ada 83 implementations, where it is used within a task
definition to request that a task be made passive. If the argument Semaphore is
present, or no argument is omitted, then DEC Ada 83 treats the pragma as an
assertion that the containing task is passive and that optimization of context
switch with this task is permitted and desired. If the argument No is present,
the task must not be optimized. GNAT does not attempt to optimize any tasks
in this manner (since protected objects are available in place of passive tasks).

pragma Polling
Syntax:

pragma Polling (ON | OFF);

This pragma controls the generation of polling code. This is normally off. If
pragma Polling (ON) is used then periodic calls are generated to the routine
Ada.Exceptions.Poll. This routine is a separate unit in the runtime library,
and can be found in file ‘a-excpol.adb’.
Pragma Polling can appear as a configuration pragma (for example it can be
placed in the ‘gnat.adc’ file) to enable polling globally, or it can be used in the
statement or declaration sequence to control polling more locally.
A call to the polling routine is generated at the start of every loop and at the
start of every subprogram call. This guarantees that the Poll routine is called
frequently, and places an upper bound (determined by the complexity of the
code) on the period between two Poll calls.
The primary purpose of the polling interface is to enable asynchronous aborts on
targets that cannot otherwise support it (for example Windows NT), but it may
be used for any other purpose requiring periodic polling. The standard version
is null, and can be replaced by a user program. This will require re-compilation
of the Ada.Exceptions package that can be found in files ‘a-except.ads’ and
‘a-except.adb’.
A standard alternative unit (in file ‘4wexcpol.adb’ in the standard GNAT
distribution) is used to enable the asynchronous abort capability on targets
that do not normally support the capability. The version of Poll in this file
makes a call to the appropriate runtime routine to test for an abort condition.
Note that polling can also be enabled by use of the -gnatP switch. See the
GNAT User’s Guide for details.

Chapter 1: Implementation Defined Pragmas 27

pragma Propagate_Exceptions
Syntax:

pragma Propagate_Exceptions (subprogram_LOCAL_NAME);

This pragma indicates that the given entity, which is the name of an imported
foreign-language subprogram may receive an Ada exception, and that the ex-
ception should be propagated. It is relevant only if zero cost exception handling
is in use, and is thus never needed if the alternative longjmp / setjmp imple-
mentation of exceptions is used (although it is harmless to use it in such cases).
The implementation of fast exceptions always properly propagates exceptions
through Ada code, as described in the Ada Reference Manual. However, this
manual is silent about the propagation of exceptions through foreign code. For
example, consider the situation where P1 calls P2, and P2 calls P3, where P1
and P3 are in Ada, but P2 is in C. P3 raises an Ada exception. The question is
whether or not it will be propagated through P2 and can be handled in P1.
For the longjmp / setjmp implementation of exceptions, the answer is always
yes. For some targets on which zero cost exception handling is implemented,
the answer is also always yes. However, there are some targets, notably in the
current version all x86 architecture targets, in which the answer is that such
propagation does not happen automatically. If such propagation is required
on these targets, it is mandatory to use Propagate_Exceptions to name all
foreign language routines through which Ada exceptions may be propagated.

pragma Psect_Object
Syntax:

pragma Psect_Object

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]

[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL ::=

IDENTIFIER

| static_string_EXPRESSION

This pragma is identical in effect to pragma Common_Object.

pragma Pure_Function
Syntax:

pragma Pure_Function ([Entity =>] function_LOCAL_NAME);

This pragma appears in the same declarative part as a function declaration (or
a set of function declarations if more than one overloaded declaration exists,
in which case the pragma applies to all entities). If specifies that the function
Entity is to be considered pure for the purposes of code generation. This means
that the compiler can assume that there are no side effects, and in particular
that two calls with identical arguments produce the same result. It also means
that the function can be used in an address clause.
Note that, quite deliberately, there are no static checks to try to ensure that
this promise is met, so Pure_Function can be used with functions that are
conceptually pure, even if they do modify global variables. For example, a
square root function that is instrumented to count the number of times it is

28 GNAT Reference Manual

called is still conceptually pure, and can still be optimized, even though it
modifies a global variable (the count). Memo functions are another example
(where a table of previous calls is kept and consulted to avoid re-computation).

Note: Most functions in a Pure package are automatically pure, and there is
no need to use pragma Pure_Function for such functions. An exception is
any function that has at least one formal of type System.Address or a type
derived from it. Such functions are not considered pure by default, since the
compiler assumes that the Address parameter may be functioning as a pointer
and that the referenced data may change even if the address value does not.
The use of pragma Pure_Function for such a function will override this default
assumption, and cause the compiler to treat such a function as pure.

Note: If pragma Pure_Function is applied to a renamed function, it applies to
the underlying renamed function. This can be used to disambiguate cases of
overloading where some but not all functions in a set of overloaded functions
are to be designated as pure.

pragma Ravenscar
Syntax:

pragma Ravenscar

A configuration pragma that establishes the following set of restrictions:

No_Abort_Statements
[RM D.7] There are no abort statements, and there are no calls to
Task Identification.Abort Task.

No_Select_Statements
There are no select statements.

No_Task_Hierarchy
[RM D.7] All (non-environment) tasks depend directly on the en-
vironment task of the partition.

No_Task_Allocators
[RM D.7] There are no allocators for task types or types containing
task subcomponents.

No_Dynamic_Priorities
[RM D.7] There are no semantic dependencies on the package Dy-
namic Priorities.

No_Terminate_Alternatives
[RM D.7] There are no selective accepts with termi-
nate alternatives

No_Dynamic_Interrupts
There are no semantic dependencies on Ada.Interrupts.

No_Protected_Type_Allocators
There are no allocators for protected types or types containing pro-
tected subcomponents.

Chapter 1: Implementation Defined Pragmas 29

No_Local_Protected_Objects
Protected objects and access types that designate such objects shall
be declared only at library level.

No_Requeue
Requeue statements are not allowed.

No_Calendar
There are no semantic dependencies on the package Ada.Calendar.

No_Relative_Delay
There are no delay relative statements.

No_Task_Attributes
There are no semantic dependencies on the Ada.Task Attributes
package and there are no references to the attributes Callable and
Terminated [RM 9.9].

Static_Storage_Size
The expression for pragma Storage Size is static.

Boolean_Entry_Barriers
Entry barrier condition expressions shall be boolean objects which
are declared in the protected type which contains the entry.

Max_Asynchronous_Select_Nesting = 0
[RM D.7] Specifies the maximum dynamic nesting level of asyn-
chronous selects. A value of zero prevents the use of any asyn-
chronous select.

Max_Task_Entries = 0
[RM D.7] Specifies the maximum number of entries per task. The
bounds of every entry family of a task unit shall be static, or shall be
defined by a discriminant of a subtype whose corresponding bound
is static. A value of zero indicates that no rendezvous are possible.
For the Ravenscar pragma, the value of Max Task Entries is always
0 (zero).

Max_Protected_Entries = 1
[RM D.7] Specifies the maximum number of entries per protected
type. The bounds of every entry family of a protected unit shall
be static, or shall be defined by a discriminant of a subtype whose
corresponding bound is static. For the Ravenscar pragma the value
of Max Protected Entries is always 1.

Max_Select_Alternatives = 0
[RM D.7] Specifies the maximum number of alternatives in a selec-
tive accept. For the Ravenscar pragma the value if always 0.

No_Task_Termination
Tasks which terminate are erroneous.

30 GNAT Reference Manual

No_Entry_Queue
No task can be queued on a protected entry. Note that this re-
strictions is checked at run time. The violation of this restriction
generates a Program Error exception.

This set of restrictions corresponds to the definition of the “Ravenscar Profile”
for limited tasking, devised and published by the International Real-Time Ada
Workshop, 1997.
The above set is a superset of the restrictions provided by pragma Restricted_
Run_Time, it includes six additional restrictions (Boolean_Entry_Barriers,
No_Select_Statements, No_Calendar, Static_Storage_Size, No_Relative_
Delay and No_Task_Termination). This means that pragma Ravenscar, like
the pragma Restricted_Run_Time, automatically causes the use of a simplified,
more efficient version of the tasking run-time system.

pragma Restricted_Run_Time
Syntax:

pragma Restricted_Run_Time

A configuration pragma that establishes the following set of restrictions:
• No Abort Statements
• No Asynchronous Control
• No Entry Queue
• No Task Hierarchy
• No Task Allocators
• No Dynamic Priorities
• No Terminate Alternatives
• No Dynamic Interrupts
• No Protected Type Allocators
• No Local Protected Objects
• No Requeue
• No Task Attributes
• Max Asynchronous Select Nesting = 0
• Max Task Entries = 0
• Max Protected Entries = 1
• Max Select Alternatives = 0

This set of restrictions causes the automatic selection of a simplified version of
the run time that provides improved performance for the limited set of tasking
functionality permitted by this set of restrictions.

pragma Share_Generic
Syntax:

pragma Share_Generic (NAME {, NAME});

This pragma is recognized for compatibility with other Ada compilers but is
ignored by GNAT. GNAT does not provide the capability for sharing of generic

Chapter 1: Implementation Defined Pragmas 31

code. All generic instantiations result in making an inlined copy of the template
with appropriate substitutions.

pragma Source_File_Name
Syntax:

pragma Source_File_Name (

[Unit_Name =>] unit_NAME,

Spec_File_Name => STRING_LITERAL);

pragma Source_File_Name (

[Unit_Name =>] unit_NAME,

Body_File_Name => STRING_LITERAL);

Use this to override the normal naming convention. It is a configuration pragma,
and so has the usual applicability of configuration pragmas (i.e. it applies to
either an entire partition, or to all units in a compilation, or to a single unit,
depending on how it is used. unit name is mapped to file name literal. The
identifier for the second argument is required, and indicates whether this is the
file name for the spec or for the body.
Another form of the Source_File_Name pragma allows the specification of pat-
terns defining alternative file naming schemes to apply to all files.

pragma Source_File_Name

(Spec_File_Name => STRING_LITERAL

[,Casing => CASING_SPEC]

[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name

(Body_File_Name => STRING_LITERAL

[,Casing => CASING_SPEC]

[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name

(Subunit_File_Name => STRING_LITERAL

[,Casing => CASING_SPEC]

[,Dot_Replacement => STRING_LITERAL]);

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The first argument is a pattern that contains a single asterisk indicating the
point at which the unit name is to be inserted in the pattern string to form the
file name. The second argument is optional. If present it specifies the casing
of the unit name in the resulting file name string. The default is lower case.
Finally the third argument allows for systematic replacement of any dots in the
unit name by the specified string literal.
For more details on the use of the Source_File_Name pragma, see the sec-
tions “Using Other File Names” and “Alternative File Naming Schemes” in the
GNAT User’s Guide.

pragma Source_Reference
Syntax:

pragma Source_Reference (INTEGER_LITERAL,

STRING_LITERAL);

This pragma must appear as the first line of a source file. integer literal is the
logical line number of the line following the pragma line (for use in error mes-

32 GNAT Reference Manual

sages and debugging information). string literal is a static string constant that
specifies the file name to be used in error messages and debugging information.
This is most notably used for the output of gnatchop with the -r switch, to
make sure that the original unchopped source file is the one referred to.

The second argument must be a string literal, it cannot be a static string
expression other than a string literal. This is because its value is needed for
error messages issued by all phases of the compiler.

pragma Stream_Convert
Syntax:

pragma Stream_Convert (

[Entity =>] type_LOCAL_NAME,

[Read =>] function_NAME,

[Write =>] function NAME);

This pragma provides an efficient way of providing stream functions for types
defined in packages. Not only is it simpler to use than declaring the necessary
functions with attribute representation clauses, but more significantly, it allows
the declaration to made in such a way that the stream packages are not loaded
unless they are needed. The use of the Stream Convert pragma adds no over-
head at all, unless the stream attributes are actually used on the designated
type.

The first argument specifies the type for which stream functions are provided.
The second parameter provides a function used to read values of this type. It
must name a function whose argument type may be any subtype, and whose
returned type must be the type given as the first argument to the pragma.

The meaning of the Read parameter is that if a stream attribute directly or
indirectly specifies reading of the type given as the first parameter, then a value
of the type given as the argument to the Read function is read from the stream,
and then the Read function is used to convert this to the required target type.

Similarly the Write parameter specifies how to treat write attributes that di-
rectly or indirectly apply to the type given as the first parameter. It must have
an input parameter of the type specified by the first parameter, and the return
type must be the same as the input type of the Read function. The effect is to
first call the Write function to convert to the given stream type, and then write
the result type to the stream.

The Read and Write functions must not be overloaded subprograms. If nec-
essary renamings can be supplied to meet this requirement. The usage of this
attribute is best illustrated by a simple example, taken from the GNAT imple-
mentation of package Ada.Strings.Unbounded:

function To_Unbounded (S : String)

return Unbounded_String

renames To_Unbounded_String;

pragma Stream_Convert

(Unbounded_String, To_Unbounded, To_String);

The specifications of the referenced functions, as given in the Ada 95 Reference
Manual are:

Chapter 1: Implementation Defined Pragmas 33

function To_Unbounded_String (Source : String)

return Unbounded_String;

function To_String (Source : Unbounded_String)

return String;

The effect is that if the value of an unbounded string is written to a stream,
then the representation of the item in the stream is in the same format used
for Standard.String, and this same representation is expected when a value
of this type is read from the stream.

pragma Style_Checks
Syntax:

pragma Style_Checks (string_LITERAL | ALL_CHECKS |

On | Off [, LOCAL_NAME]);

This pragma is used in conjunction with compiler switches to control the built
in style checking provided by GNAT. The compiler switches, if set provide an
initial setting for the switches, and this pragma may be used to modify these
settings, or the settings may be provided entirely by the use of the pragma.
This pragma can be used anywhere that a pragma is legal, including use as a
configuration pragma (including use in the ‘gnat.adc’ file).

The form with a string literal specifies which style options are to be activated.
These are additive, so they apply in addition to any previously set style check
options. The codes for the options are the same as those used in the -gnaty
switch to gcc or gnatmake. For example the following two methods can be used
to enable layout checking:

pragma Style_Checks ("l");

gcc -c -gnatyl ...

The form ALL CHECKS activates all standard checks (its use is equivalent
to the use of the gnaty switch with no options. See GNAT User’s Guide for
details.

The forms with Off and On can be used to temporarily disable style checks as
shown in the following example:

pragma Style_Checks ("k"); -- requires keywords in lower case

pragma Style_Checks (Off); -- turn off style checks

NULL; -- this will not generate an error message

pragma Style_Checks (On); -- turn style checks back on

NULL; -- this will generate an error message

Finally the two argument form is allowed only if the first argument is On or
Off. The effect is to turn of semantic style checks for the specified entity, as
shown in the following example:

pragma Style_Checks ("r"); -- require consistency of identifier casing

Arg : Integer;

Rf1 : Integer := ARG; -- incorrect, wrong case

pragma Style_Checks (Off, Arg);

Rf2 : Integer := ARG; -- OK, no error

34 GNAT Reference Manual

pragma Subtitle
Syntax:

pragma Subtitle ([Subtitle =>] STRING_LITERAL);

This pragma is recognized for compatibility with other Ada compilers but is
ignored by GNAT.

pragma Suppress_All
Syntax:

pragma Suppress_All;

This pragma can only appear immediately following a compilation unit. The
effect is to apply Suppress (All_Checks) to the unit which it follows. This
pragma is implemented for compatibility with DEC Ada 83 usage. The use
of pragma Suppress (All_Checks) as a normal configuration pragma is the
preferred usage in GNAT.

pragma Suppress_Initialization
Syntax:

pragma Suppress_Initialization ([Entity =>] type_Name);

This pragma suppresses any implicit or explicit initialization associated with
the given type name for all variables of this type.

pragma Task_Info
Syntax

pragma Task_Info (EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and
applies to the task in which it appears. The argument must be of type
System.Task_Info.Task_Info_Type. The Task_Info pragma provides
system dependent control over aspect of tasking implementation, for example,
the ability to map tasks to specific processors. For details on the facilities
available for the version of GNAT that you are using, see the documentation
in the specification of package System.Task Info in the runtime library.

pragma Task_Name
Syntax

pragma Task_Name (string_EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and ap-
plies to the task in which it appears. The argument must be of type String,
and provides a name to be used for the task instance when the task is cre-
ated. Note that this expression is not required to be static, and in particular,
it can contain references to task discriminants. This facility can be used to
provide different names for different tasks as they are created, as illustrated in
the example below.
The task name is recorded internally in the run-time structures and is
accessible to tools like the debugger. In addition the routine Ada.Task_
Identification.Image will return this string, with a unique task address
appended.

-- Example of the use of pragma Task_Name

Chapter 1: Implementation Defined Pragmas 35

with Ada.Task_Identification;

use Ada.Task_Identification;

with Text_IO; use Text_IO;

procedure t3 is

type Astring is access String;

task type Task_Typ (Name : access String) is

pragma Task_Name (Name.all);

end Task_Typ;

task body Task_Typ is

Nam : constant String := Image (Current_Task);

begin

Put_Line ("-->" & Nam (1 .. 14) & "<--");

end Task_Typ;

type Ptr_Task is access Task_Typ;

Task_Var : Ptr_Task;

begin

Task_Var :=

new Task_Typ (new String’("This is task 1"));

Task_Var :=

new Task_Typ (new String’("This is task 2"));

end;

pragma Task_Storage
Syntax:

pragma Task_Storage

[Task_Type =>] LOCAL_NAME,

[Top_Guard =>] static_integer_EXPRESSION);

This pragma specifies the length of the guard area for tasks. The guard area
is an additional storage area allocated to a task. A value of zero means that
either no guard area is created or a minimal guard area is created, depending
on the target. This pragma can appear anywhere a Storage_Size attribute
definition clause is allowed for a task type.

pragma Time_Slice
Syntax:

pragma Time_Slice (static_duration_EXPRESSION);

For implementations of GNAT on operating systems where it is possible to
supply a time slice value, this pragma may be used for this purpose. It is
ignored if it is used in a system that does not allow this control, or if it appears
in other than the main program unit. Note that the effect of this pragma is
identical to the effect of the DEC Ada 83 pragma of the same name when
operating under OpenVMS systems.

pragma Title
Syntax:

pragma Title (TITLING_OPTION [, TITLING OPTION]);

TITLING_OPTION ::=

[Title =>] STRING_LITERAL,

36 GNAT Reference Manual

| [Subtitle =>] STRING_LITERAL

Syntax checked but otherwise ignored by GNAT. This is a listing control
pragma used in DEC Ada 83 implementations to provide a title and/or subtitle
for the program listing. The program listing generated by GNAT does not have
titles or subtitles.
Unlike other pragmas, the full flexibility of named notation is allowed for this
pragma, i.e. the parameters may be given in any order if named notation is
used, and named and positional notation can be mixed following the normal
rules for procedure calls in Ada.

pragma Unchecked_Union
Syntax:

pragma Unchecked_Union (first_subtype_LOCAL_NAME)

This pragma is used to declare that the specified type should be represented in a
manner equivalent to a C union type, and is intended only for use in interfacing
with C code that uses union types. In Ada terms, the named type must obey
the following rules:
• It is a non-tagged non-limited record type.
• It has a single discrete discriminant with a default value.
• The component list consists of a single variant part.
• Each variant has a component list with a single component.
• No nested variants are allowed.
• No component has an explicit default value.
• No component has a non-static constraint.

In addition, given a type that meets the above requirements, the following
restrictions apply to its use throughout the program:
• The discriminant name can be mentioned only in an aggregate.
• No subtypes may be created of this type.
• The type may not be constrained by giving a discriminant value.
• The type cannot be passed as the actual for a generic formal with a dis-

criminant.

Equality and inequality operations on unchecked_unions are not available,
since there is no discriminant to compare and the compiler does not even know
how many bits to compare. It is implementation dependent whether this is
detected at compile time as an illegality or whether it is undetected and consid-
ered to be an erroneous construct. In GNAT, a direct comparison is illegal, but
GNAT does not attempt to catch the composite case (where two composites are
compared that contain an unchecked union component), so such comparisons
are simply considered erroneous.
The layout of the resulting type corresponds exactly to a C union, where each
branch of the union corresponds to a single variant in the Ada record. The
semantics of the Ada program is not changed in any way by the pragma, i.e.
provided the above restrictions are followed, and no erroneous incorrect ref-
erences to fields or erroneous comparisons occur, the semantics is exactly as

Chapter 1: Implementation Defined Pragmas 37

described by the Ada reference manual. Pragma Suppress (Discriminant_
Check) applies implicitly to the type and the default convention is C

pragma Unimplemented_Unit
Syntax:

pragma Unimplemented_Unit;

If this pragma occurs in a unit that is processed by the compiler, GNAT aborts
with the message ‘xxx not implemented’, where xxx is the name of the current
compilation unit. This pragma is intended to allow the compiler to handle
unimplemented library units in a clean manner.
The abort only happens if code is being generated. Thus you can use specs of
unimplemented packages in syntax or semantic checking mode.

pragma Unreferenced
Syntax:

pragma Unreferenced (local_Name {, local_Name});

This pragma signals that the entities whose names are listed are deliberately
not referenced. This suppresses warnings about the entities being unreferenced,
and in addition a warning will be generated if one of these entities is in fact
referenced.
This is particularly useful for clearly signalling that a particular parameter is
not referenced in some particular subprogram implementation and that this is
deliberate. It can also be useful in the case of objects declared only for their
initialization or finalization side effects.
If local_Name identifies more than one matching homonym in the current scope,
then the entity most recently declared is the one to which the pragma applies.

pragma Unreserve_All_Interrupts
Syntax:

pragma Unreserve_All_Interrupts;

Normally certain interrupts are reserved to the implementation. Any attempt
to attach an interrupt causes Program Error to be raised, as described in RM
C.3.2(22). A typical example is the SIGINT interrupt used in many systems for
an Ctrl-C interrupt. Normally this interrupt is reserved to the implementation,
so that Ctrl-C can be used to interrupt execution.
If the pragma Unreserve_All_Interrupts appears anywhere in any unit in a
program, then all such interrupts are unreserved. This allows the program to
handle these interrupts, but disables their standard functions. For example,
if this pragma is used, then pressing Ctrl-C will not automatically interrupt
execution. However, a program can then handle the SIGINT interrupt as it
chooses.
For a full list of the interrupts handled in a specific implementation,
see the source code for the specification of Ada.Interrupts.Names in
file ‘a-intnam.ads’. This is a target dependent file that contains the
list of interrupts recognized for a given target. The documentation in
this file also specifies what interrupts are affected by the use of the
Unreserve_All_Interrupts pragma.

38 GNAT Reference Manual

pragma Unsuppress
Syntax:

pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);

This pragma undoes the effect of a previous pragma Suppress. If there is no
corresponding pragma Suppress in effect, it has no effect. The range of the
effect is the same as for pragma Suppress. The meaning of the arguments is
identical to that used in pragma Suppress.
One important application is to ensure that checks are on in cases where code
depends on the checks for its correct functioning, so that the code will compile
correctly even if the compiler switches are set to suppress checks.

pragma Use_VADS_Size
Syntax:

pragma Use_VADS_Size;

This is a configuration pragma. In a unit to which it applies, any use of the
’Size attribute is automatically interpreted as a use of the ’VADS Size attribute.
Note that this may result in incorrect semantic processing of valid Ada 95 pro-
grams. This is intended to aid in the handling of legacy code which depends on
the interpretation of Size as implemented in the VADS compiler. See description
of the VADS Size attribute for further details.

pragma Validity_Checks
Syntax:

pragma Validity_Checks (string_LITERAL | ALL_CHECKS | On | Off);

This pragma is used in conjunction with compiler switches to control the built
in validity checking provided by GNAT. The compiler switches, if set provide an
initial setting for the switches, and this pragma may be used to modify these
settings, or the settings may be provided entirely by the use of the pragma.
This pragma can be used anywhere that a pragma is legal, including use as a
configuration pragma (including use in the ‘gnat.adc’ file).
The form with a string literal specifies which validity options are to be activated.
The validity checks are first set to include only the default reference manual
settings, and then a string of letters in the string specifies the exact set of
options required. The form of this string is exactly as described for the -
gnatVx compiler switch (see the GNAT users guide for details). For example
the following two methods can be used to enable validity checking for mode in
and in out subprogram parameters:

pragma Validity_Checks ("im");

gcc -c -gnatVim ...

The form ALL CHECKS activates all standard checks (its use is equivalent to
the use of the gnatva switch.
The forms with Off and On can be used to temporarily disable validity checks
as shown in the following example:

pragma Validity_Checks ("c"); -- validity checks for copies

pragma Validity_Checks (Off); -- turn off validity checks

Chapter 1: Implementation Defined Pragmas 39

A := B; -- B will not be validity checked

pragma Validity_Checks (On); -- turn validity checks back on

A := C; -- C will be validity checked

pragma Volatile
Syntax:

pragma Volatile (local_NAME)

This pragma is defined by the Ada 95 Reference Manual, and the GNAT imple-
mentation is fully conformant with this definition. The reason it is mentioned
in this section is that a pragma of the same name was supplied in some Ada
83 compilers, including DEC Ada 83. The Ada 95 implementation of pragma
Volatile is upwards compatible with the implementation in Dec Ada 83.

pragma Warnings
Syntax:

pragma Warnings (On | Off [, LOCAL_NAME]);

Normally warnings are enabled, with the output being controlled by the com-
mand line switch. Warnings (Off) turns off generation of warnings until a
Warnings (On) is encountered or the end of the current unit. If generation of
warnings is turned off using this pragma, then no warning messages are output,
regardless of the setting of the command line switches.
The form with a single argument is a configuration pragma.
If the local name parameter is present, warnings are suppressed for the specified
entity. This suppression is effective from the point where it occurs till the end
of the extended scope of the variable (similar to the scope of Suppress).

pragma Weak_External
Syntax:

pragma Weak_External ([Entity =>] LOCAL_NAME);

This pragma specifies that the given entity should be marked as a weak external
(one that does not have to be resolved) for the linker. For further details, consult
the GCC manual.

40 GNAT Reference Manual

Chapter 2: Implementation Defined Attributes 41

2 Implementation Defined Attributes

Ada 95 defines (throughout the Ada 95 reference manual, summarized in annex K), a set
of attributes that provide useful additional functionality in all areas of the language. These
language defined attributes are implemented in GNAT and work as described in the Ada
95 Reference Manual.

In addition, Ada 95 allows implementations to define additional attributes whose mean-
ing is defined by the implementation. GNAT provides a number of these implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT reference manual describes these additional attributes.

Note that any program using these attributes may not be portable to other compilers
(although GNAT implements this set of attributes on all platforms). Therefore if portability
to other compilers is an important consideration, you should minimize the use of these
attributes.

Abort_Signal
Standard’Abort_Signal (Standard is the only allowed prefix) provides the en-
tity for the special exception used to signal task abort or asynchronous transfer
of control. Normally this attribute should only be used in the tasking runtime
(it is highly peculiar, and completely outside the normal semantics of Ada, for
a user program to intercept the abort exception).

Address_Size
Standard’Address_Size (Standard is the only allowed prefix) is a static con-
stant giving the number of bits in an Address. It is used primarily for construct-
ing the definition of Memory_Size in package Standard, but may be freely used
in user programs and has the advantage of being static, while a direct reference
to System.Address’Size is non-static because Address is a private type.

Asm_Input
The Asm_Input attribute denotes a function that takes two parameters. The
first is a string, the second is an expression of the type designated by the prefix.
The first (string) argument is required to be a static expression, and is the
constraint for the parameter, (e.g. what kind of register is required). The second
argument is the value to be used as the input argument. The possible values
for the constant are the same as those used in the RTL, and are dependent on
the configuration file used to built the GCC back end. Chapter 11 [Machine
Code Insertions], page 161

Asm_Output
The Asm_Output attribute denotes a function that takes two parameters. The
first is a string, the second is the name of a variable of the type designated
by the attribute prefix. The first (string) argument is required to be a static
expression and designates the constraint for the parameter (e.g. what kind of
register is required). The second argument is the variable to be updated with
the result. The possible values for constraint are the same as those used in
the RTL, and are dependent on the configuration file used to build the GCC
back end. If there are no output operands, then this argument may either

42 GNAT Reference Manual

be omitted, or explicitly given as No_Output_Operands. Chapter 11 [Machine
Code Insertions], page 161

AST_Entry
This attribute is implemented only in OpenVMS versions of GNAT. Applied
to the name of an entry, it yields a value of the predefined type AST Handler
(declared in the predefined package System, as extended by the use of pragma
Extend_System (Aux_DEC)). This value enables the given entry to be called
when an AST occurs. For further details, refer to the DEC Ada Language
Reference Manual, section 9.12a.

Bit obj’Bit, where obj is any object, yields the bit offset within the storage unit
(byte) that contains the first bit of storage allocated for the object. The value of
this attribute is of the type Universal_Integer, and is always a non-negative
number not exceeding the value of System.Storage_Unit.

For an object that is a variable or a constant allocated in a register, the value
is zero. (The use of this attribute does not force the allocation of a variable to
memory).

For an object that is a formal parameter, this attribute applies to either the
matching actual parameter or to a copy of the matching actual parameter.

For an access object the value is zero. Note that obj.all’Bit is subject to
an Access_Check for the designated object. Similarly for a record component
X.C’Bit is subject to a discriminant check and X(I).Bit and X(I1..I2)’Bit
are subject to index checks.

This attribute is designed to be compatible with the DEC Ada 83 definition
and implementation of the Bit attribute.

Bit_Position
R.C’Bit, where R is a record object and C is one of the fields of the record type,
yields the bit offset within the record contains the first bit of storage allocated
for the object. The value of this attribute is of the type Universal_Integer.
The value depends only on the field C and is independent of the alignment of
the containing record R.

Code_Address
The ’Address attribute may be applied to subprograms in Ada 95, but the
intended effect from the Ada 95 reference manual seems to be to provide an
address value which can be used to call the subprogram by means of an address
clause as in the following example:

procedure K is ...

procedure L;

for L’Address use K’Address;

pragma Import (Ada, L);

A call to L is then expected to result in a call to K. In Ada 83, where there were
no access-to-subprogram values, this was a common work around for getting
the effect of an indirect call. GNAT implements the above use of Address and
the technique illustrated by the example code works correctly.

Chapter 2: Implementation Defined Attributes 43

However, for some purposes, it is useful to have the address of the start of the
generated code for the subprogram. On some architectures, this is not necessar-
ily the same as the Address value described above. For example, the Address
value may reference a subprogram descriptor rather than the subprogram itself.
The ’Code_Address attribute, which can only be applied to subprogram enti-
ties, always returns the address of the start of the generated code of the specified
subprogram, which may or may not be the same value as is returned by the
corresponding ’Address attribute.

Default_Bit_Order
Standard’Default_Bit_Order (Standard is the only permissible prefix), pro-
vides the value System.Default_Bit_Order as a Pos value (0 for High_Order_
First, 1 for Low_Order_First). This is used to construct the definition of
Default_Bit_Order in package System.

Elaborated
The prefix of the ’Elaborated attribute must be a unit name. The value is
a Boolean which indicates whether or not the given unit has been elaborated.
This attribute is primarily intended for internal use by the generated code for
dynamic elaboration checking, but it can also be used in user programs. The
value will always be True once elaboration of all units has been completed.

Elab_Body
This attribute can only be applied to a program unit name. It returns the
entity for the corresponding elaboration procedure for elaborating the body of
the referenced unit. This is used in the main generated elaboration procedure by
the binder and is not normally used in any other context. However, there may
be specialized situations in which it is useful to be able to call this elaboration
procedure from Ada code, e.g. if it is necessary to do selective re-elaboration to
fix some error.

Elab_Spec
This attribute can only be applied to a program unit name. It returns the entity
for the corresponding elaboration procedure for elaborating the specification of
the referenced unit. This is used in the main generated elaboration procedure by
the binder and is not normally used in any other context. However, there may
be specialized situations in which it is useful to be able to call this elaboration
procedure from Ada code, e.g. if it is necessary to do selective re-elaboration to
fix some error.

Emax The Emax attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

Enum_Rep For every enumeration subtype S, S’Enum_Rep denotes a function with the
following specification:

function S’Enum_Rep (Arg : S’Base)

return Universal_Integer;

It is also allowable to apply Enum_Rep directly to an object of an enumeration
type or to a non-overloaded enumeration literal. In this case S’Enum_Rep is
equivalent to typ’Enum_Rep(S) where typ is the type of the enumeration literal
or object.

44 GNAT Reference Manual

The function returns the representation value for the given enumeration value.
This will be equal to value of the Pos attribute in the absence of an enumeration
representation clause. This is a static attribute (i.e. the result is static if the
argument is static).
S’Enum_Rep can also be used with integer types and objects, in which case
it simply returns the integer value. The reason for this is to allow it to be
used for (<>) discrete formal arguments in a generic unit that can be instan-
tiated with either enumeration types or integer types. Note that if Enum_Rep
is used on a modular type whose upper bound exceeds the upper bound of the
largest signed integer type, and the argument is a variable, so that the univer-
sal integer calculation is done at run-time, then the call to Enum_Rep may raise
Constraint_Error.

Epsilon The Epsilon attribute is provided for compatibility with Ada 83. See the Ada
83 reference manual for an exact description of the semantics of this attribute.

Fixed_Value
For every fixed-point type S, S’Fixed_Value denotes a function with the fol-
lowing specification:

function S’Fixed_Value (Arg : Universal_Integer)

return S;

The value returned is the fixed-point value V such that
V = Arg * S’Small

The effect is thus equivalent to first converting the argument to the integer type
used to represent S, and then doing an unchecked conversion to the fixed-point
type. This attribute is primarily intended for use in implementation of the
input-output functions for fixed-point values.

Has_Discriminants
The prefix of the Has_Discriminants attribute is a type. The result is a
Boolean value which is True if the type has discriminants, and False otherwise.
The intended use of this attribute is in conjunction with generic definitions. If
the attribute is applied to a generic private type, it indicates whether or not
the corresponding actual type has discriminants.

Img The Img attribute differs from Image in that it may be applied to objects as
well as types, in which case it gives the Image for the subtype of the object.
This is convenient for debugging:

Put_Line ("X = " & X’Img);

has the same meaning as the more verbose:
Put_Line ("X = " & type’Image (X));

where type is the subtype of the object X.

Integer_Value
For every integer type S, S’Integer_Value denotes a function with the follow-
ing specification:

function S’Integer_Value (Arg : Universal_Fixed)

return S;

The value returned is the integer value V, such that

Chapter 2: Implementation Defined Attributes 45

Arg = V * type’Small

The effect is thus equivalent to first doing an unchecked convert from the fixed-
point type to its corresponding implementation type, and then converting the
result to the target integer type. This attribute is primarily intended for use in
implementation of the standard input-output functions for fixed-point values.

Large The Large attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

Machine_Size
This attribute is identical to the Object_Size attribute. It is provided for
compatibility with the DEC Ada 83 attribute of this name.

Mantissa The Mantissa attribute is provided for compatibility with Ada 83. See the Ada
83 reference manual for an exact description of the semantics of this attribute.

Max_Interrupt_Priority
Standard’Max_Interrupt_Priority (Standard is the only permissible prefix),
provides the value System.Max_Interrupt_Priority and is intended primarily
for constructing this definition in package System.

Max_Priority
Standard’Max_Priority (Standard is the only permissible prefix) provides the
value System.Max_Priority and is intended primarily for constructing this
definition in package System.

Maximum_Alignment
Standard’Maximum_Alignment (Standard is the only permissible prefix) pro-
vides the maximum useful alignment value for the target. This is a static value
that can be used to specify the alignment for an object, guaranteeing that it is
properly aligned in all cases. This is useful when an external object is imported
and its alignment requirements are unknown.

Mechanism_Code
function’Mechanism_Code yields an integer code for the mechanism used for
the result of function, and subprogram’Mechanism_Code (n) yields the mecha-
nism used for formal parameter number n (a static integer value with 1 meaning
the first parameter) of subprogram. The code returned is:

1 by copy (value)

2 by reference

3 by descriptor (default descriptor class)

4 by descriptor (UBS: unaligned bit string)

5 by descriptor (UBSB: aligned bit string with arbitrary bounds)

6 by descriptor (UBA: unaligned bit array)

7 by descriptor (S: string, also scalar access type parameter)

8 by descriptor (SB: string with arbitrary bounds)

9 by descriptor (A: contiguous array)

46 GNAT Reference Manual

10 by descriptor (NCA: non-contiguous array)

Values from 3 through 10 are only relevant to Digital OpenVMS implementa-
tions.

Null_Parameter
A reference T’Null_Parameter denotes an imaginary object of type or subtype
T allocated at machine address zero. The attribute is allowed only as the default
expression of a formal parameter, or as an actual expression of a subprogram
call. In either case, the subprogram must be imported.
The identity of the object is represented by the address zero in the argument
list, independent of the passing mechanism (explicit or default).
This capability is needed to specify that a zero address should be passed for
a record or other composite object passed by reference. There is no way of
indicating this without the Null_Parameter attribute.

Object_Size
The size of an object is not necessarily the same as the size of the type of an
object. This is because by default object sizes are increased to be a multiple of
the alignment of the object. For example, Natural’Size is 31, but by default
objects of type Natural will have a size of 32 bits. Similarly, a record containing
an integer and a character:

type Rec is record

I : Integer;

C : Character;

end record;

will have a size of 40 (that is Rec’Size will be 40. The alignment will be 4,
because of the integer field, and so the default size of record objects for this
type will be 64 (8 bytes).
The type’Object_Size attribute has been added to GNAT to allow the default
object size of a type to be easily determined. For example, Natural’Object_
Size is 32, and Rec’Object_Size (for the record type in the above example) will
be 64. Note also that, unlike the situation with the Size attribute as defined
in the Ada RM, the Object_Size attribute can be specified individually for
different subtypes. For example:

type R is new Integer;

subtype R1 is R range 1 .. 10;

subtype R2 is R range 1 .. 10;

for R2’Object_Size use 8;

In this example, R’Object_Size and R1’Object_Size are both 32 since the
default object size for a subtype is the same as the object size for the parent
subtype. This means that objects of type R or R1 will by default be 32 bits (four
bytes). But objects of type R2 will be only 8 bits (one byte), since R2’Object_
Size has been set to 8.

Passed_By_Reference
type’Passed_By_Reference for any subtype type returns a value of type
Boolean value that is True if the type is normally passed by reference and
False if the type is normally passed by copy in calls. For scalar types, the re-
sult is always False and is static. For non-scalar types, the result is non-static.

Chapter 2: Implementation Defined Attributes 47

Range_Length
type’Range_Length for any discrete type type yields the number of values
represented by the subtype (zero for a null range). The result is static for static
subtypes. Range_Length applied to the index subtype of a one dimensional
array always gives the same result as Range applied to the array itself.

Safe_Emax
The Safe_Emax attribute is provided for compatibility with Ada 83. See the Ada
83 reference manual for an exact description of the semantics of this attribute.

Safe_Large
The Safe_Large attribute is provided for compatibility with Ada 83. See the
Ada 83 reference manual for an exact description of the semantics of this at-
tribute.

Safe_Large
The Safe_Large attribute is provided for compatibility with Ada 83. See the
Ada 83 reference manual for an exact description of the semantics of this at-
tribute.

Small The Small attribute is defined in Ada 95 only for fixed-point types. GNAT
also allows this attribute to be applied to floating-point types for compatibility
with Ada 83. See the Ada 83 reference manual for an exact description of the
semantics of this attribute when applied to floating-point types.

Storage_Unit
Standard’Storage_Unit (Standard is the only permissible prefix) provides the
value System.Storage_Unit and is intended primarily for constructing this
definition in package System.

Tick Standard’Tick (Standard is the only permissible prefix) provides the value
of System.Tick and is intended primarily for constructing this definition in
package System.

To_Address
The System’To_Address (System is the only permissible prefix) denotes a func-
tion identical to System.Storage_Elements.To_Address except that it is a
static attribute. This means that if its argument is a static expression, then
the result of the attribute is a static expression. The result is that such an
expression can be used in contexts (e.g. preelaborable packages) which require
a static expression and where the function call could not be used (since the
function call is always non-static, even if its argument is static).

Type_Class
type’Type_Class for any type or subtype type yields the value of the type
class for the full type of type. If type is a generic formal type, the value is the
value for the corresponding actual subtype. The value of this attribute is of
type System.Aux_DEC.Type_Class, which has the following definition:

type Type_Class is

(Type_Class_Enumeration,

Type_Class_Integer,

Type_Class_Fixed_Point,

48 GNAT Reference Manual

Type_Class_Floating_Point,

Type_Class_Array,

Type_Class_Record,

Type_Class_Access,

Type_Class_Task,

Type_Class_Address);

Protected types yield the value Type_Class_Task, which thus applies to all
concurrent types. This attribute is designed to be compatible with the DEC
Ada 83 attribute of the same name.

UET_Address
The UET_Address attribute can only be used for a prefix which denotes a li-
brary package. It yields the address of the unit exception table when zero cost
exception handling is used. This attribute is intended only for use within the
GNAT implementation. See the unit Ada.Exceptions in files ‘a-except.ads’
and ‘a-except.adb’ for details on how this attribute is used in the implemen-
tation.

Universal_Literal_String
The prefix of Universal_Literal_String must be a named number. The
static result is the string consisting of the characters of the number as defined
in the original source. This allows the user program to access the actual text
of named numbers without intermediate conversions and without the need to
enclose the strings in quotes (which would preclude their use as numbers). This
is used internally for the construction of values of the floating-point attributes
from the file ‘ttypef.ads’, but may also be used by user programs.

Unrestricted_Access
The Unrestricted_Access attribute is similar to Access except that all acces-
sibility and aliased view checks are omitted. This is a user-beware attribute. It
is similar to Address, for which it is a desirable replacement where the value de-
sired is an access type. In other words, its effect is identical to first applying the
Address attribute and then doing an unchecked conversion to a desired access
type. In GNAT, but not necessarily in other implementations, the use of static
chains for inner level subprograms means that Unrestricted_Access applied
to a subprogram yields a value that can be called as long as the subprogram is
in scope (normal Ada 95 accessibility rules restrict this usage).

VADS_Size
The ’VADS_Size attribute is intended to make it easier to port legacy code
which relies on the semantics of ’Size as implemented by the VADS Ada 83
compiler. GNAT makes a best effort at duplicating the same semantic inter-
pretation. In particular, ’VADS_Size applied to a predefined or other primitive
type with no Size clause yields the Object Size (for example, Natural’Size is
32 rather than 31 on typical machines). In addition ’VADS_Size applied to an
object gives the result that would be obtained by applying the attribute to the
corresponding type.

Chapter 2: Implementation Defined Attributes 49

Value_Size
type’Value_Size is the number of bits required to represent a value of the
given subtype. It is the same as type’Size, but, unlike Size, may be set for
non-first subtypes.

Wchar_T_Size
Standard’Wchar_T_Size (Standard is the only permissible prefix) provides the
size in bits of the C wchar_t type primarily for constructing the definition of
this type in package Interfaces.C.

Word_Size
Standard’Word_Size (Standard is the only permissible prefix) provides the
value System.Word_Size and is intended primarily for constructing this defini-
tion in package System.

50 GNAT Reference Manual

Chapter 3: Implementation Advice 51

3 Implementation Advice

The main text of the Ada 95 Reference Manual describes the required behavior of all Ada
95 compilers, and the GNAT compiler conforms to these requirements.

In addition, there are sections throughout the Ada 95 reference manual headed by the
phrase “implementation advice”. These sections are not normative, i.e. they do not specify
requirements that all compilers must follow. Rather they provide advice on generally desir-
able behavior. You may wonder why they are not requirements. The most typical answer
is that they describe behavior that seems generally desirable, but cannot be provided on all
systems, or which may be undesirable on some systems.

As far as practical, GNAT follows the implementation advice sections in the Ada 95 Ref-
erence Manual. This chapter contains a table giving the reference manual section number,
paragraph number and several keywords for each advice. Each entry consists of the text of
the advice followed by the GNAT interpretation of this advice. Most often, this simply says
“followed”, which means that GNAT follows the advice. However, in a number of cases,
GNAT deliberately deviates from this advice, in which case the text describes what GNAT
does and why.

1.1.3(20): Error Detection

® ©
If an implementation detects the use of an unsupported Specialized Needs An-
nex feature at run time, it should raise Program_Error if feasible.

 ª

Not relevant. All specialized needs annex features are either supported, or
diagnosed at compile time.

1.1.3(31): Child Units

® ©
If an implementation wishes to provide implementation-defined extensions to
the functionality of a language-defined library unit, it should normally do so by
adding children to the library unit. ª

Followed.

1.1.5(12): Bounded Errors

® ©
If an implementation detects a bounded error or erroneous execution, it should
raise Program_Error.

 ª

Followed in all cases in which the implementation detects a bounded error or
erroneous execution. Not all such situations are detected at runtime.

52 GNAT Reference Manual

2.8(16): Pragmas

® ©
Normally, implementation-defined pragmas should have no semantic effect for
error-free programs; that is, if the implementation-defined pragmas are removed
from a working program, the program should still be legal, and should still have
the same semantics. ª
The following implementation defined pragmas are exceptions to this rule:

Abort_Defer
Affects semantics

Ada_83 Affects legality

Assert Affects semantics

CPP_Class
Affects semantics

CPP_Constructor
Affects semantics

CPP_Virtual
Affects semantics

CPP_Vtable
Affects semantics

Debug Affects semantics

Interface_Name
Affects semantics

Machine_Attribute
Affects semantics

Unimplemented_Unit
Affects legality

Unchecked_Union
Affects semantics

In each of the above cases, it is essential to the purpose of the pragma that this
advice not be followed. For details see the separate section on implementation
defined pragmas.

2.8(17-19): Pragmas

® ©
Normally, an implementation should not define pragmas that can make an
illegal program legal, except as follows: ª

® ©
A pragma used to complete a declaration, such as a pragma Import;

 ª

Chapter 3: Implementation Advice 53

® ©
A pragma used to configure the environment by adding, removing, or replacing
library_items.

 ª
See response to paragraph 16 of this same section.

3.5.2(5): Alternative Character Sets

® ©
If an implementation supports a mode with alternative interpretations for
Character and Wide_Character, the set of graphic characters of Character
should nevertheless remain a proper subset of the set of graphic characters
of Wide_Character. Any character set “localizations” should be reflected
in the results of the subprograms defined in the language-defined package
Characters.Handling (see A.3) available in such a mode. In a mode with
an alternative interpretation of Character, the implementation should also
support a corresponding change in what is a legal identifier_letter. ª
Not all wide character modes follow this advice, in particular the JIS and IEC
modes reflect standard usage in Japan, and in these encoding, the upper half of
the Latin-1 set is not part of the wide-character subset, since the most significant
bit is used for wide character encoding. However, this only applies to the
external forms. Internally there is no such restriction.

3.5.4(28): Integer Types

® ©
An implementation should support Long_Integer in addition to Integer if the
target machine supports 32-bit (or longer) arithmetic. No other named integer
subtypes are recommended for package Standard. Instead, appropriate named
integer subtypes should be provided in the library package Interfaces (see
B.2).

 ª
Long_Integer is supported. Other standard integer types are supported so this
advice is not fully followed. These types are supported for convenient interface
to C, and so that all hardware types of the machine are easily available.

3.5.4(29): Integer Types

® ©
An implementation for a two’s complement machine should support modular
types with a binary modulus up to System.Max_Int*2+2. An implementation
should support a non-binary modules up to Integer’Last.

 ª
Followed.

3.5.5(8): Enumeration Values

® ©
For the evaluation of a call on S’Pos for an enumeration subtype, if the value
of the operand does not correspond to the internal code for any enumeration
literal of its type (perhaps due to an un-initialized variable), then the imple-
mentation should raise Program_Error. This is particularly important for enu-
meration types with noncontiguous internal codes specified by an enumera-
tion representation clause. ª
Followed.

54 GNAT Reference Manual

3.5.7(17): Float Types

® ©
An implementation should support Long_Float in addition to Float if the tar-
get machine supports 11 or more digits of precision. No other named floating
point subtypes are recommended for package Standard. Instead, appropri-
ate named floating point subtypes should be provided in the library package
Interfaces (see B.2).

 ª
Short_Float and Long_Long_Float are also provided. The former provides
improved compatibility with other implementations supporting this type. The
latter corresponds to the highest precision floating-point type supported by the
hardware. On most machines, this will be the same as Long_Float, but on some
machines, it will correspond to the IEEE extended form. The notable case is all
ia32 (x86) implementations, where Long_Long_Float corresponds to the 80-bit
extended precision format supported in hardware on this processor. Note that
the 128-bit format on SPARC is not supported, since this is a software rather
than a hardware format.

3.6.2(11): Multidimensional Arrays

® ©
An implementation should normally represent multidimensional arrays in row-
major order, consistent with the notation used for multidimensional array ag-
gregates (see 4.3.3). However, if a pragma Convention (Fortran, . . .) applies
to a multidimensional array type, then column-major order should be used
instead (see B.5, “Interfacing with Fortran”).

 ª
Followed.

9.6(30-31): Duration’Small

® ©
Whenever possible in an implementation, the value of Duration’Small should
be no greater than 100 microseconds. ª
Followed. (Duration’Small = 10**(−9)).

® ©
The time base for delay_relative_statements should be monotonic; it need
not be the same time base as used for Calendar.Clock. ª
Followed.

10.2.1(12): Consistent Representation

® ©
In an implementation, a type declared in a pre-elaborated package should have
the same representation in every elaboration of a given version of the package,
whether the elaborations occur in distinct executions of the same program, or
in executions of distinct programs or partitions that include the given version. ª

Chapter 3: Implementation Advice 55

Followed, except in the case of tagged types. Tagged types involve implicit
pointers to a local copy of a dispatch table, and these pointers have represen-
tations which thus depend on a particular elaboration of the package. It is
not easy to see how it would be possible to follow this advice without severely
impacting efficiency of execution.

11.4.1(19): Exception Information

® ©
Exception_Message by default and Exception_Information should produce
information useful for debugging. Exception_Message should be short, about
one line. Exception_Information can be long. Exception_Message should
not include the Exception_Name. Exception_Information should include both
the Exception_Name and the Exception_Message.

 ª
Followed. For each exception that doesn’t have a specified Exception_Message,
the compiler generates one containing the location of the raise statement. This
location has the form “file:line”, where file is the short file name (without path
information) and line is the line number in the file. Note that in the case of the
Zero Cost Exception mechanism, these messages become redundant with the
Exception Information that contains a full backtrace of the calling sequence,
so they are disabled. To disable explicitly the generation of the source location
message, use the Pragma Discard_Names.

11.5(28): Suppression of Checks

® ©
The implementation should minimize the code executed for checks that have
been suppressed. ª
Followed.

13.1 (21-24): Representation Clauses

® ©
The recommended level of support for all representation items is qualified as
follows: ª

® ©
An implementation need not support representation items containing non-static
expressions, except that an implementation should support a representation
item for a given entity if each non-static expression in the representation item
is a name that statically denotes a constant declared before the entity. ª
Followed. GNAT does not support non-static expressions in representation
clauses unless they are constants declared before the entity. For example:

X : typ;

for X’Address use To_address (16#2000#);

will be rejected, since the To Address expression is non-static. Instead write:
X_Address : constant Address : =

To_Address ((16#2000#);

56 GNAT Reference Manual

X : typ;

for X’Address use X_Address;

® ©
An implementation need not support a specification for the Size for a given
composite subtype, nor the size or storage place for an object (including a
component) of a given composite subtype, unless the constraints on the subtype
and its composite subcomponents (if any) are all static constraints.

 ª

Followed. Size Clauses are not permitted on non-static components, as de-
scribed above.

® ©
An aliased component, or a component whose type is by-reference, should al-
ways be allocated at an addressable location. ª

Followed.

13.2(6-8): Packed Types

® ©
If a type is packed, then the implementation should try to minimize storage
allocated to objects of the type, possibly at the expense of speed of accessing
components, subject to reasonable complexity in addressing calculations. ª

® ©
The recommended level of support pragma Pack is:
For a packed record type, the components should be packed as tightly as possible
subject to the Sizes of the component subtypes, and subject to any record_
representation_clause that applies to the type; the implementation may,
but need not, reorder components or cross aligned word boundaries to improve
the packing. A component whose Size is greater than the word size may be
allocated an integral number of words. ª

Followed. Tight packing of arrays is supported for all component sizes up to
64-bits.

® ©
An implementation should support Address clauses for imported subprograms. ª

Followed.

13.3(14-19): Address Clauses

® ©
For an array X, X’Address should point at the first component of the array,
and not at the array bounds. ª

Followed.

Chapter 3: Implementation Advice 57

® ©
The recommended level of support for the Address attribute is:
X’Address should produce a useful result if X is an object that is aliased or of
a by-reference type, or is an entity whose Address has been specified. ª
Followed. A valid address will be produced even if none of those conditions
have been met. If necessary, the object is forced into memory to ensure the
address is valid.

® ©
An implementation should support Address clauses for imported
subprograms. ª
Followed.

® ©
Objects (including subcomponents) that are aliased or of a by-reference type
should be allocated on storage element boundaries. ª
Followed.

® ©
If the Address of an object is specified, or it is imported or exported, then the
implementation should not perform optimizations based on assumptions of no
aliases. ª
Followed.

13.3(29-35): Alignment Clauses

® ©
The recommended level of support for the Alignment attribute for subtypes is:
An implementation should support specified Alignments that are factors and
multiples of the number of storage elements per word, subject to the following: ª
Followed.

® ©
An implementation need not support specified Alignments for combinations of
Sizes and Alignments that cannot be easily loaded and stored by available
machine instructions. ª
Followed.

® ©
An implementation need not support specified Alignments that are greater than
the maximum Alignment the implementation ever returns by default.

 ª
Followed.

® ©
The recommended level of support for the Alignment attribute for objects is:
Same as above, for subtypes, but in addition: ª

58 GNAT Reference Manual

Followed.

® ©
For stand-alone library-level objects of statically constrained subtypes, the im-
plementation should support all Alignments supported by the target linker.
For example, page alignment is likely to be supported for such objects, but not
for subtypes. ª
Followed.

13.3(42-43): Size Clauses

® ©
The recommended level of support for the Size attribute of objects is:
A Size clause should be supported for an object if the specified Size is at least
as large as its subtype’s Size, and corresponds to a size in storage elements
that is a multiple of the object’s Alignment (if the Alignment is nonzero).

 ª
Followed.

13.3(50-56): Size Clauses

® ©
If the Size of a subtype is specified, and allows for efficient independent ad-
dressability (see 9.10) on the target architecture, then the Size of the following
objects of the subtype should equal the Size of the subtype:
Aliased objects (including components).

 ª
Followed.

® ©
Size clause on a composite subtype should not affect the internal layout of
components. ª
Followed.

® ©
The recommended level of support for the Size attribute of subtypes is: ª

® ©
The Size (if not specified) of a static discrete or fixed point subtype should
be the number of bits needed to represent each value belonging to the subtype
using an unbiased representation, leaving space for a sign bit only if the subtype
contains negative values. If such a subtype is a first subtype, then an implemen-
tation should support a specified Size for it that reflects this representation. ª
Followed.

® ©
For a subtype implemented with levels of indirection, the Size should include
the size of the pointers, but not the size of what they point at. ª

Chapter 3: Implementation Advice 59

Followed.

13.3(71-73): Component Size Clauses

® ©
The recommended level of support for the Component_Size attribute is:

 ª

® ©
An implementation need not support specified Component_Sizes that are less
than the Size of the component subtype. ª
Followed.

® ©
An implementation should support specified Component_Sizes that are factors
and multiples of the word size. For such Component_Sizes, the array should
contain no gaps between components. For other Component_Sizes (if sup-
ported), the array should contain no gaps between components when packing
is also specified; the implementation should forbid this combination in cases
where it cannot support a no-gaps representation. ª
Followed.

13.4(9-10): Enumeration Representation Clauses

® ©
The recommended level of support for enumeration representation clauses is:
An implementation need not support enumeration representation clauses for
boolean types, but should at minimum support the internal codes in the range
System.Min_Int.System.Max_Int.

 ª
Followed.

13.5.1(17-22): Record Representation Clauses

® ©
The recommended level of support for
record_representation_clauses is:
An implementation should support storage places that can be extracted with
a load, mask, shift sequence of machine code, and set with a load, shift, mask,
store sequence, given the available machine instructions and run-time model. ª
Followed.

® ©
A storage place should be supported if its size is equal to the Size of the compo-
nent subtype, and it starts and ends on a boundary that obeys the Alignment
of the component subtype. ª
Followed.

60 GNAT Reference Manual

® ©
If the default bit ordering applies to the declaration of a given type, then for a
component whose subtype’s Size is less than the word size, any storage place
that does not cross an aligned word boundary should be supported. ª
Followed.

® ©
An implementation may reserve a storage place for the tag field of a tagged
type, and disallow other components from overlapping that place. ª
Followed. The storage place for the tag field is the beginning of the tagged
record, and its size is Address’Size. GNAT will reject an explicit component
clause for the tag field.

® ©
An implementation need not support a component_clause for a component
of an extension part if the storage place is not after the storage places of all
components of the parent type, whether or not those storage places had been
specified. ª
Followed. The above advice on record representation clauses is followed, and
all mentioned features are implemented.

13.5.2(5): Storage Place Attributes

® ©
If a component is represented using some form of pointer (such as an offset)
to the actual data of the component, and this data is contiguous with the rest
of the object, then the storage place attributes should reflect the place of the
actual data, not the pointer. If a component is allocated discontinuously from
the rest of the object, then a warning should be generated upon reference to
one of its storage place attributes. ª
Followed. There are no such components in GNAT.

13.5.3(7-8): Bit Ordering

® ©
The recommended level of support for the non-default bit ordering is: ª

® ©
If Word_Size = Storage_Unit, then the implementation should support the
non-default bit ordering in addition to the default bit ordering. ª
Followed. Word size does not equal storage size in this implementation. Thus
non-default bit ordering is not supported.

13.7(37): Address as Private

® ©
Address should be of a private type. ª
Followed.

Chapter 3: Implementation Advice 61

13.7.1(16): Address Operations

® ©
Operations in System and its children should reflect the target environment
semantics as closely as is reasonable. For example, on most machines, it makes
sense for address arithmetic to “wrap around”. Operations that do not make
sense should raise Program_Error.

 ª
Followed. Address arithmetic is modular arithmetic that wraps around. No
operation raises Program_Error, since all operations make sense.

13.9(14-17): Unchecked Conversion

® ©
The Size of an array object should not include its bounds; hence, the bounds
should not be part of the converted data. ª
Followed.

® ©
The implementation should not generate unnecessary run-time checks to ensure
that the representation of S is a representation of the target type. It should
take advantage of the permission to return by reference when possible. Restric-
tions on unchecked conversions should be avoided unless required by the target
environment. ª
Followed. There are no restrictions on unchecked conversion. A warning is
generated if the source and target types do not have the same size since the
semantics in this case may be target dependent.

® ©
The recommended level of support for unchecked conversions is: ª

® ©
Unchecked conversions should be supported and should be reversible in the cases
where this clause defines the result. To enable meaningful use of unchecked con-
version, a contiguous representation should be used for elementary subtypes,
for statically constrained array subtypes whose component subtype is one of
the subtypes described in this paragraph, and for record subtypes without dis-
criminants whose component subtypes are described in this paragraph. ª
Followed.

13.11(23-25): Implicit Heap Usage

® ©
An implementation should document any cases in which it dynamically allocates
heap storage for a purpose other than the evaluation of an allocator. ª
Followed, the only other points at which heap storage is dynamically allocated
are as follows:
• At initial elaboration time, to allocate dynamically sized global objects.

62 GNAT Reference Manual

• To allocate space for a task when a task is created.
• To extend the secondary stack dynamically when needed. The secondary

stack is used for returning variable length results.

® ©
A default (implementation-provided) storage pool for an access-to-constant type
should not have overhead to support deallocation of individual objects. ª
Followed.

® ©
A storage pool for an anonymous access type should be created at the point of
an allocator for the type, and be reclaimed when the designated object becomes
inaccessible. ª
Followed.

13.11.2(17): Unchecked De-allocation

® ©
For a standard storage pool, Free should actually reclaim the storage. ª
Followed.

13.13.2(17): Stream Oriented Attributes

® ©
If a stream element is the same size as a storage element, then the normal in-
memory representation should be used by Read and Write for scalar objects.
Otherwise, Read and Write should use the smallest number of stream elements
needed to represent all values in the base range of the scalar type. ª
Followed. In particular, the interpretation chosen is that of AI-195, which
specifies that the size to be used is that of the first subtype.

A.1(52): Implementation Advice

® ©
If an implementation provides additional named predefined integer types, then
the names should end with ‘Integer’ as in ‘Long_Integer’. If an implementa-
tion provides additional named predefined floating point types, then the names
should end with ‘Float’ as in ‘Long_Float’.

 ª
Followed.

A.3.2(49): Ada.Characters.Handling

® ©
If an implementation provides a localized definition of Character or Wide_
Character, then the effects of the subprograms in Characters.Handling
should reflect the localizations. See also 3.5.2. ª
Followed. GNAT provides no such localized definitions.

Chapter 3: Implementation Advice 63

A.4.4(106): Bounded-Length String Handling

® ©
Bounded string objects should not be implemented by implicit pointers and
dynamic allocation. ª

Followed. No implicit pointers or dynamic allocation are used.

A.5.2(46-47): Random Number Generation

® ©
Any storage associated with an object of type Generator should be reclaimed
on exit from the scope of the object. ª

Followed.

® ©
If the generator period is sufficiently long in relation to the number of distinct
initiator values, then each possible value of Initiator passed to Reset should
initiate a sequence of random numbers that does not, in a practical sense,
overlap the sequence initiated by any other value. If this is not possible, then
the mapping between initiator values and generator states should be a rapidly
varying function of the initiator value. ª

Followed. The generator period is sufficiently long for the first condition here
to hold true.

A.10.7(23): Get_Immediate

® ©
The Get_Immediate procedures should be implemented with unbuffered input.
For a device such as a keyboard, input should be available if a key has already
been typed, whereas for a disk file, input should always be available except at
end of file. For a file associated with a keyboard-like device, any line-editing
features of the underlying operating system should be disabled during the exe-
cution of Get_Immediate. ª

Followed.

B.1(39-41): Pragma Export

® ©
If an implementation supports pragma Export to a given language, then it
should also allow the main subprogram to be written in that language. It should
support some mechanism for invoking the elaboration of the Ada library units
included in the system, and for invoking the finalization of the environment task.
On typical systems, the recommended mechanism is to provide two subprograms
whose link names are adainit and adafinal. adainit should contain the
elaboration code for library units. adafinal should contain the finalization
code. These subprograms should have no effect the second and subsequent
time they are called. ª

Followed.

64 GNAT Reference Manual

® ©
Automatic elaboration of pre-elaborated packages should be provided when
pragma Export is supported.

 ª
Followed when the main program is in Ada. If the main program is in a foreign
language, then adainit must be called to elaborate pre-elaborated packages.

® ©
For each supported convention L other than Intrinsic, an implementation
should support Import and Export pragmas for objects of L-compatible types
and for subprograms, and pragma Convention for L-eligible types and for sub-
programs, presuming the other language has corresponding features. Pragma
Convention need not be supported for scalar types. ª
Followed.

B.2(12-13): Package Interfaces

® ©
For each implementation-defined convention identifier, there should be a child
package of package Interfaces with the corresponding name. This package
should contain any declarations that would be useful for interfacing to the lan-
guage (implementation) represented by the convention. Any declarations useful
for interfacing to any language on the given hardware architecture should be
provided directly in Interfaces. ª
Followed. An additional package not defined in the Ada 95 Reference Manual
is Interfaces.CPP, used for interfacing to C++.

® ©
An implementation supporting an interface to C, COBOL, or Fortran should
provide the corresponding package or packages described in the following
clauses. ª
Followed. GNAT provides all the packages described in this section.

B.3(63-71): Interfacing with C

® ©
An implementation should support the following interface correspondences be-
tween Ada and C. ª
Followed.

® ©
An Ada procedure corresponds to a void-returning C function. ª
Followed.

® ©
An Ada function corresponds to a non-void C function. ª
Followed.

Chapter 3: Implementation Advice 65

® ©
An Ada in scalar parameter is passed as a scalar argument to a C function. ª
Followed.

® ©
An Ada in parameter of an access-to-object type with designated type T is
passed as a t* argument to a C function, where t is the C type corresponding
to the Ada type T. ª
Followed.

® ©
An Ada access T parameter, or an Ada out or in out parameter of an ele-
mentary type T, is passed as a t* argument to a C function, where t is the
C type corresponding to the Ada type T. In the case of an elementary out or
in out parameter, a pointer to a temporary copy is used to preserve by-copy
semantics. ª
Followed.

® ©
An Ada parameter of a record type T, of any mode, is passed as a t* argument
to a C function, where t is the C structure corresponding to the Ada type T. ª
Followed. This convention may be overridden by the use of the C Pass By Copy
pragma, or Convention, or by explicitly specifying the mechanism for a given
call using an extended import or export pragma.

® ©
An Ada parameter of an array type with component type T, of any mode, is
passed as a t* argument to a C function, where t is the C type corresponding
to the Ada type T. ª
Followed.

® ©
An Ada parameter of an access-to-subprogram type is passed as a pointer to a
C function whose prototype corresponds to the designated subprogram’s spec-
ification. ª
Followed.

B.4(95-98): Interfacing with COBOL

® ©
An Ada implementation should support the following interface correspondences
between Ada and COBOL. ª
Followed.

® ©
An Ada access T parameter is passed as a ‘BY REFERENCE’ data item of the
COBOL type corresponding to T. ª

66 GNAT Reference Manual

Followed.

® ©
An Ada in scalar parameter is passed as a ‘BY CONTENT’ data item of the corre-
sponding COBOL type. ª

Followed.

® ©
Any other Ada parameter is passed as a ‘BY REFERENCE’ data item of the
COBOL type corresponding to the Ada parameter type; for scalars, a local
copy is used if necessary to ensure by-copy semantics. ª

Followed.

B.5(22-26): Interfacing with Fortran

® ©
An Ada implementation should support the following interface correspondences
between Ada and Fortran: ª

Followed.

® ©
An Ada procedure corresponds to a Fortran subroutine. ª

Followed.

® ©
An Ada function corresponds to a Fortran function. ª

Followed.

® ©
An Ada parameter of an elementary, array, or record type T is passed as a T
argument to a Fortran procedure, where T is the Fortran type corresponding to
the Ada type T, and where the INTENT attribute of the corresponding dummy
argument matches the Ada formal parameter mode; the Fortran implementa-
tion’s parameter passing conventions are used. For elementary types, a local
copy is used if necessary to ensure by-copy semantics. ª

Followed.

® ©
An Ada parameter of an access-to-subprogram type is passed as a reference to a
Fortran procedure whose interface corresponds to the designated subprogram’s
specification. ª

Followed.

Chapter 3: Implementation Advice 67

C.1(3-5): Access to Machine Operations

® ©
The machine code or intrinsic support should allow access to all operations nor-
mally available to assembly language programmers for the target environment,
including privileged instructions, if any. ª
Followed.

® ©
The interfacing pragmas (see Annex B) should support interface to assem-
bler; the default assembler should be associated with the convention identifier
Assembler. ª
Followed.

® ©
If an entity is exported to assembly language, then the implementation should
allocate it at an addressable location, and should ensure that it is retained by
the linking process, even if not otherwise referenced from the Ada code. The
implementation should assume that any call to a machine code or assembler
subprogram is allowed to read or update every object that is specified as ex-
ported. ª
Followed.

C.1(10-16): Access to Machine Operations

® ©
The implementation should ensure that little or no overhead is associated with
calling intrinsic and machine-code subprograms. ª
Followed for both intrinsics and machine-code subprograms.

® ©
It is recommended that intrinsic subprograms be provided for convenient access
to any machine operations that provide special capabilities or efficiency and that
are not otherwise available through the language constructs. ª
Followed. A full set of machine operation intrinsic subprograms is provided.

® ©
Atomic read-modify-write operations—e.g., test and set, compare and swap,
decrement and test, enqueue/dequeue.

 ª
Followed on any target supporting such operations.

® ©
Standard numeric functions—e.g., sin, log. ª
Followed on any target supporting such operations.

68 GNAT Reference Manual

® ©
String manipulation operations—e.g., translate and test. ª

Followed on any target supporting such operations.

® ©
Vector operations—e.g., compare vector against thresholds. ª

Followed on any target supporting such operations.

® ©
Direct operations on I/O ports.

 ª

Followed on any target supporting such operations.

C.3(28): Interrupt Support

® ©
If the Ceiling_Locking policy is not in effect, the implementation should pro-
vide means for the application to specify which interrupts are to be blocked
during protected actions, if the underlying system allows for a finer-grain con-
trol of interrupt blocking. ª

Followed. The underlying system does not allow for finer-grain control of inter-
rupt blocking.

C.3.1(20-21): Protected Procedure Handlers

® ©
Whenever possible, the implementation should allow interrupt handlers to be
called directly by the hardware. ª

Followed on any target where the underlying operating system permits such
direct calls.

® ©
Whenever practical, violations of any implementation-defined restrictions
should be detected before run time. ª

Followed. Compile time warnings are given when possible.

C.3.2(25): Package Interrupts

® ©
If implementation-defined forms of interrupt handler procedures are supported,
such as protected procedures with parameters, then for each such form of a
handler, a type analogous to Parameterless_Handler should be specified in
a child package of Interrupts, with the same operations as in the predefined
package Interrupts. ª

Followed.

Chapter 3: Implementation Advice 69

C.4(14): Pre-elaboration Requirements

® ©
It is recommended that pre-elaborated packages be implemented in such a way
that there should be little or no code executed at run time for the elaboration
of entities not already covered by the Implementation Requirements. ª
Followed. Executable code is generated in some cases, e.g. loops to initialize
large arrays.

C.5(8): Pragma Discard_Names

® ©
If the pragma applies to an entity, then the implementation should reduce the
amount of storage used for storing names associated with that entity. ª
Followed.

C.7.2(30): The Package Task Attributes

® ©
Some implementations are targeted to domains in which memory use at run time
must be completely deterministic. For such implementations, it is recommended
that the storage for task attributes will be pre-allocated statically and not from
the heap. This can be accomplished by either placing restrictions on the number
and the size of the task’s attributes, or by using the pre-allocated storage for
the first N attribute objects, and the heap for the others. In the latter case, N
should be documented. ª
Not followed. This implementation is not targeted to such a domain.

D.3(17): Locking Policies

® ©
The implementation should use names that end with ‘_Locking’ for locking
policies defined by the implementation. ª
Followed. A single implementation-defined locking policy is defined, whose
name (Inheritance_Locking) follows this suggestion.

D.4(16): Entry Queuing Policies

® ©
Names that end with ‘_Queuing’ should be used for all implementation-defined
queuing policies. ª
Followed. No such implementation-defined queueing policies exist.

D.6(9-10): Preemptive Abort

® ©
Even though the abort_statement is included in the list of potentially blocking
operations (see 9.5.1), it is recommended that this statement be implemented in
a way that never requires the task executing the abort_statement to block. ª

70 GNAT Reference Manual

Followed.

® ©
On a multi-processor, the delay associated with aborting a task on another
processor should be bounded; the implementation should use periodic polling,
if necessary, to achieve this. ª
Followed.

D.7(21): Tasking Restrictions

® ©
When feasible, the implementation should take advantage of the specified re-
strictions to produce a more efficient implementation. ª
GNAT currently takes advantage of these restrictions by providing an optimized
run time when the Ravenscar profile and the GNAT restricted run time set of
restrictions are specified. See pragma Ravenscar and pragma Restricted_
Run_Time for more details.

D.8(47-49): Monotonic Time

® ©
When appropriate, implementations should provide configuration mechanisms
to change the value of Tick. ª
Such configuration mechanisms are not appropriate to this implementation and
are thus not supported.

® ©
It is recommended that Calendar.Clock and Real_Time.Clock be
implemented as transformations of the same time base. ª
Followed.

® ©
It is recommended that the best time base which exists in the underlying system
be available to the application through Clock. Best may mean highest accuracy
or largest range. ª
Followed.

E.5(28-29): Partition Communication Subsystem

® ©
Whenever possible, the PCS on the called partition should allow for multiple
tasks to call the RPC-receiver with different messages and should allow them
to block until the corresponding subprogram body returns. ª
Followed by GLADE, a separately supplied PCS that can be used with GNAT.

Chapter 3: Implementation Advice 71

® ©
The Write operation on a stream of type Params_Stream_Type should raise
Storage_Error if it runs out of space trying to write the Item into the stream.

 ª
Followed by GLADE, a separately supplied PCS that can be used with GNAT.

F(7): COBOL Support

® ©
If COBOL (respectively, C) is widely supported in the target environment, im-
plementations supporting the Information Systems Annex should provide the
child package Interfaces.COBOL (respectively, Interfaces.C) specified in An-
nex B and should support a convention_identifier of COBOL (respectively,
C) in the interfacing pragmas (see Annex B), thus allowing Ada programs to
interface with programs written in that language. ª
Followed.

F.1(2): Decimal Radix Support

® ©
Packed decimal should be used as the internal representation for objects of
subtype S when S’Machine Radix = 10. ª
Not followed. GNAT ignores S’Machine Radix and always uses binary repre-
sentations.

G: Numerics

® ©
If Fortran (respectively, C) is widely supported in the target environment, im-
plementations supporting the Numerics Annex should provide the child package
Interfaces.Fortran (respectively, Interfaces.C) specified in Annex B and
should support a convention_identifier of Fortran (respectively, C) in the
interfacing pragmas (see Annex B), thus allowing Ada programs to interface
with programs written in that language. ª
Followed.

G.1.1(56-58): Complex Types

® ©
Because the usual mathematical meaning of multiplication of a complex operand
and a real operand is that of the scaling of both components of the former
by the latter, an implementation should not perform this operation by first
promoting the real operand to complex type and then performing a full complex
multiplication. In systems that, in the future, support an Ada binding to IEC
559:1989, the latter technique will not generate the required result when one
of the components of the complex operand is infinite. (Explicit multiplication
of the infinite component by the zero component obtained during promotion
yields a NaN that propagates into the final result.) Analogous advice applies in
the case of multiplication of a complex operand and a pure-imaginary operand,
and in the case of division of a complex operand by a real or pure-imaginary
operand. ª
Not followed.

72 GNAT Reference Manual

® ©
Similarly, because the usual mathematical meaning of addition of a complex
operand and a real operand is that the imaginary operand remains unchanged,
an implementation should not perform this operation by first promoting the
real operand to complex type and then performing a full complex addition. In
implementations in which the Signed_Zeros attribute of the component type
is True (and which therefore conform to IEC 559:1989 in regard to the handling
of the sign of zero in predefined arithmetic operations), the latter technique will
not generate the required result when the imaginary component of the complex
operand is a negatively signed zero. (Explicit addition of the negative zero to
the zero obtained during promotion yields a positive zero.) Analogous advice
applies in the case of addition of a complex operand and a pure-imaginary
operand, and in the case of subtraction of a complex operand and a real or
pure-imaginary operand. ª

Not followed.

® ©
Implementations in which Real’Signed_Zeros is True should attempt to pro-
vide a rational treatment of the signs of zero results and result components. As
one example, the result of the Argument function should have the sign of the
imaginary component of the parameter X when the point represented by that
parameter lies on the positive real axis; as another, the sign of the imaginary
component of the Compose_From_Polar function should be the same as (respec-
tively, the opposite of) that of the Argument parameter when that parameter
has a value of zero and the Modulus parameter has a nonnegative (respectively,
negative) value.

 ª

Followed.

G.1.2(49): Complex Elementary Functions
® ©
Implementations in which Complex_Types.Real’Signed_Zeros is True should
attempt to provide a rational treatment of the signs of zero results and result
components. For example, many of the complex elementary functions have
components that are odd functions of one of the parameter components; in these
cases, the result component should have the sign of the parameter component at
the origin. Other complex elementary functions have zero components whose
sign is opposite that of a parameter component at the origin, or is always
positive or always negative. ª

Followed.

G.2.4(19): Accuracy Requirements
® ©
The versions of the forward trigonometric functions without a Cycle param-
eter should not be implemented by calling the corresponding version with a
Cycle parameter of 2.0*Numerics.Pi, since this will not provide the required
accuracy in some portions of the domain. For the same reason, the version
of Log without a Base parameter should not be implemented by calling the
corresponding version with a Base parameter of Numerics.e. ª

Followed.

Chapter 3: Implementation Advice 73

G.2.6(15): Complex Arithmetic Accuracy

® ©
The version of the Compose_From_Polar function without a Cycle parameter
should not be implemented by calling the corresponding version with a Cycle
parameter of 2.0*Numerics.Pi, since this will not provide the required accu-
racy in some portions of the domain. ª
Followed.

74 GNAT Reference Manual

Chapter 4: Implementation Defined Characteristics 75

4 Implementation Defined Characteristics

In addition to the implementation dependent pragmas and attributes, and the implementa-
tion advice, there are a number of other features of Ada 95 that are potentially implemen-
tation dependent. These are mentioned throughout the Ada 95 Reference Manual, and are
summarized in annex M.

A requirement for conforming Ada compilers is that they provide documentation de-
scribing how the implementation deals with each of these issues. In this chapter, you will
find each point in annex M listed followed by a description in italic font of how GNAT
handles the implementation dependence.

You can use this chapter as a guide to minimizing implementation dependent features in
your programs if portability to other compilers and other operating systems is an important
consideration. The numbers in each section below correspond to the paragraph number in
the Ada 95 Reference Manual.

® ©
2. Whether or not each recommendation given in Implementation Advice is followed. See
1.1.2(37).

 ª
See Chapter 3 [Implementation Advice], page 51.

® ©
3. Capacity limitations of the implementation. See 1.1.3(3).

 ª
The complexity of programs that can be processed is limited only by the total amount of
available virtual memory, and disk space for the generated object files.

® ©
4. Variations from the standard that are impractical to avoid given the implementation’s
execution environment. See 1.1.3(6).

 ª
There are no variations from the standard.

® ©
5. Which code_statements cause external interactions. See 1.1.3(10).

 ª
Any code_statement can potentially cause external interactions.

® ©
6. The coded representation for the text of an Ada program. See 2.1(4).

 ª
See separate section on source representation.

® ©
7. The control functions allowed in comments. See 2.1(14).

 ª
See separate section on source representation.

76 GNAT Reference Manual

® ©
8. The representation for an end of line. See 2.2(2).

 ª
See separate section on source representation.

® ©
9. Maximum supported line length and lexical element length. See 2.2(15).

 ª
The maximum line length is 255 characters an the maximum length of a lexical element is
also 255 characters.

® ©
10. Implementation defined pragmas. See 2.8(14).

 ª

See Chapter 1 [Implementation Defined Pragmas], page 3.

® ©
11. Effect of pragma Optimize. See 2.8(27).

 ª
Pragma Optimize, if given with a Time or Space parameter, checks that the optimization
flag is set, and aborts if it is not.

® ©
12. The sequence of characters of the value returned by S’Image when some of the graphic
characters of S’Wide_Image are not defined in Character. See 3.5(37).

 ª
The sequence of characters is as defined by the wide character encoding method used for
the source. See section on source representation for further details.

® ©
13. The predefined integer types declared in Standard. See 3.5.4(25).

 ª
Short_Short_Integer

8 bit signed

Short_Integer
(Short) 16 bit signed

Integer 32 bit signed

Long_Integer
64 bit signed (Alpha OpenVMS only) 32 bit signed (all other targets)

Long_Long_Integer
64 bit signed

® ©
14. Any nonstandard integer types and the operators defined for them. See 3.5.4(26).

 ª
There are no nonstandard integer types.

Chapter 4: Implementation Defined Characteristics 77

® ©
15. Any nonstandard real types and the operators defined for them. See 3.5.6(8).

 ª
There are no nonstandard real types.

® ©
16. What combinations of requested decimal precision and range are supported for floating
point types. See 3.5.7(7).

 ª
The precision and range is as defined by the IEEE standard.

® ©
17. The predefined floating point types declared in Standard. See 3.5.7(16).

 ª
Short_Float

32 bit IEEE short

Float (Short) 32 bit IEEE short

Long_Float
64 bit IEEE long

Long_Long_Float
64 bit IEEE long (80 bit IEEE long on x86 processors)

® ©
18. The small of an ordinary fixed point type. See 3.5.9(8).

 ª
Fine_Delta is 2**(−63)

® ©
19. What combinations of small, range, and digits are supported for fixed point types. See
3.5.9(10).

 ª
Any combinations are permitted that do not result in a small less than Fine_Delta and
do not result in a mantissa larger than 63 bits. If the mantissa is larger than 53 bits on
machines where Long Long Float is 64 bits (true of all architectures except ia32), then the
output from Text IO is accurate to only 53 bits, rather than the full mantissa. This is
because floating-point conversions are used to convert fixed point.

® ©
20. The result of Tags.Expanded_Name for types declared within an unnamed block_
statement. See 3.9(10).

 ª
Block numbers of the form Bnnn , where nnn is a decimal integer are allocated.

® ©
21. Implementation-defined attributes. See 4.1.4(12).

 ª
See Chapter 2 [Implementation Defined Attributes], page 41.

78 GNAT Reference Manual

® ©
22. Any implementation-defined time types. See 9.6(6).

 ª
There are no implementation-defined time types.

® ©
23. The time base associated with relative delays. ª
See 9.6(20). The time base used is that provided by the C library function gettimeofday.

® ©
24. The time base of the type Calendar.Time. See 9.6(23).

 ª
The time base used is that provided by the C library function gettimeofday.

® ©
25. The time zone used for package Calendar operations. See 9.6(24).

 ª
The time zone used by package Calendar is the current system time zone setting for local
time, as accessed by the C library function localtime.

® ©
26. Any limit on delay_until_statements of select_statements. See 9.6(29).

 ª
There are no such limits.

® ©
27. Whether or not two non overlapping parts of a composite object are independently
addressable, in the case where packing, record layout, or Component_Size is specified for
the object. See 9.10(1).

 ª
Separate components are independently addressable if they do not share overlapping storage
units.

® ©
28. The representation for a compilation. See 10.1(2).

 ª
A compilation is represented by a sequence of files presented to the compiler in a single
invocation of the gcc command.

® ©
29. Any restrictions on compilations that contain multiple compilation units. See 10.1(4).

 ª
No single file can contain more than one compilation unit, but any sequence of files can be
presented to the compiler as a single compilation.

® ©
30. The mechanisms for creating an environment and for adding and replacing compilation
units. See 10.1.4(3).

 ª

Chapter 4: Implementation Defined Characteristics 79

See separate section on compilation model.

® ©
31. The manner of explicitly assigning library units to a partition. See 10.2(2).

 ª
If a unit contains an Ada main program, then the Ada units for the partition are determined
by recursive application of the rules in the Ada Reference Manual section 10.2(2-6). In
other words, the Ada units will be those that are needed by the main program, and then
this definition of need is applied recursively to those units, and the partition contains the
transitive closure determined by this relationship. In short, all the necessary units are
included, with no need to explicitly specify the list. If additional units are required, e.g. by
foreign language units, then all units must be mentioned in the context clause of one of the
needed Ada units.

If the partition contains no main program, or if the main program is in a language other
than Ada, then GNAT provides the binder options -z and -n respectively, and in this case
a list of units can be explicitly supplied to the binder for inclusion in the partition (all units
needed by these units will also be included automatically). For full details on the use of
these options, refer to the GNAT User’s Guide sections on Binding and Linking.

® ©
32. The implementation-defined means, if any, of specifying which compilation units are
needed by a given compilation unit. See 10.2(2).

 ª
The units needed by a given compilation unit are as defined in the Ada Reference Manual
section 10.2(2-6). There are no implementation-defined pragmas or other implementation-
defined means for specifying needed units.

® ©
33. The manner of designating the main subprogram of a partition. See 10.2(7).

 ª
The main program is designated by providing the name of the corresponding ‘ALI’ file as
the input parameter to the binder.

® ©
34. The order of elaboration of library_items. See 10.2(18).

 ª
The first constraint on ordering is that it meets the requirements of chapter 10 of the Ada
95 Reference Manual. This still leaves some implementation dependent choices, which are
resolved by first elaborating bodies as early as possible (i.e. in preference to specs where there
is a choice), and second by evaluating the immediate with clauses of a unit to determine the
probably best choice, and third by elaborating in alphabetical order of unit names where a
choice still remains.

® ©
35. Parameter passing and function return for the main subprogram. See 10.2(21).

 ª

80 GNAT Reference Manual

The main program has no parameters. It may be a procedure, or a function returning an
integer type. In the latter case, the returned integer value is the return code of the program.

® ©
36. The mechanisms for building and running partitions. See 10.2(24).

 ª
GNAT itself supports programs with only a single partition. The GNATDIST tool provided
with the GLADE package (which also includes an implementation of the PCS) provides a
completely flexible method for building and running programs consisting of multiple parti-
tions. See the separate GLADE manual for details.

® ©
37. The details of program execution, including program termination. See 10.2(25).

 ª
See separate section on compilation model.

® ©
38. The semantics of any non-active partitions supported by the implementation. See
10.2(28).

 ª
Passive partitions are supported on targets where shared memory is provided by the oper-
ating system. See the GLADE reference manual for further details.

® ©
39. The information returned by Exception_Message. See 11.4.1(10).

 ª
Exception message returns the null string unless a specific message has been passed by the
program.

® ©
40. The result of Exceptions.Exception_Name for types declared within an unnamed
block_statement. See 11.4.1(12).

 ª
Blocks have implementation defined names of the form Bnnn where nnn is an integer.

® ©
41. The information returned by Exception_Information. See 11.4.1(13).

 ª
Exception_Information returns a string in the following format:

Exception_Name: nnnnn

Message: mmmmm

PID: ppp

Call stack traceback locations:

0xhhhh 0xhhhh 0xhhhh ... 0xhhh

where
• nnnn is the fully qualified name of the exception in all upper case letters. This line is

always present.
• mmmm is the message (this line present only if message is non-null)

Chapter 4: Implementation Defined Characteristics 81

• ppp is the Process Id value as a decimal integer (this line is present only if the Process
Id is non-zero). Currently we are not making use of this field.

• The Call stack traceback locations line and the following values are present only if at
least one traceback location was recorded. The values are given in C style format, with
lower case letters for a-f, and only as many digits present as are necessary.

The line terminator sequence at the end of each line, including the last line is a single LF
character (16#0A#).

® ©
42. Implementation-defined check names. See 11.5(27).

 ª
No implementation-defined check names are supported.

® ©
43. The interpretation of each aspect of representation. See 13.1(20).

 ª
See separate section on data representations.

® ©
44. Any restrictions placed upon representation items. See 13.1(20).

 ª
See separate section on data representations.

® ©
45. The meaning of Size for indefinite subtypes. See 13.3(48).

 ª
Size for an indefinite subtype is the maximum possible size, except that for the case of a
subprogram parameter, the size of the parameter object is the actual size.

® ©
46. The default external representation for a type tag. See 13.3(75).

 ª
The default external representation for a type tag is the fully expanded name of the type
in upper case letters.

® ©
47. What determines whether a compilation unit is the same in two different partitions.
See 13.3(76).

 ª
A compilation unit is the same in two different partitions if and only if it derives from the
same source file.

® ©
48. Implementation-defined components. See 13.5.1(15).

 ª
The only implementation defined component is the tag for a tagged type, which contains a
pointer to the dispatching table.

82 GNAT Reference Manual

® ©
49. If Word_Size = Storage_Unit, the default bit ordering. See 13.5.3(5).

 ª

Word_Size (32) is not the same as Storage_Unit (8) for this implementation, so no non-
default bit ordering is supported. The default bit ordering corresponds to the natural
endianness of the target architecture.

® ©
50. The contents of the visible part of package System and its language-defined children.
See 13.7(2).

 ª

See the definition of these packages in files ‘system.ads’ and ‘s-stoele.ads’.

® ©
51. The contents of the visible part of package System.Machine_Code, and the meaning of
code_statements. See 13.8(7).

 ª

See the definition and documentation in file ‘s-maccod.ads’.

® ©
52. The effect of unchecked conversion. See 13.9(11).

 ª

Unchecked conversion between types of the same size and results in an uninterpreted trans-
mission of the bits from one type to the other. If the types are of unequal sizes, then in
the case of discrete types, a shorter source is first zero or sign extended as necessary, and a
shorter target is simply truncated on the left. For all non-discrete types, the source is first
copied if necessary to ensure that the alignment requirements of the target are met, then a
pointer is constructed to the source value, and the result is obtained by dereferencing this
pointer after converting it to be a pointer to the target type.

® ©
53. The manner of choosing a storage pool for an access type when Storage_Pool is not
specified for the type. See 13.11(17).

 ª

There are 3 different standard pools used by the compiler when Storage_Pool is not
specified depending whether the type is local to a subprogram or defined at the library
level and whether Storage_Sizeis specified or not. See documentation in the runtime
library units System.Pool_Global, System.Pool_Size and System.Pool_Local in files
‘s-poosiz.ads’, ‘s-pooglo.ads’ and ‘s-pooloc.ads’ for full details on the default pools
used.

® ©
54. Whether or not the implementation provides user-accessible names for the standard
pool type(s). See 13.11(17).

 ª

See documentation in the sources of the run time mentioned in paragraph 53 . All these
pools are accessible by means of with’ing these units.

Chapter 4: Implementation Defined Characteristics 83

® ©
55. The meaning of Storage_Size. See 13.11(18).

 ª
Storage_Size is measured in storage units, and refers to the total space available for an
access type collection, or to the primary stack space for a task.

® ©
56. Implementation-defined aspects of storage pools. See 13.11(22).

 ª
See documentation in the sources of the run time mentioned in paragraph 53 for details on
GNAT-defined aspects of storage pools.

® ©
57. The set of restrictions allowed in a pragma Restrictions. See 13.12(7).

 ª
All RM defined Restriction identifiers are implemented. The following additional restric-
tion identifiers are provided. There are two separate lists of implementation dependent
restriction identifiers. The first set requires consistency throughout a partition (in other
words, if the restriction identifier is used for any compilation unit in the partition, then all
compilation units in the partition must obey the restriction.

Boolean_Entry_Barriers
This restriction ensures at compile time that barriers in entry declarations for
protected types are restricted to references to simple boolean variables defined
in the private part of the protected type. No other form of entry barriers is
permitted. This is one of the restrictions of the Ravenscar profile for limited
tasking (see also pragma Ravenscar).

Max_Entry_Queue_Depth => Expr
This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most the specified number of tasks waiting on the entry
at any one time, and so no queue is required. This restriction is not checked
at compile time. A program execution is erroneous if an attempt is made to
queue more than the specified number of tasks on such an entry.

No_Calendar
This restriction ensures at compile time that there is no implicit or explicit
dependence on the package Ada.Calendar.

No_Dynamic_Interrupts
This restriction ensures at compile time that there is no attempt to dynamically
associate interrupts. Only static association is allowed.

No_Enumeration_Maps
This restriction ensures at compile time that no operations requiring enumera-
tion maps are used (that is Image and Value attributes applied to enumeration
types).

No_Entry_Calls_In_Elaboration_Code
This restriction ensures at compile time that no task or protected entry calls
are made during elaboration code. As a result of the use of this restriction, the

84 GNAT Reference Manual

compiler can assume that no code past an accept statement in a task can be
executed at elaboration time.

No_Exception_Handlers
This restriction ensures at compile time that there are no explicit exception
handlers.

No_Implicit_Conditionals
This restriction ensures that the generated code does not contain any implicit
conditionals, either by modifying the generated code where possible, or by re-
jecting any construct that would otherwise generate an implicit conditional.
The details and use of this restriction are described in more detail in the High
Integrity product documentation.

No_Implicit_Loops
This restriction ensures that the generated code does not contain any implicit
for loops, either by modifying the generated code where possible, or by rejecting
any construct that would otherwise generate an implicit for loop. The details
and use of this restriction are described in more detail in the High Integrity
product documentation.

No_Local_Protected_Objects
This restriction ensures at compile time that protected objects are only declared
at the library level.

No_Protected_Type_Allocators
This restriction ensures at compile time that there are no allocator expressions
that attempt to allocate protected objects.

No_Secondary_Stack
This restriction ensures at compile time that the generated code does not con-
tain any reference to the secondary stack. The secondary stack is used to im-
plement functions returning unconstrained objects (arrays or records) on some
targets. The details and use of this restriction are described in more detail in
the High Integrity product documentation.

No_Select_Statements
This restriction ensures at compile time no select statements of any kind are per-
mitted, that is the keyword select may not appear. This is one of the restric-
tions of the Ravenscar profile for limited tasking (see also pragma Ravenscar).

No_Standard_Storage_Pools
This restriction ensures at compile time that no access types use the standard
default storage pool. Any access type declared must have an explicit Stor-
age Pool attribute defined specifying a user-defined storage pool.

No_Streams
This restriction ensures at compile time that there are no implicit or explicit
dependencies on the package Ada.Streams.

No_Task_Attributes
This restriction ensures at compile time that there are no implicit or explicit
dependencies on the package Ada.Task_Attributes.

Chapter 4: Implementation Defined Characteristics 85

No_Task_Termination
This restriction ensures at compile time that no terminate alternatives appear
in any task body.

No_Tasking
This restriction prevents the declaration of tasks or task types throughout the
partition. It is similar in effect to the use of Max_Tasks => 0 except that vi-
olations are caught at compile time and cause an error message to be output
either by the compiler or binder.

No_Wide_Characters
This restriction ensures at compile time that no uses of the types
Wide_Character or Wide_String appear, and that no wide character literals
appear in the program (that is literals representing characters not in type
Character.

Static_Priorities
This restriction ensures at compile time that all priority expressions are static,
and that there are no dependencies on the package Ada.Dynamic_Priorities.

Static_Storage_Size
This restriction ensures at compile time that any expression appearing in a
Storage Size pragma or attribute definition clause is static.

The second set of implementation dependent restriction identifiers does not require
partition-wide consistency. The restriction may be enforced for a single compilation unit
without any effect on any of the other compilation units in the partition.

No_Elaboration_Code
This restriction ensures at compile time that no elaboration code is generated.
Note that this is not the same condition as is enforced by pragma Preelaborate.
There are cases in which pragma Preelaborate still permits code to be gener-
ated (e.g. code to initialize a large array to all zeroes), and there are cases of
units which do not meet the requirements for pragma Preelaborate, but for
which no elaboration code is generated. Generally, it is the case that preelab-
orable units will meet the restrictions, with the exception of large aggregates
initialized with an others clause, and exception declarations (which generate
calls to a run-time registry procedure). Note that this restriction is enforced on
a unit by unit basis, it need not be obeyed consistently throughout a partition.

No_Entry_Queue
This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most one task waiting on the entry at any one time,
and so no queue is required. This restriction is not checked at compile time. A
program execution is erroneous if an attempt is made to queue a second task
on such an entry.

No_Implementation_Attributes
This restriction checks at compile time that no GNAT-defined attributes are
present. With this restriction, the only attributes that can be used are those
defined in the Ada 95 Reference Manual.

86 GNAT Reference Manual

No_Implementation_Pragmas
This restriction checks at compile time that no GNAT-defined pragmas are
present. With this restriction, the only pragmas that can be used are those
defined in the Ada 95 Reference Manual.

No_Implementation_Restrictions
This restriction checks at compile time that no GNAT-defined restriction identi-
fiers (other than No_Implementation_Restrictions itself) are present. With
this restriction, the only other restriction identifiers that can be used are those
defined in the Ada 95 Reference Manual.

® ©
58. The consequences of violating limitations on Restrictions pragmas. See 13.12(9).

 ª
Restrictions that can be checked at compile time result in illegalities if violated. Currently
there are no other consequences of violating restrictions.

® ©
59. The representation used by the Read and Write attributes of elementary types in terms
of stream elements. See 13.13.2(9).

 ª
The representation is the in-memory representation of the base type of the type, using
the number of bits corresponding to the type’Size value, and the natural ordering of the
machine.

® ©
60. The names and characteristics of the numeric subtypes declared in the visible part of
package Standard. See A.1(3).

 ª
See items describing the integer and floating-point types supported.

® ©
61. The accuracy actually achieved by the elementary functions. See A.5.1(1).

 ª
The elementary functions correspond to the functions available in the C library. Only fast
math mode is implemented.

® ©
62. The sign of a zero result from some of the operators or functions in Numerics.Generic_
Elementary_Functions, when Float_Type’Signed_Zeros is True. See A.5.1(46).

 ª
The sign of zeroes follows the requirements of the IEEE 754 standard on floating-point.

® ©
63. The value of Numerics.Float_Random.Max_Image_Width. See A.5.2(27).

 ª
Maximum image width is 649, see library file ‘a-numran.ads’.

Chapter 4: Implementation Defined Characteristics 87

® ©
64. The value of Numerics.Discrete_Random.Max_Image_Width. See A.5.2(27).

 ª
Maximum image width is 80, see library file ‘a-nudira.ads’.

® ©
65. The algorithms for random number generation. See A.5.2(32).

 ª
The algorithm is documented in the source files ‘a-numran.ads’ and ‘a-numran.adb’.

® ©
66. The string representation of a random number generator’s state. See A.5.2(38).

 ª
See the documentation contained in the file ‘a-numran.adb’.

® ©
67. The minimum time interval between calls to the time-dependent Reset procedure that
are guaranteed to initiate different random number sequences. See A.5.2(45).

 ª
The minimum period between reset calls to guarantee distinct series of random numbers is
one microsecond.

® ©
68. The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First,
and Safe_Last attributes, if the Numerics Annex is not supported. See A.5.3(72).

 ª
See the source file ‘ttypef.ads’ for the values of all numeric attributes.

® ©
69. Any implementation-defined characteristics of the input-output packages. See A.7(14).

 ª
There are no special implementation defined characteristics for these packages.

® ©
70. The value of Buffer_Size in Storage_IO. See A.9(10).

 ª
All type representations are contiguous, and the Buffer_Size is the value of type’Size
rounded up to the next storage unit boundary.

® ©
71. External files for standard input, standard output, and standard error See A.10(5).

 ª
These files are mapped onto the files provided by the C streams libraries. See source file
‘i-cstrea.ads’ for further details.

® ©
72. The accuracy of the value produced by Put. See A.10.9(36).

 ª
If more digits are requested in the output than are represented by the precision of the value,
zeroes are output in the corresponding least significant digit positions.

88 GNAT Reference Manual

® ©
73. The meaning of Argument_Count, Argument, and Command_Name. See A.15(1).

 ª
These are mapped onto the argv and argc parameters of the main program in the natural
manner.

® ©
74. Implementation-defined convention names. See B.1(11).

 ª
The following convention names are supported

Ada Ada

Assembler
Assembly language

Asm Synonym for Assembler

Assembly Synonym for Assembler

C C

C_Pass_By_Copy
Allowed only for record types, like C, but also notes that record is to be passed
by copy rather than reference.

COBOL COBOL

CPP C++

Default Treated the same as C

External Treated the same as C

Fortran Fortran

Intrinsic
For support of pragma Import with convention Intrinsic, see separate section
on Intrinsic Subprograms.

Stdcall Stdcall (used for Windows implementations only). This convention correspond
to the WINAPI (previously called Pascal convention) C/C++ convention under
Windows. A function with this convention cleans the stack before exit.

DLL Synonym for Stdcall

Win32 Synonym for Stdcall

Stubbed Stubbed is a special convention used to indicate that the body of the subpro-
gram will be entirely ignored. Any call to the subprogram is converted into a
raise of the Program_Error exception. If a pragma Import specifies convention
stubbed then no body need be present at all. This convention is useful during
development for the inclusion of subprograms whose body has not yet been
written.

In addition, all otherwise unrecognized convention names are also treated as being synony-
mous with convention C. In all implementations except for VMS, use of such other names
results in a warning. In VMS implementations, these names are accepted silently.

Chapter 4: Implementation Defined Characteristics 89

® ©
75. The meaning of link names. See B.1(36).

 ª
Link names are the actual names used by the linker.

® ©
76. The manner of choosing link names when neither the link name nor the address of an
imported or exported entity is specified. See B.1(36).

 ª
The default linker name is that which would be assigned by the relevant external language,
interpreting the Ada name as being in all lower case letters.

® ©
77. The effect of pragma Linker_Options. See B.1(37).

 ª
The string passed to Linker_Options is presented uninterpreted as an argument to the link
command, unless it contains Ascii.NUL characters. NUL characters if they appear act as
argument separators, so for example

pragma Linker_Options ("-labc" & ASCII.Nul & "-ldef");

causes two separate arguments -labc and -ldef to be passed to the linker. The order of
linker options is preserved for a given unit. The final list of options passed to the linker
is in reverse order of the elaboration order. For example, linker options fo a body always
appear before the options from the corresponding package spec.

® ©
78. The contents of the visible part of package Interfaces and its language-defined de-
scendants. See B.2(1).

 ª
See files with prefix ‘i-’ in the distributed library.

® ©
79. Implementation-defined children of package Interfaces. The contents of the visible
part of package Interfaces. See B.2(11).

 ª
See files with prefix ‘i-’ in the distributed library.

® ©
80. The types Floating, Long_Floating, Binary, Long_Binary, Decimal_ Element, and
COBOL_Character; and the initialization of the variables Ada_To_COBOL and COBOL_To_Ada,
in Interfaces.COBOL. See B.4(50).

 ª

Floating Float

Long_Floating
(Floating) Long Float

Binary Integer

Long_Binary
Long Long Integer

90 GNAT Reference Manual

Decimal_Element
Character

COBOL_Character
Character

For initialization, see the file ‘i-cobol.ads’ in the distributed library.

® ©
81. Support for access to machine instructions. See C.1(1).

 ª
See documentation in file ‘s-maccod.ads’ in the distributed library.

® ©
82. Implementation-defined aspects of access to machine operations. See C.1(9).

 ª
See documentation in file ‘s-maccod.ads’ in the distributed library.

® ©
83. Implementation-defined aspects of interrupts. See C.3(2).

 ª
Interrupts are mapped to signals or conditions as appropriate. See definition of unit
Ada.Interrupt_Names in source file ‘a-intnam.ads’ for details on the interrupts supported
on a particular target.

® ©
84. Implementation-defined aspects of pre-elaboration. See C.4(13).

 ª
GNAT does not permit a partition to be restarted without reloading, except under control
of the debugger.

® ©
85. The semantics of pragma Discard_Names. See C.5(7).

 ª
Pragma Discard_Names causes names of enumeration literals to be suppressed. In the
presence of this pragma, the Image attribute provides the image of the Pos of the literal,
and Value accepts Pos values.

® ©
86. The result of the Task_Identification.Image attribute. See C.7.1(7).

 ª
The result of this attribute is an 8-digit hexadecimal string representing the virtual address
of the task control block.

® ©
87. The value of Current_Task when in a protected entry or interrupt handler. See
C.7.1(17).

 ª

Chapter 4: Implementation Defined Characteristics 91

Protected entries or interrupt handlers can be executed by any convenient thread, so the
value of Current_Task is undefined.

® ©
88. The effect of calling Current_Task from an entry body or interrupt handler. See
C.7.1(19).

 ª
The effect of calling Current_Task from an entry body or interrupt handler is to return the
identification of the task currently executing the code.

® ©
89. Implementation-defined aspects of Task_Attributes. See C.7.2(19).

 ª
There are no implementation-defined aspects of Task_Attributes.

® ©
90. Values of all Metrics. See D(2).

 ª
The metrics information for GNAT depends on the performance of the underlying operating
system. The sources of the run-time for tasking implementation, together with the output
from -gnatG can be used to determine the exact sequence of operating systems calls made
to implement various tasking constructs. Together with appropriate information on the
performance of the underlying operating system, on the exact target in use, this information
can be used to determine the required metrics.

® ©
91. The declarations of Any_Priority and Priority. See D.1(11).

 ª
See declarations in file ‘system.ads’.

® ©
92. Implementation-defined execution resources. See D.1(15).

 ª
There are no implementation-defined execution resources.

® ©
93. Whether, on a multiprocessor, a task that is waiting for access to a protected object
keeps its processor busy. See D.2.1(3).

 ª
On a multi-processor, a task that is waiting for access to a protected object does not keep
its processor busy.

® ©
94. The affect of implementation defined execution resources on task dispatching. See
D.2.1(9).

 ª
Tasks map to threads in the threads package used by GNAT. Where possible and appro-
priate, these threads correspond to native threads of the underlying operating system.

92 GNAT Reference Manual

® ©
95. Implementation-defined policy_identifiers allowed in a pragma Task_Dispatching_
Policy. See D.2.2(3).

 ª
There are no implementation-defined policy-identifiers allowed in this pragma.

® ©
96. Implementation-defined aspects of priority inversion. See D.2.2(16).

 ª
Execution of a task cannot be preempted by the implementation processing of delay expi-
rations for lower priority tasks.

® ©
97. Implementation defined task dispatching. See D.2.2(18).

 ª
The policy is the same as that of the underlying threads implementation.

® ©
98. Implementation-defined policy_identifiers allowed in a pragma Locking_Policy.
See D.3(4).

 ª
The only implementation defined policy permitted in GNAT is Inheritance_Locking. On
targets that support this policy, locking is implemented by inheritance, i.e. the task owning
the lock operates at a priority equal to the highest priority of any task currently requesting
the lock.

® ©
99. Default ceiling priorities. See D.3(10).

 ª
The ceiling priority of protected objects of the type System.Interrupt_Priority’Last as
described in the Ada 95 Reference Manual D.3(10),

® ©
100. The ceiling of any protected object used internally by the implementation. See
D.3(16).

 ª
The ceiling priority of internal protected objects is System.Priority’Last.

® ©
101. Implementation-defined queuing policies. See D.4(1).

 ª
There are no implementation-defined queueing policies.

® ©
102. On a multiprocessor, any conditions that cause the completion of an aborted construct
to be delayed later than what is specified for a single processor. See D.6(3).

 ª
The semantics for abort on a multi-processor is the same as on a single processor, there are
no further delays.

Chapter 4: Implementation Defined Characteristics 93

® ©
103. Any operations that implicitly require heap storage allocation. See D.7(8).

 ª
The only operation that implicitly requires heap storage allocation is task creation.

® ©
104. Implementation-defined aspects of pragma Restrictions. See D.7(20).

 ª
There are no such implementation-defined aspects.

® ©
105. Implementation-defined aspects of package Real_Time. See D.8(17).

 ª
There are no implementation defined aspects of package Real_Time.

® ©
106. Implementation-defined aspects of delay_statements. See D.9(8).

 ª
Any difference greater than one microsecond will cause the task to be delayed (see D.9(7)).

® ©
107. The upper bound on the duration of interrupt blocking caused by the implementation.
See D.12(5).

 ª
The upper bound is determined by the underlying operating system. In no cases is it more
than 10 milliseconds.

® ©
108. The means for creating and executing distributed programs. See E(5).

 ª
The GLADE package provides a utility GNATDIST for creating and executing distributed
programs. See the GLADE reference manual for further details.

® ©
109. Any events that can result in a partition becoming inaccessible. See E.1(7).

 ª
See the GLADE reference manual for full details on such events.

® ©
110. The scheduling policies, treatment of priorities, and management of shared resources
between partitions in certain cases. See E.1(11).

 ª
See the GLADE reference manual for full details on these aspects of multi-partition execu-
tion.

® ©
111. Events that cause the version of a compilation unit to change. See E.3(5).

 ª
Editing the source file of a compilation unit, or the source files of any units on which it
is dependent in a significant way cause the version to change. No other actions cause the

94 GNAT Reference Manual

version number to change. All changes are significant except those which affect only layout,
capitalization or comments.

® ©
112. Whether the execution of the remote subprogram is immediately aborted as a result
of cancellation. See E.4(13).

 ª
See the GLADE reference manual for details on the effect of abort in a distributed appli-
cation.

® ©
113. Implementation-defined aspects of the PCS. See E.5(25).

 ª
See the GLADE reference manual for a full description of all implementation defined aspects
of the PCS.

® ©
114. Implementation-defined interfaces in the PCS. See E.5(26).

 ª
See the GLADE reference manual for a full description of all implementation defined inter-
faces.

® ©
115. The values of named numbers in the package Decimal. See F.2(7).

 ª
Max_Scale

+18

Min_Scale
-18

Min_Delta
1.0E-18

Max_Delta
1.0E+18

Max_Decimal_Digits
18

® ©
116. The value of Max_Picture_Length in the package Text_IO.Editing. See F.3.3(16).

 ª
64

® ©
117. The value of Max_Picture_Length in the package Wide_Text_IO.Editing. See
F.3.4(5).

 ª
64

Chapter 4: Implementation Defined Characteristics 95

® ©
118. The accuracy actually achieved by the complex elementary functions and by other
complex arithmetic operations. See G.1(1).

 ª
Standard library functions are used for the complex arithmetic operations. Only fast math
mode is currently supported.

® ©
119. The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Types, when Real’Signed_Zeros is True. See G.1.1(53).

 ª
The signs of zero values are as recommended by the relevant implementation advice.

® ©
120. The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Elementary_Functions, when Real’Signed_Zeros is True.
See G.1.2(45).

 ª
The signs of zero values are as recommended by the relevant implementation advice.

® ©
121. Whether the strict mode or the relaxed mode is the default. See G.2(2).

 ª
The strict mode is the default. There is no separate relaxed mode. GNAT provides a highly
efficient implementation of strict mode.

® ©
122. The result interval in certain cases of fixed-to-float conversion. See G.2.1(10).

 ª
For cases where the result interval is implementation dependent, the accuracy is that pro-
vided by performing all operations in 64-bit IEEE floating-point format.

® ©
123. The result of a floating point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.1(13).

 ª
Infinite and Nan values are produced as dictated by the IEEE floating-point standard.

® ©
124. The result interval for division (or exponentiation by a negative exponent), when
the floating point hardware implements division as multiplication by a reciprocal. See
G.2.1(16).

 ª
Not relevant, division is IEEE exact.

® ©
125. The definition of close result set, which determines the accuracy of certain fixed point
multiplications and divisions. See G.2.3(5).

 ª

96 GNAT Reference Manual

Operations in the close result set are performed using IEEE long format floating-point
arithmetic. The input operands are converted to floating-point, the operation is done in
floating-point, and the result is converted to the target type.

® ©
126. Conditions on a universal_real operand of a fixed point multiplication or division
for which the result shall be in the perfect result set. See G.2.3(22).

 ª
The result is only defined to be in the perfect result set if the result can be computed by a
single scaling operation involving a scale factor representable in 64-bits.

® ©
127. The result of a fixed point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.3(27).

 ª
Not relevant, Machine_Overflows is True for fixed-point types.

® ©
128. The result of an elementary function reference in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.4(4).

 ª
IEEE infinite and Nan values are produced as appropriate.

® ©
129. The value of the angle threshold, within which certain elementary functions, com-
plex arithmetic operations, and complex elementary functions yield results conforming to a
maximum relative error bound. See G.2.4(10).

 ª
Information on this subject is not yet available.

® ©
130. The accuracy of certain elementary functions for parameters beyond the angle thresh-
old. See G.2.4(10).

 ª
Information on this subject is not yet available.

® ©
131. The result of a complex arithmetic operation or complex elementary function reference
in overflow situations, when the Machine_Overflows attribute of the corresponding real
type is False. See G.2.6(5).

 ª
IEEE infinite and Nan values are produced as appropriate.

® ©
132. The accuracy of certain complex arithmetic operations and certain complex elemen-
tary functions for parameters (or components thereof) beyond the angle threshold. See
G.2.6(8).

 ª
Information on those subjects is not yet available.

Chapter 4: Implementation Defined Characteristics 97

® ©
133. Information regarding bounded errors and erroneous execution. See H.2(1).

 ª
Information on this subject is not yet available.

® ©
134. Implementation-defined aspects of pragma Inspection_Point. See H.3.2(8).

 ª
Pragma Inspection_Point ensures that the variable is live and can be examined by the
debugger at the inspection point.

® ©
135. Implementation-defined aspects of pragma Restrictions. See H.4(25).

 ª
There are no implementation-defined aspects of pragma Restrictions. The use of pragma
Restrictions [No_Exceptions] has no effect on the generated code. Checks must sup-
pressed by use of pragma Suppress.

® ©
136. Any restrictions on pragma Restrictions. See H.4(27).

 ª
There are no restrictions on pragma Restrictions.

98 GNAT Reference Manual

Chapter 5: Intrinsic Subprograms 99

5 Intrinsic Subprograms

GNAT allows a user application program to write the declaration:
pragma Import (Intrinsic, name);

providing that the name corresponds to one of the implemented intrinsic subprograms in
GNAT, and that the parameter profile of the referenced subprogram meets the requirements.
This chapter describes the set of implemented intrinsic subprograms, and the requirements
on parameter profiles. Note that no body is supplied; as with other uses of pragma Import,
the body is supplied elsewhere (in this case by the compiler itself). Note that any use of this
feature is potentially non-portable, since the Ada standard does not require Ada compilers
to implement this feature.

5.1 Intrinsic Operators

All the predefined numeric operators in package Standard in pragma Import (Intrinsic,..)
declarations. In the binary operator case, the operands must have the same size. The
operand or operands must also be appropriate for the operator. For example, for addition,
the operands must both be floating-point or both be fixed-point, and the right operand for
"**" must have a root type of Standard.Integer’Base. You can use an intrinsic operator
declaration as in the following example:

type Int1 is new Integer;

type Int2 is new Integer;

function "+" (X1 : Int1; X2 : Int2) return Int1;

function "+" (X1 : Int1; X2 : Int2) return Int2;

pragma Import (Intrinsic, "+");

This declaration would permit “mixed mode” arithmetic on items of the differing types
Int1 and Int2. It is also possible to specify such operators for private types, if the full
views are appropriate arithmetic types.

5.2 Enclosing Entity

This intrinsic subprogram is used in the implementation of the library routine GNAT.Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so
an application program should simply call the function GNAT.Source_Info.Enclosing_
Entity to obtain the name of the current subprogram, package, task, entry, or protected
subprogram.

5.3 Exception Information

This intrinsic subprogram is used in the implementation of the library routine GNAT.Current_
Exception. The only useful use of the intrinsic import in this case is the one in
this unit, so an application program should simply call the function GNAT.Current_
Exception.Exception_Information to obtain the exception information associated with
the current exception.

100 GNAT Reference Manual

5.4 Exception Message

This intrinsic subprogram is used in the implementation of the library routine GNAT.Current_
Exception. The only useful use of the intrinsic import in this case is the one in
this unit, so an application program should simply call the function GNAT.Current_
Exception.Exception_Message to obtain the message associated with the current
exception.

5.5 Exception Name

This intrinsic subprogram is used in the implementation of the library routine
GNAT.Current_Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current_Exception.Exception_Name to obtain the name of the current exception.

5.6 File

This intrinsic subprogram is used in the implementation of the library routine GNAT.Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so an
application program should simply call the function GNAT.Source_Info.File to obtain the
name of the current file.

5.7 Line

This intrinsic subprogram is used in the implementation of the library routine GNAT.Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so an
application program should simply call the function GNAT.Source_Info.Line to obtain the
number of the current source line.

5.8 Rotate Left

In standard Ada 95, the Rotate_Left function is available only for the predefined modular
types in package Interfaces. However, in GNAT it is possible to define a Rotate Left
function for a user defined modular type or any signed integer type as in this example:

function Shift_Left

(Value : My_Modular_Type;

Amount : Natural)

return My_Modular_Type;

The requirements are that the profile be exactly as in the example above. The only modifi-
cations allowed are in the formal parameter names, and in the type of Value and the return
type, which must be the same, and must be either a signed integer type, or a modular
integer type with a binary modulus, and the size must be 8. 16, 32 or 64 bits.

Chapter 5: Intrinsic Subprograms 101

5.9 Rotate Right

A Rotate_Right function can be defined for any user defined binary modular integer type, or
signed integer type, as described above for Rotate_Left.

5.10 Shift Left

A Shift_Left function can be defined for any user defined binary modular integer type, or
signed integer type, as described above for Rotate_Left.

5.11 Shift Right

A Shift_Right function can be defined for any user defined binary modular integer type, or
signed integer type, as described above for Rotate_Left.

5.12 Shift Right Arithmetic

A Shift_Right_Arithmetic function can be defined for any user defined binary modular
integer type, or signed integer type, as described above for Rotate_Left.

5.13 Source Location

This intrinsic subprogram is used in the implementation of the library routine GNAT.Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so an
application program should simply call the function GNAT.Source_Info.Source_Location
to obtain the current source file location.

102 GNAT Reference Manual

Chapter 6: Representation Clauses and Pragmas 103

6 Representation Clauses and Pragmas

This section describes the representation clauses accepted by GNAT, and their effect on the
representation of corresponding data objects.

GNAT fully implements Annex C (Systems Programming). This means that all the
implementation advice sections in chapter 13 are fully implemented. However, these sections
only require a minimal level of support for representation clauses. GNAT provides much
more extensive capabilities, and this section describes the additional capabilities provided.

6.1 Alignment Clauses

GNAT requires that all alignment clauses specify a power of 2, and all default alignments are
always a power of 2. The default alignment values are as follows:
• Primitive Types For primitive types, the alignment is the maximum of the actual size

of objects of the type, and the maximum alignment supported by the target. For
example, for type Long Float, the object size is 8 bytes, and the default alignment
will be 8 on any target that supports alignments this large, but on some targets, the
maximum alignment may be smaller than 8, in which case objects of type Long Float
will be maximally aligned.

• Arrays For arrays, the alignment is equal to the alignment of the component type for
the normal case where no packing or component size is given. If the array is packed,
and the packing is effective (see separate section on packed arrays), then the alignment
will be one for long packed arrays, or arrays whose length is not known at compile time.
For short packed arrays, which are handled internally as modular types, the alignment
will be as described for primitive types, e.g. a packed array of length 31 bits will have
an object size of four bytes, and an alignment of 4.

• Records For the normal non-packed case, the alignment of a record is equal to the
maximum alignment of any of its components. For tagged records, this includes the
implicit access type used for the tag. If a pragma Pack is used and all fields are packable
(see separate section on pragma Pack), then the resulting alignment is 1.
A special case is when the size of the record is given explicitly, or a full record repre-
sentation clause is given, and the size of the record is 2, 4, or 8 bytes. In this case, an
alignment is chosen to match the size of the record. For example, if we have:

type Small is record

A, B : Character;

end record;

then the default alignment of the record type Small is 2, not 1. This leads to more
efficient code when the record is treated as a unit, and also allows the type to specified
as Atomic on architectures requiring strict alignment.

An alignment clause may always specify a larger alignment than the default value, up to
some maximum value dependent on the target (obtainable by using the attribute reference
System’Maximum Alignment). The only case in which it is permissible to specify a smaller
alignment than the default value is in the case of a record for which a record representation
clause is given. In this case, packable fields for which a component clause is given still result
in a default alignment corresponding to the original type, but this may be overridden, since
these components in fact only require an alignment of one byte. For example, given

104 GNAT Reference Manual

type v is record

a : integer;

end record;

for v use record

a at 0 range 0 .. 31;

end record;

for v’alignment use 1;

The default alignment for the type v is 4, as a result of the integer field in the record, but
since this field is placed with a component clause, it is permissible, as shown, to override
the default alignment of the record to a smaller value.

6.2 Size Clauses

The default size of types is as specified in the reference manual. For objects, GNAT will
generally increase the type size so that the object size is a multiple of storage units, and
also a multiple of the alignment. For example

type Smallint is range 1 .. 6;

type Rec is record

y1 : integer;

y2 : boolean;

end record;

In this example, Smallint has a size of 3, as specified by the RM rules, but objects of this
type will have a size of 8, since objects by default occupy an integral number of storage units.
On some targets, notably older versions of the Digital Alpha, the size of stand alone objects
of this type may be 32, reflecting the inability of the hardware to do byte load/stores.

Similarly, the size of type Rec is 40 bits, but the alignment is 4, so objects of this type
will have their size increased to 64 bits so that it is a multiple of the alignment. The reason
for this decision, which is in accordance with the specific note in RM 13.3(43):

A Size clause should be supported for an object if the specified

Size is at least as large as its subtype’s Size, and corresponds

to a size in storage elements that is a multiple of the object’s

Alignment (if the Alignment is nonzero).

An explicit size clause may be used to override the default size by increasing it. For example,
if we have:

type My_Boolean is new Boolean;

for My_Boolean’Size use 32;

then objects of this type will always be 32 bits long. In the case of discrete types, the size
can be increased up to 64 bits, with the effect that the entire specified field is used to hold
the value, sign- or zero-extended as appropriate. If more than 64 bits is specified, then
padding space is allocated after the value, and a warning is issued that there are unused
bits.

Similarly the size of records and arrays may be increased, and the effect is to add padding
bits after the value. This also causes a warning message to be generated.

The largest Size value permitted in GNAT is 2**32−1. Since this is a Size in bits, this
corresponds to an object of size 256 megabytes (minus one). This limitation is true on all

Chapter 6: Representation Clauses and Pragmas 105

targets. The reason for this limitation is that it improves the quality of the code in many
cases if it is known that a Size value can be accommodated in an object of type Integer.

6.3 Storage Size Clauses

For tasks, the Storage_Size clause specifies the amount of space to be allocated for the task
stack. This cannot be extended, and if the stack is exhausted, then Storage_Error will
be raised if stack checking is enabled. If the default size of 20K bytes is insufficient, then
you need to use a Storage_Size attribute definition clause, or a Storage_Size pragma in
the task definition to set the appropriate required size. A useful technique is to include in
every task definition a pragma of the form:

pragma Storage_Size (Default_Stack_Size);

Then Default Stack Size can be defined in a global package, and modified as required. Any
tasks requiring different task stack sizes from the default can have an appropriate alternative
reference in the pragma.

For access types, the Storage_Size clause specifies the maximum space available for
allocation of objects of the type. If this space is exceeded then Storage_Error will be
raised by an allocation attempt. In the case where the access type is declared local to a
subprogram, the use of a Storage_Size clause triggers automatic use of a special predefined
storage pool (System.Pool_Size) that ensures that all space for the pool is automatically
reclaimed on exit from the scope in which the type is declared.

A special case recognized by the compiler is the specification of a Storage_Size of zero
for an access type. This means that no items can be allocated from the pool, and this is
recognized at compile time, and all the overhead normally associated with maintaining a
fixed size storage pool is eliminated. Consider the following example:

procedure p is

type R is array (Natural) of Character;

type P is access all R;

for P’Storage_Size use 0;

-- Above access type intended only for interfacing purposes

y : P;

procedure g (m : P);

pragma Import (C, g);

-- ...

begin

-- ...

y := new R;

end;

As indicated in this example, these dummy storage pools are often useful in connection
with interfacing where no object will ever be allocated. If you compile the above example,
you get the warning:

p.adb:16:09: warning: allocation from empty storage pool

p.adb:16:09: warning: Storage_Error will be raised at run time

Of course in practice, there will not be any explicit allocators in the case of such an access
declaration.

106 GNAT Reference Manual

6.4 Size of Variant Record Objects

An issue arises in the case of variant record objects of whether Size gives information about
a particular variant, or the maximum size required for any variant. Consider the following
program

with Text_IO; use Text_IO;

procedure q is

type R1 (A : Boolean := False) is record

case A is

when True => X : Character;

when False => null;

end case;

end record;

V1 : R1 (False);

V2 : R1;

begin

Put_Line (Integer’Image (V1’Size));

Put_Line (Integer’Image (V2’Size));

end q;

Here we are dealing with a variant record, where the True variant requires 16 bits, and
the False variant requires 8 bits. In the above example, both V1 and V2 contain the False
variant, which is only 8 bits long. However, the result of running the program is:

8

16

The reason for the difference here is that the discriminant value of V1 is fixed, and will
always be False. It is not possible to assign a True variant value to V1, therefore 8 bits is
sufficient. On the other hand, in the case of V2, the initial discriminant value is False (from
the default), but it is possible to assign a True variant value to V2, therefore 16 bits must
be allocated for V2 in the general case, even fewer bits may be needed at any particular
point during the program execution.

As can be seen from the output of this program, the ’Size attribute applied to such
an object in GNAT gives the actual allocated size of the variable, which is the largest size
of any of the variants. The Ada Reference Manual is not completely clear on what choice
should be made here, but the GNAT behavior seems most consistent with the language in
the RM.

In some cases, it may be desirable to obtain the size of the current variant, rather than
the size of the largest variant. This can be achieved in GNAT by making use of the fact that
in the case of a subprogram parameter, GNAT does indeed return the size of the current
variant (because a subprogram has no way of knowing how much space is actually allocated
for the actual).

Consider the following modified version of the above program:
with Text_IO; use Text_IO;

procedure q is

type R1 (A : Boolean := False) is record

case A is

when True => X : Character;

when False => null;

end case;

Chapter 6: Representation Clauses and Pragmas 107

end record;

V2 : R1;

function Size (V : R1) return Integer is

begin

return V’Size;

end Size;

begin

Put_Line (Integer’Image (V2’Size));

Put_Line (Integer’IMage (Size (V2)));

V2 := (True, ’x’);

Put_Line (Integer’Image (V2’Size));

Put_Line (Integer’IMage (Size (V2)));

end q;

The output from this program is
16

8

16

16

Here we see that while the ’Size attribute always returns the maximum size, regardless
of the current variant value, the Size function does indeed return the size of the current
variant value.

6.5 Biased Representation

In the case of scalars with a range starting at other than zero, it is possible in some cases to
specify a size smaller than the default minimum value, and in such cases, GNAT uses an
unsigned biased representation, in which zero is used to represent the lower bound, and
successive values represent successive values of the type.

For example, suppose we have the declaration:
type Small is range -7 .. -4;

for Small’Size use 2;

Although the default size of type Small is 4, the Size clause is accepted by GNAT and
results in the following representation scheme:

-7 is represented as 2#00#

-6 is represented as 2#01#

-5 is represented as 2#10#

-4 is represented as 2#11#

Biased representation is only used if the specified Size clause cannot be accepted in any
other manner. These reduced sizes that force biased representation can be used for all
discrete types except for enumeration types for which a representation clause is given.

6.6 Value Size and Object Size Clauses

In Ada 95, the Size of a discrete type is the minimum number of bits required to hold values
of the type. Although this interpretation was allowed in Ada 83, it was not required, and
this requirement in practice can cause some significant difficulties. For example, in most

108 GNAT Reference Manual

Ada 83 compilers, Natural’Size was 32. However, in Ada-95, Natural’Size is typically
31. This means that code may change in behavior when moving from Ada 83 to Ada 95.
For example, consider:

type Rec is record;

A : Natural;

B : Natural;

end record;

for Rec use record

for A use at 0 range 0 .. Natural’Size - 1;

for B use at 0 range Natural’Size .. 2 * Natural’Size - 1;

end record;

In the above code, since the typical size of Natural objects is 32 bits and Natural’Size
is 31, the above code can cause unexpected inefficient packing in Ada 95, and in general
there are surprising cases where the fact that the object size can exceed the size of the type
causes surprises.

To help get around this problem GNAT provides two implementation dependent at-
tributes Value_Size and Object_Size. When applied to a type, these attributes yield the
size of the type (corresponding to the RM defined size attribute), and the size of objects of
the type respectively.

The Object_Size is used for determining the default size of objects and components.
This size value can be referred to using the Object_Size attribute. The phrase “is used”
here means that it is the basis of the determination of the size. The backend is free to pad
this up if necessary for efficiency, e.g. an 8-bit stand-alone character might be stored in 32
bits on a machine with no efficient byte access instructions such as the Alpha.

The default rules for the value of Object_Size for fixed-point and discrete types are as
follows:
• The Object_Size for base subtypes reflect the natural hardware size in bits (run the

utility gnatpsta to find those values for numeric types). Enumeration types and fixed-
point base subtypes have 8, 16, 32 or 64 bits for this size, depending on the range of
values to be stored.

• The Object_Size of a subtype is the same as the Object_Size of the type from which
it is obtained.

• The Object_Size of a derived base type is copied from the parent base type, and the
Object_Size of a derived first subtype is copied from the parent first subtype.

The Value_Size attribute is the number of bits required to store a value of the type. This
size can be referred to using the Value_Size attribute. This value is used to determine
how tightly to pack records or arrays with components of this type, and also affects the
semantics of unchecked conversion (unchecked conversions where the Value_Size values
differ generate a warning, and are potentially target dependent).

The default rules for the value of Value_Size are as follows:
• The Value_Size for a base subtype is the minimum number of bits required to store

all values of the type (including the sign bit only if negative values are possible).
• If a subtype statically matches the first subtype of a given type, then it has by default

the same Value_Size as the first subtype. This is a consequence of RM 13.1(14) (“if
two subtypes statically match, then their subtype-specific aspects are the same”.)

Chapter 6: Representation Clauses and Pragmas 109

• All other subtypes have a Value_Size corresponding to the minimum number of bits
required to store all values of the subtype. For dynamic bounds, it is assumed that the
value can range down or up to the corresponding bound of the ancestor

The RM defined attribute Size corresponds to the Value_Size attribute.

The Size attribute may be defined for a first-named subtype. This sets the Value_Size
of the first-named subtype to the given value, and the Object_Size of this first-named
subtype to the given value padded up to an appropriate boundary. It is a consequence
of the default rules above that this Object_Size will apply to all further subtypes. On
the other hand, Value_Size is affected only for the first subtype, any dynamic subtypes
obtained from it directly, and any statically matching subtypes. The Value_Size of any
other static subtypes is not affected.

Value_Size and Object_Size may be explicitly set for any subtype using an attribute
definition clause. Note that the use of these attributes can cause the RM 13.1(14) rule
to be violated. If two access types reference aliased objects whose subtypes have differing
Object_Size values as a result of explicit attribute definition clauses, then it is erroneous
to convert from one access subtype to the other.

At the implementation level, Esize stores the Object SIze and the RM Size field stores
the Value_Size (and hence the value of the Size attribute, which, as noted above, is
equivalent to Value_Size).

To get a feel for the difference, consider the following examples (note that in each case
the base is short short integer with a size of 8):

Object_Size Value_Size

type x1 is range 0 .. 5; 8 3

type x2 is range 0 .. 5;

for x2’size use 12; 12 12

subtype x3 is x2 range 0 .. 3; 12 2

subtype x4 is x2’base range 0 .. 10; 8 4

subtype x5 is x2 range 0 .. dynamic; 12 (7)

subtype x6 is x2’base range 0 .. dynamic; 8 (7)

Note: the entries marked (7) are not actually specified by the Ada 95 RM, but it seems
in the spirit of the RM rules to allocate the minimum number of bits known to be large
enough to hold the given range of values.

So far, so good, but GNAT has to obey the RM rules, so the question is under what
conditions must the RM Size be used. The following is a list of the occasions on which the
RM Size must be used:

• Component size for packed arrays or records

• Value of the attribute Size for a type

• Warning about sizes not matching for unchecked conversion

110 GNAT Reference Manual

For types other than discrete and fixed-point types, the Object_Size and Value Size are
the same (and equivalent to the RM attribute Size). Only Size may be specified for such
types.

6.7 Component Size Clauses

Normally, the value specified in a component clause must be consistent with the subtype of
the array component with regard to size and alignment. In other words, the value specified
must be at least equal to the size of this subtype, and must be a multiple of the alignment
value.

In addition, component size clauses are allowed which cause the array to be packed, by
specifying a smaller value. The cases in which this is allowed are for component size values
in the range 1 through 63. The value specified must not be smaller than the Size of the
subtype. GNAT will accurately honor all packing requests in this range. For example, if
we have:

type r is array (1 .. 8) of Natural;

for r’Size use 31;

then the resulting array has a length of 31 bytes (248 bits = 8 * 31). Of course access to
the components of such an array is considerably less efficient than if the natural component
size of 32 is used.

6.8 Bit Order Clauses

For record subtypes, GNAT permits the specification of the Bit_Order attribute. The spec-
ification may either correspond to the default bit order for the target, in which case the
specification has no effect and places no additional restrictions, or it may be for the non-
standard setting (that is the opposite of the default).

In the case where the non-standard value is specified, the effect is to renumber bits
within each byte, but the ordering of bytes is not affected. There are certain restrictions
placed on component clauses as follows:
• Components fitting within a single storage unit. These are unrestricted, and the effect

is merely to renumber bits. For example if we are on a little-endian machine with
Low_Order_First being the default, then the following two declarations have exactly
the same effect:

type R1 is record

A : Boolean;

B : Integer range 1 .. 120;

end record;

for R1 use record

A at 0 range 0 .. 0;

B at 0 range 1 .. 7;

end record;

type R2 is record

A : Boolean;

B : Integer range 1 .. 120;

end record;

Chapter 6: Representation Clauses and Pragmas 111

for R2’Bit_Order use High_Order_First;

for R2 use record

A at 0 range 7 .. 7;

B at 0 range 0 .. 6;

end record;

The useful application here is to write the second declaration with the Bit_Order
attribute definition clause, and know that it will be treated the same, regardless of
whether the target is little-endian or big-endian.

• Components occupying an integral number of bytes. These are components that exactly
fit in two or more bytes. Such component declarations are allowed, but have no effect,
since it is important to realize that the Bit_Order specification does not affect the
ordering of bytes. In particular, the following attempt at getting an endian-independent
integer does not work:

type R2 is record

A : Integer;

end record;

for R2’Bit_Order use High_Order_First;

for R2 use record

A at 0 range 0 .. 31;

end record;

This declaration will result in a little-endian integer on a little-endian machine, and a
big-endian integer on a big-endian machine. If byte flipping is required for interoper-
ability between big- and little-endian machines, this must be explicitly programmed.
This capability is not provided by Bit_Order.

• Components that are positioned across byte boundaries but do not occupy an integral
number of bytes. Given that bytes are not reordered, such fields would occupy a non-
contiguous sequence of bits in memory, requiring non-trivial code to reassemble. They
are for this reason not permitted, and any component clause specifying such a layout
will be flagged as illegal by GNAT.

Since the misconception that Bit Order automatically deals with all endian-related incom-
patibilities is a common one, the specification of a component field that is an integral
number of bytes will always generate a warning. This warning may be suppressed using
pragma Suppress if desired. The following section contains additional details regarding the
issue of byte ordering.

6.9 Effect of Bit Order on Byte Ordering

In this section we will review the effect of the Bit_Order attribute definition clause on byte
ordering. Briefly, it has no effect at all, but a detailed example will be helpful. Before
giving this example, let us review the precise definition of the effect of defining Bit_Order.
The effect of a non-standard bit order is described in section 15.5.3 of the Ada Reference
Manual:

2 A bit ordering is a method of interpreting the meaning of

the storage place attributes.

112 GNAT Reference Manual

To understand the precise definition of storage place attributes in this context, we visit
section 13.5.1 of the manual:

13 A record_representation_clause (without the mod_clause)

specifies the layout. The storage place attributes (see 13.5.2)

are taken from the values of the position, first_bit, and last_bit

expressions after normalizing those values so that first_bit is

less than Storage_Unit.

The critical point here is that storage places are taken from the values after normalization,
not before. So the Bit_Order interpretation applies to normalized values. The interpreta-
tion is described in the later part of the 15.5.3 paragraph:

2 A bit ordering is a method of interpreting the meaning of

the storage place attributes. High_Order_First (known in the

vernacular as ‘‘big endian’’) means that the first bit of a

storage element (bit 0) is the most significant bit (interpreting

the sequence of bits that represent a component as an unsigned

integer value). Low_Order_First (known in the vernacular as

‘‘little endian’’) means the opposite: the first bit is the

least significant.

Note that the numbering is with respect to the bits of a storage unit. In other words, the
specification affects only the numbering of bits within a single storage unit.

We can make the effect clearer by giving an example.
Suppose that we have an external device which presents two bytes, the first byte pre-

sented, which is the first (low addressed byte) of the two byte record is called Master, and
the second byte is called Slave.

The left most (most significant bit is called Control for each byte, and the remaining 7
bits are called V1, V2, . . . V7, where V7 is the rightmost (least significant) bit.

On a big-endian machine, we can write the following representation clause
type Data is record

Master_Control : Bit;

Master_V1 : Bit;

Master_V2 : Bit;

Master_V3 : Bit;

Master_V4 : Bit;

Master_V5 : Bit;

Master_V6 : Bit;

Master_V7 : Bit;

Slave_Control : Bit;

Slave_V1 : Bit;

Slave_V2 : Bit;

Slave_V3 : Bit;

Slave_V4 : Bit;

Slave_V5 : Bit;

Slave_V6 : Bit;

Slave_V7 : Bit;

end record;

for Data use record

Master_Control at 0 range 0 .. 0;

Master_V1 at 0 range 1 .. 1;

Master_V2 at 0 range 2 .. 2;

Master_V3 at 0 range 3 .. 3;

Master_V4 at 0 range 4 .. 4;

Master_V5 at 0 range 5 .. 5;

Chapter 6: Representation Clauses and Pragmas 113

Master_V6 at 0 range 6 .. 6;

Master_V7 at 0 range 7 .. 7;

Slave_Control at 1 range 0 .. 0;

Slave_V1 at 1 range 1 .. 1;

Slave_V2 at 1 range 2 .. 2;

Slave_V3 at 1 range 3 .. 3;

Slave_V4 at 1 range 4 .. 4;

Slave_V5 at 1 range 5 .. 5;

Slave_V6 at 1 range 6 .. 6;

Slave_V7 at 1 range 7 .. 7;

end record;

Now if we move this to a little endian machine, then the bit ordering within the byte is
backwards, so we have to rewrite the record rep clause as:

for Data use record

Master_Control at 0 range 7 .. 7;

Master_V1 at 0 range 6 .. 6;

Master_V2 at 0 range 5 .. 5;

Master_V3 at 0 range 4 .. 4;

Master_V4 at 0 range 3 .. 3;

Master_V5 at 0 range 2 .. 2;

Master_V6 at 0 range 1 .. 1;

Master_V7 at 0 range 0 .. 0;

Slave_Control at 1 range 7 .. 7;

Slave_V1 at 1 range 6 .. 6;

Slave_V2 at 1 range 5 .. 5;

Slave_V3 at 1 range 4 .. 4;

Slave_V4 at 1 range 3 .. 3;

Slave_V5 at 1 range 2 .. 2;

Slave_V6 at 1 range 1 .. 1;

Slave_V7 at 1 range 0 .. 0;

end record;

It is a nuisance to have to rewrite the clause, especially if the code has to be maintained
on both machines. However, this is a case that we can handle with the Bit_Order attribute
if it is implemented. Note that the implementation is not required on byte addressed
machines, but it is indeed implemented in GNAT. This means that we can simply use the
first record clause, together with the declaration

for Data’Bit_Order use High_Order_First;

and the effect is what is desired, namely the layout is exactly the same, independent of
whether the code is compiled on a big-endian or little-endian machine.

The important point to understand is that byte ordering is not affected. A Bit_Order
attribute definition never affects which byte a field ends up in, only where it ends up in that
byte. To make this clear, let us rewrite the record rep clause of the previous example as:

for Data’Bit_Order use High_Order_First;

for Data use record

Master_Control at 0 range 0 .. 0;

Master_V1 at 0 range 1 .. 1;

Master_V2 at 0 range 2 .. 2;

Master_V3 at 0 range 3 .. 3;

Master_V4 at 0 range 4 .. 4;

Master_V5 at 0 range 5 .. 5;

Master_V6 at 0 range 6 .. 6;

Master_V7 at 0 range 7 .. 7;

Slave_Control at 0 range 8 .. 8;

Slave_V1 at 0 range 9 .. 9;

114 GNAT Reference Manual

Slave_V2 at 0 range 10 .. 10;

Slave_V3 at 0 range 11 .. 11;

Slave_V4 at 0 range 12 .. 12;

Slave_V5 at 0 range 13 .. 13;

Slave_V6 at 0 range 14 .. 14;

Slave_V7 at 0 range 15 .. 15;

end record;

This is exactly equivalent to saying (a repeat of the first example):
for Data’Bit_Order use High_Order_First;

for Data use record

Master_Control at 0 range 0 .. 0;

Master_V1 at 0 range 1 .. 1;

Master_V2 at 0 range 2 .. 2;

Master_V3 at 0 range 3 .. 3;

Master_V4 at 0 range 4 .. 4;

Master_V5 at 0 range 5 .. 5;

Master_V6 at 0 range 6 .. 6;

Master_V7 at 0 range 7 .. 7;

Slave_Control at 1 range 0 .. 0;

Slave_V1 at 1 range 1 .. 1;

Slave_V2 at 1 range 2 .. 2;

Slave_V3 at 1 range 3 .. 3;

Slave_V4 at 1 range 4 .. 4;

Slave_V5 at 1 range 5 .. 5;

Slave_V6 at 1 range 6 .. 6;

Slave_V7 at 1 range 7 .. 7;

end record;

Why are they equivalent? Well take a specific field, the Slave_V2 field. The storage place
attributes are obtained by normalizing the values given so that the First_Bit value is less
than 8. After nromalizing the values (0,10,10) we get (1,2,2) which is exactly what we
specified in the other case.

Now one might expect that the Bit_Order attribute might affect bit numbering within
the entire record component (two bytes in this case, thus affecting which byte fields end up
in), but that is not the way this feature is defined, it only affects numbering of bits, not
which byte they end up in.

Consequently it never makes sense to specify a starting bit number greater than 7 (for a
byte addressable field) if an attribute definition for Bit_Order has been given, and indeed
it may be actively confusing to specify such a value, so the compiler generates a warning
for such usage.

If you do need to control byte ordering then appropriate conditional values must be used.
If in our example, the slave byte came first on some machines we might write:

Master_Byte_First constant Boolean := ...;

Master_Byte : constant Natural :=

1 - Boolean’Pos (Master_Byte_First);

Slave_Byte : constant Natural :=

Boolean’Pos (Master_Byte_First);

for Data’Bit_Order use High_Order_First;

for Data use record

Master_Control at Master_Byte range 0 .. 0;

Master_V1 at Master_Byte range 1 .. 1;

Master_V2 at Master_Byte range 2 .. 2;

Chapter 6: Representation Clauses and Pragmas 115

Master_V3 at Master_Byte range 3 .. 3;

Master_V4 at Master_Byte range 4 .. 4;

Master_V5 at Master_Byte range 5 .. 5;

Master_V6 at Master_Byte range 6 .. 6;

Master_V7 at Master_Byte range 7 .. 7;

Slave_Control at Slave_Byte range 0 .. 0;

Slave_V1 at Slave_Byte range 1 .. 1;

Slave_V2 at Slave_Byte range 2 .. 2;

Slave_V3 at Slave_Byte range 3 .. 3;

Slave_V4 at Slave_Byte range 4 .. 4;

Slave_V5 at Slave_Byte range 5 .. 5;

Slave_V6 at Slave_Byte range 6 .. 6;

Slave_V7 at Slave_Byte range 7 .. 7;

end record;

Now to switch between machines, all that is necessary is to set the boolean constant Master_
Byte_First in an appropriate manner.

6.10 Pragma Pack for Arrays

Pragma Pack applied to an array has no effect unless the component type is packable. For a
component type to be packable, it must be one of the following cases:
• Any scalar type
• Any fixed-point type
• Any type whose size is specified with a size clause
• Any packed array type with a static size

For all these cases, if the component subtype size is in the range 1 through 63, then the
effect of the pragma Pack is exactly as though a component size were specified giving the
component subtype size. For example if we have:

type r is range 0 .. 17;

type ar is array (1 .. 8) of r;

pragma Pack (ar);

Then the component size of ar will be set to 5 (i.e. to r’size, and the size of the array ar
will be exactly 40 bits.

Note that in some cases this rather fierce approach to packing can produce unexpected
effects. For example, in Ada 95, type Natural typically has a size of 31, meaning that if you
pack an array of Natural, you get 31-bit close packing, which saves a few bits, but results in
far less efficient access. Since many other Ada compilers will ignore such a packing request,
GNAT will generate a warning on some uses of pragma Pack that it guesses might not be
what is intended. You can easily remove this warning by using an explicit Component_Size
setting instead, which never generates a warning, since the intention of the programmer is
clear in this case.

GNAT treats packed arrays in one of two ways. If the size of the array is known at
compile time and is less than 64 bits, then internally the array is represented as a single
modular type, of exactly the appropriate number of bits. If the length is greater than 63
bits, or is not known at compile time, then the packed array is represented as an array of
bytes, and the length is always a multiple of 8 bits.

116 GNAT Reference Manual

6.11 Pragma Pack for Records

Pragma Pack applied to a record will pack the components to reduce wasted space from
alignment gaps and by reducing the amount of space taken by components. We distinguish
between package components and non-packable components. Components of the following
types are considered packable:

• All scalar types are packable.

• All fixed-point types are represented internally as integers, and are packable.

• Small packed arrays, whose size does not exceed 64 bits, and where the size is statically
known at compile time, are represented internally as modular integers, and so they are
also packable.

All packable components occupy the exact number of bits corresponding to their Size value,
and are packed with no padding bits, i.e. they can start on an arbitrary bit boundary.

All other types are non-packable, they occupy an integral number of storage units, and
are placed at a boundary corresponding to their alignment requirements.

For example, consider the record
type Rb1 is array (1 .. 13) of Boolean;

pragma Pack (rb1);

type Rb2 is array (1 .. 65) of Boolean;

pragma Pack (rb2);

type x2 is record

l1 : Boolean;

l2 : Duration;

l3 : Float;

l4 : Boolean;

l5 : Rb1;

l6 : Rb2;

end record;

pragma Pack (x2);

The representation for the record x2 is as follows:
for x2’Size use 224;

for x2 use record

l1 at 0 range 0 .. 0;

l2 at 0 range 1 .. 64;

l3 at 12 range 0 .. 31;

l4 at 16 range 0 .. 0;

l5 at 16 range 1 .. 13;

l6 at 18 range 0 .. 71;

end record;

Studying this example, we see that the packable fields l1 and l2 are of length equal to their
sizes, and placed at specific bit boundaries (and not byte boundaries) to eliminate padding.
But l3 is of a non-packable float type, so it is on the next appropriate alignment boundary.

The next two fields are fully packable, so l4 and l5 are minimally packed with no gaps.
However, type Rb2 is a packed array that is longer than 64 bits, so it is itself non-packable.
Thus the l6 field is aligned to the next byte boundary, and takes an integral number of
bytes, i.e. 72 bits.

Chapter 6: Representation Clauses and Pragmas 117

6.12 Record Representation Clauses

Record representation clauses may be given for all record types, including types obtained by
record extension. Component clauses are allowed for any static component. The restrictions
on component clauses depend on the type of the component.

For all components of an elementary type, the only restriction on component clauses is
that the size must be at least the ’Size value of the type (actually the Value Size). There are
no restrictions due to alignment, and such components may freely cross storage boundaries.

Packed arrays with a size up to and including 64 bits are represented internally using
a modular type with the appropriate number of bits, and thus the same lack of restriction
applies. For example, if you declare:

type R is array (1 .. 49) of Boolean;

pragma Pack (R);

for R’Size use 49;

then a component clause for a component of type R may start on any specified bit boundary,
and may specify a value of 49 bits or greater.

For non-primitive types, including packed arrays with a size greater than 64 bits, com-
ponent clauses must respect the alignment requirement of the type, in particular, always
starting on a byte boundary, and the length must be a multiple of the storage unit.

The tag field of a tagged type always occupies an address sized field at the start of the
record. No component clause may attempt to overlay this tag.

In the case of a record extension T1, of a type T, no component clause applied to the
type T1 can specify a storage location that would overlap the first T’Size bytes of the record.

6.13 Enumeration Clauses

The only restriction on enumeration clauses is that the range of values must be representable.
For the signed case, if one or more of the representation values are negative, all values must
be in the range:

System.Min_Int .. System.Max_Int

For the unsigned case, where all values are non negative, the values must be in the range:
0 .. System.Max_Binary_Modulus;

A confirming representation clause is one in which the values range from 0 in sequence, i.e. a
clause that confirms the default representation for an enumeration type. Such a confirming
representation is permitted by these rules, and is specially recognized by the compiler so
that no extra overhead results from the use of such a clause.

If an array has an index type which is an enumeration type to which an enumeration
clause has been applied, then the array is stored in a compact manner. Consider the
declarations:

type r is (A, B, C);

for r use (A => 1, B => 5, C => 10);

type t is array (r) of Character;

The array type t corresponds to a vector with exactly three elements and has a default size
equal to 3*Character’Size. This ensures efficient use of space, but means that accesses
to elements of the array will incur the overhead of converting representation values to the
corresponding positional values, (i.e. the value delivered by the Pos attribute).

118 GNAT Reference Manual

6.14 Address Clauses

The reference manual allows a general restriction on representation clauses, as found in RM
13.1(22):

An implementation need not support representation

items containing nonstatic expressions, except that

an implementation should support a representation item

for a given entity if each nonstatic expression in the

representation item is a name that statically denotes

a constant declared before the entity.

In practice this is applicable only to address clauses, since this is the only case in which
a non-static expression is permitted by the syntax. As the AARM notes in sections 13.1
(22.a-22.h):

22.a Reason: This is to avoid the following sort

of thing:

22.b X : Integer := F(...);

Y : Address := G(...);

for X’Address use Y;

22.c In the above, we have to evaluate the

initialization expression for X before we

know where to put the result. This seems

like an unreasonable implementation burden.

22.d The above code should instead be written

like this:

22.e Y : constant Address := G(...);

X : Integer := F(...);

for X’Address use Y;

22.f This allows the expression ‘‘Y’’ to be safely

evaluated before X is created.

22.g The constant could be a formal parameter of mode in.

22.h An implementation can support other nonstatic

expressions if it wants to. Expressions of type

Address are hardly ever static, but their value

might be known at compile time anyway in many

cases.

GNAT does indeed permit many additional cases of non-static expressions. In particular,
if the type involved is elementary there are no restrictions (since in this case, holding a
temporary copy of the initialization value, if one is present, is inexpensive). In addition,
if there is no implicit or explicit initialization, then there are no restrictions. GNAT will
reject only the case where all three of these conditions hold:

• The type of the item is non-elementary (e.g. a record or array).
• There is explicit or implicit initialization required for the object.
• The address value is non-static. Here GNAT is more permissive than the RM, and

allows the address value to be the address of a previously declared stand-alone variable,
as long as it does not itself have an address clause.

Chapter 6: Representation Clauses and Pragmas 119

Anchor : Some_Initialized_Type;

Overlay : Some_Initialized_Type;

for Overlay’Address use Anchor’Address;

However, the prefix of the address clause cannot be an array component, or a component
of a discriminated record.

As noted above in section 22.h, address values are typically non-static. In particular the
To Address function, even if applied to a literal value, is a non-static function call. To avoid
this minor annoyance, GNAT provides the implementation defined attribute ’To Address.
The following two expressions have identical values:

Another issue with address clauses is the interaction with alignment requirements. When
an address clause is given for an object, the address value must be consistent with the
alignment of the object (which is usually the same as the alignment of the type of the
object). If an address clause is given that specifies an inappropriately aligned address
value, then the program execution is erroneous.

Since this source of erroneous behavior can have unfortunate effects, GNAT checks (at
compile time if possible, generating a warning, or at execution time with a run-time check)
that the alignment is appropriate. If the run-time check fails, then Program_Error is raised.
This run-time check is suppressed if range checks are suppressed, or if pragma Restrictions
(No_Elaboration_Code) is in effect.

To_Address (16#1234_0000#)

System’To_Address (16#1234_0000#);

except that the second form is considered to be a static expression, and thus when used as
an address clause value is always permitted.
Additionally, GNAT treats as static an address clause that is an unchecked conversion of
a static integer value. This simplifies the porting of legacy code, and provides a portable
equivalent to the GNAT attribute To Address.

An address clause cannot be given for an exported object. More understandably the real
restriction is that objects with an address clause cannot be exported. This is because such
variables are not defined by the Ada program, so there is no external object so export.

It is permissible to give an address clause and a pragma Import for the same object.
In this case, the variable is not really defined by the Ada program, so there is no external
symbol to be linked. The link name and the external name are ignored in this case. The
reason that we allow this combination is that it provides a useful idiom to avoid unwanted
initializations on objects with address clauses.

When an address clause is given for an object that has implicit or explicit initialization,
then by default initialization takes place. This means that the effect of the object declaration
is to overwrite the memory at the specified address. This is almost always not what the
programmer wants, so GNAT will output a warning:

with System;

package G is

type R is record

M : Integer := 0;

end record;

Ext : R;

for Ext’Address use System’To_Address (16#1234_1234#);

|

120 GNAT Reference Manual

>>> warning: implicit initialization of "Ext" may

modify overlaid storage

>>> warning: use pragma Import for "Ext" to suppress

initialization (RM B(24))

end G;

As indicated by the warning message, the solution is to use a (dummy) pragma Import to
suppress this initialization. The pragma tell the compiler that the object is declared and ini-
tialized elsewhere. The following package compiles without warnings (and the initialization
is suppressed):

with System;

package G is

type R is record

M : Integer := 0;

end record;

Ext : R;

for Ext’Address use System’To_Address (16#1234_1234#);

pragma Import (Ada, Ext);

end G;

6.15 Effect of Convention on Representation

Normally the specification of a foreign language convention for a type or an object has no effect
on the chosen representation. In particular, the representation chosen for data in GNAT
generally meets the standard system conventions, and for example records are laid out in a
manner that is consistent with C. This means that specifying convention C (for example)
has no effect.

There are three exceptions to this general rule:
• Convention Fortran and array subtypes If pragma Convention Fortran is specified for an

array subtype, then in accordance with the implementation advice in section 3.6.2(11)
of the Ada Reference Manual, the array will be stored in a Fortran-compatible column-
major manner, instead of the normal default row-major order.

• Convention C and enumeration types GNAT normally stores enumeration types in 8,
16, or 32 bits as required to accommodate all values of the type. For example, for the
enumeration type declared by:

type Color is (Red, Green, Blue);

8 bits is sufficient to store all values of the type, so by default, objects of type Color will
be represented using 8 bits. However, normal C convention is to use 32 bits for all enum
values in C, since enum values are essentially of type int. If pragma Convention C is
specified for an Ada enumeration type, then the size is modified as necessary (usually
to 32 bits) to be consistent with the C convention for enum values.

• Convention C/Fortran and Boolean types In C, the usual convention for boolean values,
that is values used for conditions, is that zero represents false, and nonzero values
represent true. In Ada, the normal convention is that two specific values, typically 0/1,
are used to represent false/true respectively.
Fortran has a similar convention for LOGICAL values (any nonzero value represents
true).

Chapter 6: Representation Clauses and Pragmas 121

To accommodate the Fortran and C conventions, if a pragma Convention specifies C
or Fortran convention for a derived Boolean, as in the following example:

type C_Switch is new Boolean;

pragma Convention (C, C_Switch);

then the GNAT generated code will treat any nonzero value as true. For truth values
generated by GNAT, the conventional value 1 will be used for True, but when one of
these values is read, any nonzero value is treated as True.

6.16 Determining the Representations chosen by GNAT

Although the descriptions in this section are intended to be complete, it is often easier to
simply experiment to see what GNAT accepts and what the effect is on the layout of types
and objects.

As required by the Ada RM, if a representation clause is not accepted, then it must
be rejected as illegal by the compiler. However, when a representation clause or pragma
is accepted, there can still be questions of what the compiler actually does. For example,
if a partial record representation clause specifies the location of some components and not
others, then where are the non-specified components placed? Or if pragma Pack is used on
a record, then exactly where are the resulting fields placed? The section on pragma Pack
in this chapter can be used to answer the second question, but it is often easier to just see
what the compiler does.

For this purpose, GNAT provides the option -gnatR. If you compile with this option,
then the compiler will output information on the actual representations chosen, in a format
similar to source representation clauses. For example, if we compile the package:

package q is

type r (x : boolean) is tagged record

case x is

when True => S : String (1 .. 100);

when False => null;

end case;

end record;

type r2 is new r (false) with record

y2 : integer;

end record;

for r2 use record

y2 at 16 range 0 .. 31;

end record;

type x is record

y : character;

end record;

type x1 is array (1 .. 10) of x;

for x1’component_size use 11;

type ia is access integer;

type Rb1 is array (1 .. 13) of Boolean;

pragma Pack (rb1);

122 GNAT Reference Manual

type Rb2 is array (1 .. 65) of Boolean;

pragma Pack (rb2);

type x2 is record

l1 : Boolean;

l2 : Duration;

l3 : Float;

l4 : Boolean;

l5 : Rb1;

l6 : Rb2;

end record;

pragma Pack (x2);

end q;

using the switch -gnatR we obtain the following output:
Representation information for unit q

for r’Size use ??;

for r’Alignment use 4;

for r use record

x at 4 range 0 .. 7;

_tag at 0 range 0 .. 31;

s at 5 range 0 .. 799;

end record;

for r2’Size use 160;

for r2’Alignment use 4;

for r2 use record

x at 4 range 0 .. 7;

_tag at 0 range 0 .. 31;

_parent at 0 range 0 .. 63;

y2 at 16 range 0 .. 31;

end record;

for x’Size use 8;

for x’Alignment use 1;

for x use record

y at 0 range 0 .. 7;

end record;

for x1’Size use 112;

for x1’Alignment use 1;

for x1’Component_Size use 11;

for rb1’Size use 13;

for rb1’Alignment use 2;

for rb1’Component_Size use 1;

for rb2’Size use 72;

for rb2’Alignment use 1;

for rb2’Component_Size use 1;

for x2’Size use 224;

for x2’Alignment use 4;

for x2 use record

l1 at 0 range 0 .. 0;

l2 at 0 range 1 .. 64;

Chapter 6: Representation Clauses and Pragmas 123

l3 at 12 range 0 .. 31;

l4 at 16 range 0 .. 0;

l5 at 16 range 1 .. 13;

l6 at 18 range 0 .. 71;

end record;

The Size values are actually the Object Size, i.e. the default size that will be allocated for
objects of the type. The ?? size for type r indicates that we have a variant record, and the
actual size of objects will depend on the discriminant value.

The Alignment values show the actual alignment chosen by the compiler for each record
or array type.

The record representation clause for type r shows where all fields are placed, including
the compiler generated tag field (whose location cannot be controlled by the programmer).

The record representation clause for the type extension r2 shows all the fields present,
including the parent field, which is a copy of the fields of the parent type of r2, i.e. r1.

The component size and size clauses for types rb1 and rb2 show the exact effect of
pragma Pack on these arrays, and the record representation clause for type x2 shows how
pragma Pack affects this record type.

In some cases, it may be useful to cut and paste the representation clauses generated by
the compiler into the original source to fix and guarantee the actual representation to be
used.

124 GNAT Reference Manual

Chapter 7: Standard Library Routines 125

7 Standard Library Routines

The Ada 95 Reference Manual contains in Annex A a full description of an extensive set of
standard library routines that can be used in any Ada program, and which must be provided
by all Ada compilers. They are analogous to the standard C library used by C programs.

GNAT implements all of the facilities described in annex A, and for most purposes the
description in the Ada 95 reference manual, or appropriate Ada text book, will be sufficient
for making use of these facilities.

In the case of the input-output facilities, See Chapter 8 [The Implementation of Standard
I/O], page 133, gives details on exactly how GNAT interfaces to the file system. For the
remaining packages, the Ada 95 reference manual should be sufficient. The following is a
list of the packages included, together with a brief description of the functionality that is
provided.

For completeness, references are included to other predefined library routines defined in
other sections of the Ada 95 reference manual (these are cross-indexed from annex A).

Ada (A.2) This is a parent package for all the standard library packages. It is usually
included implicitly in your program, and itself contains no useful data or rou-
tines.

Ada.Calendar (9.6)
Calendar provides time of day access, and routines for manipulating times and
durations.

Ada.Characters (A.3.1)
This is a dummy parent package that contains no useful entities

Ada.Characters.Handling (A.3.2)
This package provides some basic character handling capabilities, including
classification functions for classes of characters (e.g. test for letters, or digits).

Ada.Characters.Latin_1 (A.3.3)
This package includes a complete set of definitions of the characters that ap-
pear in type CHARACTER. It is useful for writing programs that will run in
international environments. For example, if you want an upper case E with an
acute accent in a string, it is often better to use the definition of UC_E_Acute in
this package. Then your program will print in an understandable manner even
if your environment does not support these extended characters.

Ada.Command_Line (A.15)
This package provides access to the command line parameters and the name
of the current program (analogous to the use of argc and argv in C), and
also allows the exit status for the program to be set in a system-independent
manner.

Ada.Decimal (F.2)
This package provides constants describing the range of decimal numbers im-
plemented, and also a decimal divide routine (analogous to the COBOL verb
DIVIDE .. GIVING .. REMAINDER ..)

126 GNAT Reference Manual

Ada.Direct_IO (A.8.4)
This package provides input-output using a model of a set of records of fixed-
length, containing an arbitrary definite Ada type, indexed by an integer record
number.

Ada.Dynamic_Priorities (D.5)
This package allows the priorities of a task to be adjusted dynamically as the
task is running.

Ada.Exceptions (11.4.1)
This package provides additional information on exceptions, and also contains
facilities for treating exceptions as data objects, and raising exceptions with
associated messages.

Ada.Finalization (7.6)
This package contains the declarations and subprograms to support the use of
controlled types, providing for automatic initialization and finalization (analo-
gous to the constructors and destructors of C++)

Ada.Interrupts (C.3.2)
This package provides facilities for interfacing to interrupts, which includes the
set of signals or conditions that can be raised and recognized as interrupts.

Ada.Interrupts.Names (C.3.2)
This package provides the set of interrupt names (actually signal or condition
names) that can be handled by GNAT.

Ada.IO_Exceptions (A.13)
This package defines the set of exceptions that can be raised by use of the
standard IO packages.

Ada.Numerics
This package contains some standard constants and exceptions used throughout
the numerics packages. Note that the constants pi and e are defined here, and
it is better to use these definitions than rolling your own.

Ada.Numerics.Complex_Elementary_Functions
Provides the implementation of standard elementary functions (such as log
and trigonometric functions) operating on complex numbers using the stan-
dard Float and the Complex and Imaginary types created by the package
Numerics.Complex_Types.

Ada.Numerics.Complex_Types
This is a predefined instantiation of Numerics.Generic_Complex_Types using
Standard.Float to build the type Complex and Imaginary.

Ada.Numerics.Discrete_Random
This package provides a random number generator suitable for generating ran-
dom integer values from a specified range.

Ada.Numerics.Float_Random
This package provides a random number generator suitable for generating uni-
formly distributed floating point values.

Chapter 7: Standard Library Routines 127

Ada.Numerics.Generic_Complex_Elementary_Functions
This is a generic version of the package that provides the implementation of
standard elementary functions (such as log and trigonometric functions) for an
arbitrary complex type.
The following predefined instantiations of this package are provided:

Short_Float
Ada.Numerics.Short_Complex_Elementary_Functions

Float Ada.Numerics.Complex_Elementary_Functions

Long_Float
Ada.Numerics. Long_Complex_Elementary_Functions

Ada.Numerics.Generic_Complex_Types
This is a generic package that allows the creation of complex types, with asso-
ciated complex arithmetic operations.
The following predefined instantiations of this package exist

Short_Float
Ada.Numerics.Short_Complex_Complex_Types

Float Ada.Numerics.Complex_Complex_Types

Long_Float
Ada.Numerics.Long_Complex_Complex_Types

Ada.Numerics.Generic_Elementary_Functions
This is a generic package that provides the implementation of standard elemen-
tary functions (such as log an trigonometric functions) for an arbitrary float
type.
The following predefined instantiations of this package exist

Short_Float
Ada.Numerics.Short_Elementary_Functions

Float Ada.Numerics.Elementary_Functions

Long_Float
Ada.Numerics.Long_Elementary_Functions

Ada.Real_Time (D.8)
This package provides facilities similar to those of Calendar, but operating with
a finer clock suitable for real time control. Note that annex D requires that there
be no backward clock jumps, and GNAT generally guarantees this behavior,
but of course if the external clock on which the GNAT runtime depends is
deliberately reset by some external event, then such a backward jump may
occur.

Ada.Sequential_IO (A.8.1)
This package provides input-output facilities for sequential files, which can con-
tain a sequence of values of a single type, which can be any Ada type, including
indefinite (unconstrained) types.

128 GNAT Reference Manual

Ada.Storage_IO (A.9)
This package provides a facility for mapping arbitrary Ada types to and from
a storage buffer. It is primarily intended for the creation of new IO packages.

Ada.Streams (13.13.1)
This is a generic package that provides the basic support for the concept of
streams as used by the stream attributes (Input, Output, Read and Write).

Ada.Streams.Stream_IO (A.12.1)
This package is a specialization of the type Streams defined in package
Streams together with a set of operations providing Stream IO capability.
The Stream IO model permits both random and sequential access to a file
which can contain an arbitrary set of values of one or more Ada types.

Ada.Strings (A.4.1)
This package provides some basic constants used by the string handling pack-
ages.

Ada.Strings.Bounded (A.4.4)
This package provides facilities for handling variable length strings. The
bounded model requires a maximum length. It is thus somewhat more limited
than the unbounded model, but avoids the use of dynamic allocation or
finalization.

Ada.Strings.Fixed (A.4.3)
This package provides facilities for handling fixed length strings.

Ada.Strings.Maps (A.4.2)
This package provides facilities for handling character mappings and arbitrarily
defined subsets of characters. For instance it is useful in defining specialized
translation tables.

Ada.Strings.Maps.Constants (A.4.6)
This package provides a standard set of predefined mappings and predefined
character sets. For example, the standard upper to lower case conversion table
is found in this package. Note that upper to lower case conversion is non-trivial
if you want to take the entire set of characters, including extended characters
like E with an acute accent, into account. You should use the mappings in this
package (rather than adding 32 yourself) to do case mappings.

Ada.Strings.Unbounded (A.4.5)
This package provides facilities for handling variable length strings. The un-
bounded model allows arbitrary length strings, but requires the use of dynamic
allocation and finalization.

Ada.Strings.Wide_Bounded (A.4.7)
Ada.Strings.Wide_Fixed (A.4.7)
Ada.Strings.Wide_Maps (A.4.7)
Ada.Strings.Wide_Maps.Constants (A.4.7)
Ada.Strings.Wide_Unbounded (A.4.7)

These package provide analogous capabilities to the corresponding packages
without ‘Wide_’ in the name, but operate with the types Wide_String and
Wide_Character instead of String and Character.

Chapter 7: Standard Library Routines 129

Ada.Synchronous_Task_Control (D.10)
This package provides some standard facilities for controlling task communica-
tion in a synchronous manner.

Ada.Tags This package contains definitions for manipulation of the tags of tagged values.

Ada.Task_Attributes
This package provides the capability of associating arbitrary task-specific data
with separate tasks.

Ada.Text_IO
This package provides basic text input-output capabilities for character, string
and numeric data. The subpackages of this package are listed next.

Ada.Text_IO.Decimal_IO
Provides input-output facilities for decimal fixed-point types

Ada.Text_IO.Enumeration_IO
Provides input-output facilities for enumeration types.

Ada.Text_IO.Fixed_IO
Provides input-output facilities for ordinary fixed-point types.

Ada.Text_IO.Float_IO
Provides input-output facilities for float types. The following predefined instan-
tiations of this generic package are available:

Short_Float
Short_Float_Text_IO

Float Float_Text_IO

Long_Float
Long_Float_Text_IO

Ada.Text_IO.Integer_IO
Provides input-output facilities for integer types. The following predefined in-
stantiations of this generic package are available:

Short_Short_Integer
Ada.Short_Short_Integer_Text_IO

Short_Integer
Ada.Short_Integer_Text_IO

Integer Ada.Integer_Text_IO

Long_Integer
Ada.Long_Integer_Text_IO

Long_Long_Integer
Ada.Long_Long_Integer_Text_IO

Ada.Text_IO.Modular_IO
Provides input-output facilities for modular (unsigned) types

Ada.Text_IO.Complex_IO (G.1.3)
This package provides basic text input-output capabilities for complex data.

130 GNAT Reference Manual

Ada.Text_IO.Editing (F.3.3)
This package contains routines for edited output, analogous to the use of pic-
tures in COBOL. The picture formats used by this package are a close copy of
the facility in COBOL.

Ada.Text_IO.Text_Streams (A.12.2)
This package provides a facility that allows Text IO files to be treated as
streams, so that the stream attributes can be used for writing arbitrary data,
including binary data, to Text IO files.

Ada.Unchecked_Conversion (13.9)
This generic package allows arbitrary conversion from one type to another of
the same size, providing for breaking the type safety in special circumstances.

If the types have the same Size (more accurately the same Value Size), then
the effect is simply to transfer the bits from the source to the target type
without any modification. This usage is well defined, and for simple types
whose representation is typically the same across all implementations, gives a
portable method of performing such conversions.

If the types do not have the same size, then the result is implementation defined,
and thus may be non-portable. The following describes how GNAT handles such
unchecked conversion cases.

If the types are of different sizes, and are both discrete types, then the effect
is of a normal type conversion without any constraint checking. In particular
if the result type has a larger size, the result will be zero or sign extended. If
the result type has a smaller size, the result will be truncated by ignoring high
order bits.

If the types are of different sizes, and are not both discrete types, then the
conversion works as though pointers were created to the source and target, and
the pointer value is converted. The effect is that bits are copied from successive
low order storage units and bits of the source up to the length of the target
type.

A warning is issued if the lengths differ, since the effect in this case is implemen-
tation dependent, and the above behavior may not match that of some other
compiler.

A pointer to one type may be converted to a pointer to another type using
unchecked conversion. The only case in which the effect is undefined is when
one or both pointers are pointers to unconstrained array types. In this case, the
bounds information may get incorrectly transferred, and in particular, GNAT
uses double size pointers for such types, and it is meaningless to convert between
such pointer types. GNAT will issue a warning if the alignment of the target
designated type is more strict than the alignment of the source designated type
(since the result may be unaligned in this case).

A pointer other than a pointer to an unconstrained array type may be con-
verted to and from System.Address. Such usage is common in Ada 83 programs,
but note that Ada.Address To Access Conversions is the preferred method of
performing such conversions in Ada 95. Neither unchecked conversion nor

Chapter 7: Standard Library Routines 131

Ada.Address To Access Conversions should be used in conjunction with point-
ers to unconstrained objects, since the bounds information cannot be handled
correctly in this case.

Ada.Unchecked_Deallocation (13.11.2)
This generic package allows explicit freeing of storage previously allocated by
use of an allocator.

Ada.Wide_Text_IO (A.11)
This package is similar to Ada.Text_IO, except that the external file supports
wide character representations, and the internal types are Wide_Character and
Wide_String instead of Character and String. It contains generic subpack-
ages listed next.

Ada.Wide_Text_IO.Decimal_IO
Provides input-output facilities for decimal fixed-point types

Ada.Wide_Text_IO.Enumeration_IO
Provides input-output facilities for enumeration types.

Ada.Wide_Text_IO.Fixed_IO
Provides input-output facilities for ordinary fixed-point types.

Ada.Wide_Text_IO.Float_IO
Provides input-output facilities for float types. The following predefined instan-
tiations of this generic package are available:

Short_Float
Short_Float_Wide_Text_IO

Float Float_Wide_Text_IO

Long_Float
Long_Float_Wide_Text_IO

Ada.Wide_Text_IO.Integer_IO
Provides input-output facilities for integer types. The following predefined in-
stantiations of this generic package are available:

Short_Short_Integer
Ada.Short_Short_Integer_Wide_Text_IO

Short_Integer
Ada.Short_Integer_Wide_Text_IO

Integer Ada.Integer_Wide_Text_IO

Long_Integer
Ada.Long_Integer_Wide_Text_IO

Long_Long_Integer
Ada.Long_Long_Integer_Wide_Text_IO

Ada.Wide_Text_IO.Modular_IO
Provides input-output facilities for modular (unsigned) types

132 GNAT Reference Manual

Ada.Wide_Text_IO.Complex_IO (G.1.3)
This package is similar to Ada.Text_IO.Complex_IO, except that the external
file supports wide character representations.

Ada.Wide_Text_IO.Editing (F.3.4)
This package is similar to Ada.Text_IO.Editing, except that the types are
Wide_Character and Wide_String instead of Character and String.

Ada.Wide_Text_IO.Streams (A.12.3)
This package is similar to Ada.Text_IO.Streams, except that the types are
Wide_Character and Wide_String instead of Character and String.

Chapter 8: The Implementation of Standard I/O 133

8 The Implementation of Standard I/O

GNAT implements all the required input-output facilities described in A.6 through A.14. These
sections of the Ada 95 reference manual describe the required behavior of these packages
from the Ada point of view, and if you are writing a portable Ada program that does not
need to know the exact manner in which Ada maps to the outside world when it comes to
reading or writing external files, then you do not need to read this chapter. As long as your
files are all regular files (not pipes or devices), and as long as you write and read the files
only from Ada, the description in the Ada 95 reference manual is sufficient.

However, if you want to do input-output to pipes or other devices, such as the keyboard
or screen, or if the files you are dealing with are either generated by some other language,
or to be read by some other language, then you need to know more about the details of
how the GNAT implementation of these input-output facilities behaves.

In this chapter we give a detailed description of exactly how GNAT interfaces to the file
system. As always, the sources of the system are available to you for answering questions
at an even more detailed level, but for most purposes the information in this chapter will
suffice.

Another reason that you may need to know more about how input-output is implemented
arises when you have a program written in mixed languages where, for example, files are
shared between the C and Ada sections of the same program. GNAT provides some addi-
tional facilities, in the form of additional child library packages, that facilitate this sharing,
and these additional facilities are also described in this chapter.

8.1 Standard I/O Packages

The Standard I/O packages described in Annex A for

• Ada.Text IO
• Ada.Text IO.Complex IO
• Ada.Text IO.Text Streams,
• Ada.Wide Text IO
• Ada.Wide Text IO.Complex IO,
• Ada.Wide Text IO.Text Streams
• Ada.Stream IO
• Ada.Sequential IO
• Ada.Direct IO

are implemented using the C library streams facility; where

• All files are opened using fopen.
• All input/output operations use fread/fwrite.

There is no internal buffering of any kind at the Ada library level. The only buffering
is that provided at the system level in the implementation of the C library routines that
support streams. This facilitates shared use of these streams by mixed language programs.

134 GNAT Reference Manual

8.2 FORM Strings

The format of a FORM string in GNAT is:
"keyword=value,keyword=value,...,keyword=value"

where letters may be in upper or lower case, and there are no spaces between values. The
order of the entries is not important. Currently there are two keywords defined.

SHARED=[YES|NO]

WCEM=[n|h|u|s\e]

The use of these parameters is described later in this section.

8.3 Direct IO

Direct IO can only be instantiated for definite types. This is a restriction of the Ada language,
which means that the records are fixed length (the length being determined by type’Size,
rounded up to the next storage unit boundary if necessary).

The records of a Direct IO file are simply written to the file in index sequence, with the
first record starting at offset zero, and subsequent records following. There is no control
information of any kind. For example, if 32-bit integers are being written, each record takes
4-bytes, so the record at index K starts at offset (K−1)*4.

There is no limit on the size of Direct IO files, they are expanded as necessary to ac-
commodate whatever records are written to the file.

8.4 Sequential IO

Sequential IO may be instantiated with either a definite (constrained) or indefinite (uncon-
strained) type.

For the definite type case, the elements written to the file are simply the memory images
of the data values with no control information of any kind. The resulting file should be
read using the same type, no validity checking is performed on input.

For the indefinite type case, the elements written consist of two parts. First is the size
of the data item, written as the memory image of a Interfaces.C.size_t value, followed
by the memory image of the data value. The resulting file can only be read using the same
(unconstrained) type. Normal assignment checks are performed on these read operations,
and if these checks fail, Data_Error is raised. In particular, in the array case, the lengths
must match, and in the variant record case, if the variable for a particular read operation
is constrained, the discriminants must match.

Note that it is not possible to use Sequential IO to write variable length array items,
and then read the data back into different length arrays. For example, the following will
raise Data_Error:

package IO is new Sequential_IO (String);

F : IO.File_Type;

S : String (1..4);

...

IO.Create (F)

IO.Write (F, "hello!")

Chapter 8: The Implementation of Standard I/O 135

IO.Reset (F, Mode=>In_File);

IO.Read (F, S);

Put_Line (S);

On some Ada implementations, this will print ‘hell’, but the program is clearly incorrect,
since there is only one element in the file, and that element is the string ‘hello!’.

In Ada 95, this kind of behavior can be legitimately achieved using Stream IO, and this
is the preferred mechanism. In particular, the above program fragment rewritten to use
Stream IO will work correctly.

8.5 Text IO

Text IO files consist of a stream of characters containing the following special control charac-
ters:

LF (line feed, 16#0A#) Line Mark

FF (form feed, 16#0C#) Page Mark

A canonical Text IO file is defined as one in which the following conditions are met:

• The character LF is used only as a line mark, i.e. to mark the end of the line.

• The character FF is used only as a page mark, i.e. to mark the end of a page and
consequently can appear only immediately following a LF (line mark) character.

• The file ends with either LF (line mark) or LF-FF (line mark, page mark). In the former
case, the page mark is implicitly assumed to be present.

A file written using Text IO will be in canonical form provided that no explicit LF or FF
characters are written using Put or Put_Line. There will be no FF character at the end of
the file unless an explicit New_Page operation was performed before closing the file.

A canonical Text IO file that is a regular file, i.e. not a device or a pipe, can be read
using any of the routines in Text IO. The semantics in this case will be exactly as defined
in the Ada 95 reference manual and all the routines in Text IO are fully implemented.

A text file that does not meet the requirements for a canonical Text IO file has one of
the following:

• The file contains FF characters not immediately following a LF character.

• The file contains LF or FF characters written by Put or Put_Line, which are not logically
considered to be line marks or page marks.

• The file ends in a character other than LF or FF, i.e. there is no explicit line mark or
page mark at the end of the file.

Text IO can be used to read such non-standard text files but subprograms to do with
line or page numbers do not have defined meanings. In particular, a FF character that does
not follow a LF character may or may not be treated as a page mark from the point of view
of page and line numbering. Every LF character is considered to end a line, and there is an
implied LF character at the end of the file.

136 GNAT Reference Manual

8.5.1 Stream Pointer Positioning

Ada.Text_IO has a definition of current position for a file that is being read. No internal buffer-
ing occurs in Text IO, and usually the physical position in the stream used to implement
the file corresponds to this logical position defined by Text IO. There are two exceptions:

• After a call to End_Of_Page that returns True, the stream is positioned past the LF
(line mark) that precedes the page mark. Text IO maintains an internal flag so that
subsequent read operations properly handle the logical position which is unchanged by
the End_Of_Page call.

• After a call to End_Of_File that returns True, if the Text IO file was positioned before
the line mark at the end of file before the call, then the logical position is unchanged,
but the stream is physically positioned right at the end of file (past the line mark, and
past a possible page mark following the line mark. Again Text IO maintains internal
flags so that subsequent read operations properly handle the logical position.

These discrepancies have no effect on the observable behavior of Text IO, but if a single
Ada stream is shared between a C program and Ada program, or shared (using ‘shared=yes’
in the form string) between two Ada files, then the difference may be observable in some
situations.

8.5.2 Reading and Writing Non-Regular Files

A non-regular file is a device (such as a keyboard), or a pipe. Text IO can be used for reading
and writing. Writing is not affected and the sequence of characters output is identical to the
normal file case, but for reading, the behavior of Text IO is modified to avoid undesirable
look-ahead as follows:

An input file that is not a regular file is considered to have no page marks. Any Ascii.FF
characters (the character normally used for a page mark) appearing in the file are considered
to be data characters. In particular:

• Get_Line and Skip_Line do not test for a page mark following a line mark. If a page
mark appears, it will be treated as a data character.

• This avoids the need to wait for an extra character to be typed or entered from the
pipe to complete one of these operations.

• End_Of_Page always returns False

• End_Of_File will return False if there is a page mark at the end of the file.

Output to non-regular files is the same as for regular files. Page marks may be written
to non-regular files using New_Page, but as noted above they will not be treated as page
marks on input if the output is piped to another Ada program.

Another important discrepancy when reading non-regular files is that the end of file
indication is not “sticky”. If an end of file is entered, e.g. by pressing the 〈EOT〉 key, then
end of file is signalled once (i.e. the test End_Of_File will yield True, or a read will raise
End_Error), but then reading can resume to read data past that end of file indication, until
another end of file indication is entered.

Chapter 8: The Implementation of Standard I/O 137

8.5.3 Get Immediate

Get Immediate returns the next character (including control characters) from the input file.
In particular, Get Immediate will return LF or FF characters used as line marks or page
marks. Such operations leave the file positioned past the control character, and it is thus
not treated as having its normal function. This means that page, line and column counts
after this kind of Get Immediate call are set as though the mark did not occur. In the case
where a Get Immediate leaves the file positioned between the line mark and page mark
(which is not normally possible), it is undefined whether the FF character will be treated
as a page mark.

8.5.4 Treating Text IO Files as Streams

The package Text_IO.Streams allows a Text IO file to be treated as a stream. Data written
to a Text IO file in this stream mode is binary data. If this binary data contains bytes
16#0A# (LF) or 16#0C# (FF), the resulting file may have non-standard format. Similarly
if read operations are used to read from a Text IO file treated as a stream, then LF and
FF characters may be skipped and the effect is similar to that described above for Get_
Immediate.

8.5.5 Text IO Extensions

A package GNAT.IO Aux in the GNAT library provides some useful extensions to the standard
Text_IO package:

• function File Exists (Name : String) return Boolean; Determines if a file of the given
name exists and can be successfully opened (without actually performing the open
operation).

• function Get Line return String; Reads a string from the standard input file. The value
returned is exactly the length of the line that was read.

• function Get Line (File : Ada.Text IO.File Type) return String; Similar, except that
the parameter File specifies the file from which the string is to be read.

8.5.6 Text IO Facilities for Unbounded Strings

The package Ada.Strings.Unbounded.Text_IO in library files a-suteio.ads/adb contains
some GNAT-specific subprograms useful for Text IO operations on unbounded strings:

• function Get Line (File : File Type) return Unbounded String; Reads a line from the
specified file and returns the result as an unbounded string.

• procedure Put (File : File Type; U : Unbounded String); Writes the value of the given
unbounded string to the specified file Similar to the effect of Put (To_String (U))
except that an extra copy is avoided.

• procedure Put Line (File : File Type; U : Unbounded String); Writes the value of the
given unbounded string to the specified file, followed by a New_Line. Similar to the
effect of Put_Line (To_String (U)) except that an extra copy is avoided.

138 GNAT Reference Manual

In the above procedures, File is of type Ada.Text_IO.File_Type and is optional. If the
parameter is omitted, then the standard input or output file is referenced as appropriate.

The package Ada.Strings.Wide_Unbounded.Wide_Text_IO in library files
‘a-swuwti.ads’ and ‘a-swuwti.adb’ provides similar extended Wide_Text_IO functionality
for unbounded wide strings.

8.6 Wide Text IO

Wide_Text_IO is similar in most respects to Text IO, except that both input and output files
may contain special sequences that represent wide character values. The encoding scheme
for a given file may be specified using a FORM parameter:

WCEM=x

as part of the FORM string (WCEM = wide character encoding method), where x is one
of the following characters

‘h’ Hex ESC encoding

‘u’ Upper half encoding

‘s’ Shift-JIS encoding

‘e’ EUC Encoding

‘8’ UTF-8 encoding

‘b’ Brackets encoding

The encoding methods match those that can be used in a source program, but there is
no requirement that the encoding method used for the source program be the same as the
encoding method used for files, and different files may use different encoding methods.

The default encoding method for the standard files, and for opened files for which no
WCEM parameter is given in the FORM string matches the wide character encoding spec-
ified for the main program (the default being brackets encoding if no coding method was
specified with -gnatW).

Hex Coding
In this encoding, a wide character is represented by a five character sequence:

ESC a b c d

where a, b, c, d are the four hexadecimal characters (using upper case letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of
the full Wide_Character set.

Upper Half Coding
The wide character with encoding 16#abcd#, where the upper bit is on (i.e.
a is in the range 8-F) is represented as two bytes 16#ab# and 16#cd#. The
second byte may never be a format control character, but is not required to be
in the upper half. This method can be also used for shift-JIS or EUC where
the internal coding matches the external coding.

Chapter 8: The Implementation of Standard I/O 139

Shift JIS Coding
A wide character is represented by a two character sequence 16#ab# and
16#cd#, with the restrictions described for upper half encoding as described
above. The internal character code is the corresponding JIS character accord-
ing to the standard algorithm for Shift-JIS conversion. Only characters defined
in the JIS code set table can be used with this encoding method.

EUC Coding
A wide character is represented by a two character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal char-
acter code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxxxxx#

16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#

16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit
characters as 6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will raise a Constraint Error, as will all invalid
UTF-8 sequences.)

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:

[" a b c d "]

Where a, b, c, d are the four hexadecimal characters (using uppercase letters) of
the wide character code. For example, ["A345"] is used to represent the wide
character with code 16#A345#. This scheme is compatible with use of the full
Wide Character set. On input, brackets coding can also be used for upper half
characters, e.g. ["C1"] for lower case a. However, on output, brackets notation
is only used for wide characters with a code greater than 16#FF#.

For the coding schemes other than Hex and Brackets encoding, not all wide character
values can be represented. An attempt to output a character that cannot be represented
using the encoding scheme for the file causes Constraint Error to be raised. An invalid wide
character sequence on input also causes Constraint Error to be raised.

8.6.1 Stream Pointer Positioning

Ada.Wide_Text_IO is similar to Ada.Text_IO in its handling of stream pointer positioning (see
Section 8.5 [Text IO], page 135). There is one additional case:

140 GNAT Reference Manual

If Ada.Wide_Text_IO.Look_Ahead reads a character outside the normal lower ASCII set
(i.e. a character in the range:

Wide_Character’Val (16#0080#) .. Wide_Character’Val (16#FFFF#)

then although the logical position of the file pointer is unchanged by the Look_Ahead call,
the stream is physically positioned past the wide character sequence. Again this is to
avoid the need for buffering or backup, and all Wide_Text_IO routines check the internal
indication that this situation has occurred so that this is not visible to a normal program
using Wide_Text_IO. However, this discrepancy can be observed if the wide text file shares
a stream with another file.

8.6.2 Reading and Writing Non-Regular Files

As in the case of Text IO, when a non-regular file is read, it is assumed that the file contains no
page marks (any form characters are treated as data characters), and End_Of_Page always
returns False. Similarly, the end of file indication is not sticky, so it is possible to read
beyond an end of file.

8.7 Stream IO

A stream file is a sequence of bytes, where individual elements are written to the file as described
in the Ada 95 reference manual. The type Stream_Element is simply a byte. There are two
ways to read or write a stream file.

• The operations Read and Write directly read or write a sequence of stream elements
with no control information.

• The stream attributes applied to a stream file transfer data in the manner described
for stream attributes.

8.8 Shared Files

Section A.14 of the Ada 95 Reference Manual allows implementations to provide a wide variety
of behavior if an attempt is made to access the same external file with two or more internal
files.

To provide a full range of functionality, while at the same time minimizing the problems
of portability caused by this implementation dependence, GNAT handles file sharing as
follows:

• In the absence of a ‘shared=xxx ’ form parameter, an attempt to open two or more files
with the same full name is considered an error and is not supported. The exception
Use_Error will be raised. Note that a file that is not explicitly closed by the program
remains open until the program terminates.

• If the form parameter ‘shared=no’ appears in the form string, the file can be opened or
created with its own separate stream identifier, regardless of whether other files sharing
the same external file are opened. The exact effect depends on how the C stream
routines handle multiple accesses to the same external files using separate streams.

Chapter 8: The Implementation of Standard I/O 141

• If the form parameter ‘shared=yes’ appears in the form string for each of two or more
files opened using the same full name, the same stream is shared between these files,
and the semantics are as described in Ada 95 Reference Manual, Section A.14.

When a program that opens multiple files with the same name is ported from another
Ada compiler to GNAT, the effect will be that Use_Error is raised.

The documentation of the original compiler and the documentation of the program
should then be examined to determine if file sharing was expected, and ‘shared=xxx ’ pa-
rameters added to Open and Create calls as required.

When a program is ported from GNAT to some other Ada compiler, no special attention
is required unless the ‘shared=xxx ’ form parameter is used in the program. In this case,
you must examine the documentation of the new compiler to see if it supports the required
file sharing semantics, and form strings modified appropriately. Of course it may be the
case that the program cannot be ported if the target compiler does not support the required
functionality. The best approach in writing portable code is to avoid file sharing (and hence
the use of the ‘shared=xxx ’ parameter in the form string) completely.

One common use of file sharing in Ada 83 is the use of instantiations of Sequential IO
on the same file with different types, to achieve heterogeneous input-output. Although this
approach will work in GNAT if ‘shared=yes’ is specified, it is preferable in Ada 95 to use
Stream IO for this purpose (using the stream attributes)

8.9 Open Modes

Open and Create calls result in a call to fopen using the mode shown in Table 6.1

Table 6-1 Open and Create Call Modes
OPEN CREATE

Append_File "r+" "w+"

In_File "r" "w+"

Out_File (Direct_IO) "r+" "w"

Out_File (all other cases) "w" "w"

Inout_File "r+" "w+"

If text file translation is required, then either ‘b’ or ‘t’ is added to the mode, depending
on the setting of Text. Text file translation refers to the mapping of CR/LF sequences in an
external file to LF characters internally. This mapping only occurs in DOS and DOS-like
systems, and is not relevant to other systems.

A special case occurs with Stream IO. As shown in the above table, the file is initially
opened in ‘r’ or ‘w’ mode for the In_File and Out_File cases. If a Set_Mode operation sub-
sequently requires switching from reading to writing or vice-versa, then the file is reopened
in ‘r+’ mode to permit the required operation.

8.10 Operations on C Streams

The package Interfaces.C_Streams provides an Ada program with direct access to the C
library functions for operations on C streams:

142 GNAT Reference Manual

package Interfaces.C_Streams is

-- Note: the reason we do not use the types that are in

-- Interfaces.C is that we want to avoid dragging in the

-- code in this unit if possible.

subtype chars is System.Address;

-- Pointer to null-terminated array of characters

subtype FILEs is System.Address;

-- Corresponds to the C type FILE*

subtype voids is System.Address;

-- Corresponds to the C type void*

subtype int is Integer;

subtype long is Long_Integer;

-- Note: the above types are subtypes deliberately, and it

-- is part of this spec that the above correspondences are

-- guaranteed. This means that it is legitimate to, for

-- example, use Integer instead of int. We provide these

-- synonyms for clarity, but in some cases it may be

-- convenient to use the underlying types (for example to

-- avoid an unnecessary dependency of a spec on the spec

-- of this unit).

type size_t is mod 2 ** Standard’Address_Size;

NULL_Stream : constant FILEs;

-- Value returned (NULL in C) to indicate an

-- fdopen/fopen/tmpfile error

-- Constants Defined in stdio.h --

EOF : constant int;

-- Used by a number of routines to indicate error or

-- end of file

IOFBF : constant int;

IOLBF : constant int;

IONBF : constant int;

-- Used to indicate buffering mode for setvbuf call

SEEK_CUR : constant int;

SEEK_END : constant int;

SEEK_SET : constant int;

-- Used to indicate origin for fseek call

function stdin return FILEs;

function stdout return FILEs;

function stderr return FILEs;

-- Streams associated with standard files

-- Standard C functions --

-- The functions selected below are ones that are

-- available in DOS, OS/2, UNIX and Xenix (but not

-- necessarily in ANSI C). These are very thin interfaces

-- which copy exactly the C headers. For more

-- documentation on these functions, see the Microsoft C

-- "Run-Time Library Reference" (Microsoft Press, 1990,

-- ISBN 1-55615-225-6), which includes useful information

-- on system compatibility.

procedure clearerr (stream : FILEs);

function fclose (stream : FILEs) return int;

function fdopen (handle : int; mode : chars) return FILEs;

function feof (stream : FILEs) return int;

function ferror (stream : FILEs) return int;

Chapter 8: The Implementation of Standard I/O 143

function fflush (stream : FILEs) return int;

function fgetc (stream : FILEs) return int;

function fgets (strng : chars; n : int; stream : FILEs)

return chars;

function fileno (stream : FILEs) return int;

function fopen (filename : chars; Mode : chars)

return FILEs;

-- Note: to maintain target independence, use

-- text_translation_required, a boolean variable defined in

-- a-sysdep.c to deal with the target dependent text

-- translation requirement. If this variable is set,

-- then b/t should be appended to the standard mode

-- argument to set the text translation mode off or on

-- as required.

function fputc (C : int; stream : FILEs) return int;

function fputs (Strng : chars; Stream : FILEs) return int;

function fread

(buffer : voids;

size : size_t;

count : size_t;

stream : FILEs)

return size_t;

function freopen

(filename : chars;

mode : chars;

stream : FILEs)

return FILEs;

function fseek

(stream : FILEs;

offset : long;

origin : int)

return int;

function ftell (stream : FILEs) return long;

function fwrite

(buffer : voids;

size : size_t;

count : size_t;

stream : FILEs)

return size_t;

function isatty (handle : int) return int;

procedure mktemp (template : chars);

-- The return value (which is just a pointer to template)

-- is discarded

procedure rewind (stream : FILEs);

function rmtmp return int;

function setvbuf

(stream : FILEs;

buffer : chars;

mode : int;

size : size_t)

return int;

function tmpfile return FILEs;

function ungetc (c : int; stream : FILEs) return int;

function unlink (filename : chars) return int;

-- Extra functions --

144 GNAT Reference Manual

-- These functions supply slightly thicker bindings than

-- those above. They are derived from functions in the

-- C Run-Time Library, but may do a bit more work than

-- just directly calling one of the Library functions.

function is_regular_file (handle : int) return int;

-- Tests if given handle is for a regular file (result 1)

-- or for a non-regular file (pipe or device, result 0).

-- Control of Text/Binary Mode --

-- If text_translation_required is true, then the following

-- functions may be used to dynamically switch a file from

-- binary to text mode or vice versa. These functions have

-- no effect if text_translation_required is false (i.e. in

-- normal UNIX mode). Use fileno to get a stream handle.

procedure set_binary_mode (handle : int);

procedure set_text_mode (handle : int);

-- Full Path Name support --

procedure full_name (nam : chars; buffer : chars);

-- Given a NUL terminated string representing a file

-- name, returns in buffer a NUL terminated string

-- representing the full path name for the file name.

-- On systems where it is relevant the drive is also

-- part of the full path name. It is the responsibility

-- of the caller to pass an actual parameter for buffer

-- that is big enough for any full path name. Use

-- max_path_len given below as the size of buffer.

max_path_len : integer;

-- Maximum length of an allowable full path name on the

-- system, including a terminating NUL character.

end Interfaces.C_Streams;

8.11 Interfacing to C Streams

The packages in this section permit interfacing Ada files to C Stream operations.
with Interfaces.C_Streams;

package Ada.Sequential_IO.C_Streams is

function C_Stream (F : File_Type)

return Interfaces.C_Streams.FILEs;

procedure Open

(File : in out File_Type;

Mode : in File_Mode;

C_Stream : in Interfaces.C_Streams.FILEs;

Form : in String := "");

end Ada.Sequential_IO.C_Streams;

with Interfaces.C_Streams;

package Ada.Direct_IO.C_Streams is

function C_Stream (F : File_Type)

return Interfaces.C_Streams.FILEs;

procedure Open

(File : in out File_Type;

Mode : in File_Mode;

C_Stream : in Interfaces.C_Streams.FILEs;

Form : in String := "");

Chapter 8: The Implementation of Standard I/O 145

end Ada.Direct_IO.C_Streams;

with Interfaces.C_Streams;

package Ada.Text_IO.C_Streams is

function C_Stream (F : File_Type)

return Interfaces.C_Streams.FILEs;

procedure Open

(File : in out File_Type;

Mode : in File_Mode;

C_Stream : in Interfaces.C_Streams.FILEs;

Form : in String := "");

end Ada.Text_IO.C_Streams;

with Interfaces.C_Streams;

package Ada.Wide_Text_IO.C_Streams is

function C_Stream (F : File_Type)

return Interfaces.C_Streams.FILEs;

procedure Open

(File : in out File_Type;

Mode : in File_Mode;

C_Stream : in Interfaces.C_Streams.FILEs;

Form : in String := "");

end Ada.Wide_Text_IO.C_Streams;

with Interfaces.C_Streams;

package Ada.Stream_IO.C_Streams is

function C_Stream (F : File_Type)

return Interfaces.C_Streams.FILEs;

procedure Open

(File : in out File_Type;

Mode : in File_Mode;

C_Stream : in Interfaces.C_Streams.FILEs;

Form : in String := "");

end Ada.Stream_IO.C_Streams;

In each of these five packages, the C_Stream function obtains the FILE pointer from a
currently opened Ada file. It is then possible to use the Interfaces.C_Streams package to
operate on this stream, or the stream can be passed to a C program which can operate on it
directly. Of course the program is responsible for ensuring that only appropriate sequences
of operations are executed.

One particular use of relevance to an Ada program is that the setvbuf function can be
used to control the buffering of the stream used by an Ada file. In the absence of such a
call the standard default buffering is used.

The Open procedures in these packages open a file giving an existing C Stream instead
of a file name. Typically this stream is imported from a C program, allowing an Ada file
to operate on an existing C file.

146 GNAT Reference Manual

Chapter 9: The GNAT Library 147

9 The GNAT Library

The GNAT library contains a number of general and special purpose packages. It represents
functionality that the GNAT developers have found useful, and which is made available to
GNAT users. The packages described here are fully supported, and upwards compatibility
will be maintained in future releases, so you can use these facilities with the confidence that
the same functionality will be available in future releases.

The chapter here simply gives a brief summary of the facilities available. The full
documentation is found in the spec file for the package. The full sources of these library
packages, including both spec and body, are provided with all GNAT releases. For example,
to find out the full specifications of the SPITBOL pattern matching capability, including a
full tutorial and extensive examples, look in the ‘g-spipat.ads’ file in the library.

For each entry here, the package name (as it would appear in a with clause) is given,
followed by the name of the corresponding spec file in parentheses. The packages are children
in four hierarchies, Ada, Interfaces, System, and GNAT, the latter being a GNAT-specific
hierarchy.

Note that an application program should only use packages in one of these four hierar-
chies if the package is defined in the Ada Reference Manual, or is listed in this section of
the GNAT Programmers Reference Manual. All other units should be considered internal
implementation units and should not be directly with’ed by application code. The use of a
with statement that references one of these internal implementation units makes an appli-
cation potentially dependent on changes in versions of GNAT, and will generate a warning
message.

9.1 Ada.Characters.Latin_9 (‘a-chlat9.ads’)

This child of Ada.Characters provides a set of definitions corresponding to those in the
RM-defined package Ada.Characters.Latin_1 but with the few modifications required
for Latin-9 The provision of such a package is specifically authorized by the Ada Reference
Manual (RM A.3(27)).

9.2 Ada.Characters.Wide_Latin_1 (‘a-cwila1.ads’)

This child of Ada.Characters provides a set of definitions corresponding to those in the RM-
defined package Ada.Characters.Latin_1 but with the types of the constants being Wide_
Character instead of Character. The provision of such a package is specifically authorized
by the Ada Reference Manual (RM A.3(27)).

9.3 Ada.Characters.Wide_Latin_9 (‘a-cwila1.ads’)

This child of Ada.Characters provides a set of definitions corresponding to those in the GNAT
defined package Ada.Characters.Latin_9 but with the types of the constants being Wide_
Character instead of Character. The provision of such a package is specifically authorized
by the Ada Reference Manual (RM A.3(27)).

148 GNAT Reference Manual

9.4 Ada.Command_Line.Remove (‘a-colire.ads’)

This child of Ada.Command_Line provides a mechanism for logically removing arguments from
the argument list. Once removed, an argument is not visible to further calls on the subpro-
grams in Ada.Command_Line will not see the removed argument.

9.5 Ada.Direct_IO.C_Streams (‘a-diocst.ads’)

This package provides subprograms that allow interfacing between C streams and Direct_IO.
The stream identifier can be extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.

9.6 Ada.Exceptions.Is_Null_Occurrence (‘a-einuoc.ads’)

This child subprogram provides a way of testing for the null exception occurrence (Null_
Occurrence) without raising an exception.

9.7 Ada.Sequential_IO.C_Streams (‘a-siocst.ads’)

This package provides subprograms that allow interfacing between C streams and Sequential_
IO. The stream identifier can be extracted from a file opened on the Ada side, and an Ada
file can be constructed from a stream opened on the C side.

9.8 Ada.Streams.Stream_IO.C_Streams (‘a-ssicst.ads’)

This package provides subprograms that allow interfacing between C streams and Stream_IO.
The stream identifier can be extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.

9.9 Ada.Strings.Unbounded.Text_IO (‘a-suteio.ads’)

This package provides subprograms for Text IO for unbounded strings, avoiding the necessity
for an intermediate operation with ordinary strings.

9.10 Ada.Strings.Wide_Unbounded.Wide_Text_IO
(‘a-swuwti.ads’)

This package provides subprograms for Text IO for unbounded wide strings, avoiding the
necessity for an intermediate operation with ordinary wide strings.

Chapter 9: The GNAT Library 149

9.11 Ada.Text_IO.C_Streams (‘a-tiocst.ads’)

This package provides subprograms that allow interfacing between C streams and Text_IO.
The stream identifier can be extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.

9.12 Ada.Wide_Text_IO.C_Streams (‘a-wtcstr.ads’)

This package provides subprograms that allow interfacing between C streams and Wide_Text_
IO. The stream identifier can be extracted from a file opened on the Ada side, and an Ada
file can be constructed from a stream opened on the C side.

9.13 GNAT.AWK (‘g-awk.ads’)

Provides AWK-like parsing functions, with an easy interface for parsing one or more files
containing formatted data. The file is viewed as a database where each record is a line and
a field is a data element in this line.

9.14 GNAT.Bubble_Sort_A (‘g-busora.ads’)

Provides a general implementation of bubble sort usable for sorting arbitrary data items. Move
and comparison procedures are provided by passing access-to-procedure values.

9.15 GNAT.Bubble_Sort_G (‘g-busorg.ads’)

Similar to Bubble_Sort_A except that the move and sorting procedures are provided as generic
parameters, this improves efficiency, especially if the procedures can be inlined, at the
expense of duplicating code for multiple instantiations.

9.16 GNAT.Calendar (‘g-calend.ads’)

Extends the facilities provided by Ada.Calendar to include handling of days of the week, an
extended Split and Time_Of capability. Also provides conversion of Ada.Calendar.Time
values to and from the C timeval format.

9.17 GNAT.Calendar.Time_IO (‘g-catiio.ads’)

150 GNAT Reference Manual

9.18 GNAT.CRC32 (‘g-crc32.ads’)

This package implements the CRC-32 algorithm. For a full description of this algorithm you
should have a look at: “Computation of Cyclic Redundancy Checks via Table Look-Up”,
Communications of the ACM, Vol. 31 No. 8, pp. 1008-1013, Aug. 1988. Sarwate, D.V.

Provides an extended capability for formatted output of time values with full user control
over the format. Modeled on the GNU Date specification.

9.19 GNAT.Case_Util (‘g-casuti.ads’)

A set of simple routines for handling upper and lower casing of strings without the overhead
of the full casing tables in Ada.Characters.Handling.

9.20 GNAT.CGI (‘g-cgi.ads’)

This is a package for interfacing a GNAT program with a Web server via the Common Gateway
Interface (CGI). Basically this package parses the CGI parameters, which are a set of
key/value pairs sent by the Web server. It builds a table whose index is the key and
provides some services to deal with this table.

9.21 GNAT.CGI.Cookie (‘g-cgicoo.ads’)

This is a package to interface a GNAT program with a Web server via the Common Gateway
Interface (CGI). It exports services to deal with Web cookies (piece of information kept in
the Web client software).

9.22 GNAT.CGI.Debug (‘g-cgideb.ads’)

This is a package to help debugging CGI (Common Gateway Interface) programs written in
Ada.

9.23 GNAT.Command_Line (‘g-comlin.ads’)

Provides a high level interface to Ada.Command_Line facilities, including the ability to scan for
named switches with optional parameters and expand file names using wild card notations.

9.24 GNAT.Current_Exception (‘g-curexc.ads’)

Provides access to information on the current exception that has been raised without the need
for using the Ada-95 exception choice parameter specification syntax. This is particularly
useful in simulating typical facilities for obtaining information about exceptions provided
by Ada 83 compilers.

Chapter 9: The GNAT Library 151

9.25 GNAT.Debug_Pools (‘g-debpoo.ads’)

Provide a debugging storage pools that helps tracking memory corruption problems. See
section “Finding memory problems with GNAT Debug Pool” in the GNAT User’s Guide.

9.26 GNAT.Debug_Utilities (‘g-debuti.ads’)

Provides a few useful utilities for debugging purposes, including conversion to and from string
images of address values.

9.27 GNAT.Directory_Operations (g-dirope.ads)

Provides a set of routines for manipulating directories, including changing the current directory,
making new directories, and scanning the files in a directory.

9.28 GNAT.Dynamic_Tables (‘g-dyntab.ads’)

A generic package providing a single dimension array abstraction where the length of the array
can be dynamically modified.

This package provides a facility similar to that of GNAT.Table, except that this package
declares a type that can be used to define dynamic instances of the table, while an instan-
tiation of GNAT.Table creates a single instance of the table type.

9.29 GNAT.Exception_Traces (‘g-exctra.ads’)

Provides an interface allowing to control automatic output upon exception occurrences.

9.30 GNAT.Expect (‘g-expect.ads’)

Provides a set of subprograms similar to what is available with the standard Tcl Expect tool.
It allows you to easily spawn and communicate with an external process. You can send
commands or inputs to the process, and compare the output with some expected regular
expression. Currently GNAT.Expect is implemented on all native GNAT ports except for
OpenVMS. It is not implemented for cross ports, and in particular is not implemented for
VxWorks or LynxOS.

9.31 GNAT.Float_Control (‘g-flocon.ads’)

Provides an interface for resetting the floating-point processor into the mode required for
correct semantic operation in Ada. Some third party library calls may cause this mode to
be modified, and the Reset procedure in this package can be used to reestablish the required
mode.

152 GNAT Reference Manual

9.32 GNAT.Heap_Sort_A (‘g-hesora.ads’)

Provides a general implementation of heap sort usable for sorting arbitrary data items. Move
and comparison procedures are provided by passing access-to-procedure values. The algo-
rithm used is a modified heap sort that performs approximately N*log(N) comparisons in
the worst case.

9.33 GNAT.Heap_Sort_G (‘g-hesorg.ads’)

Similar to Heap_Sort_A except that the move and sorting procedures are provided as generic
parameters, this improves efficiency, especially if the procedures can be inlined, at the
expense of duplicating code for multiple instantiations.

9.34 GNAT.HTable (‘g-htable.ads’)

A generic implementation of hash tables that can be used to hash arbitrary data. Provides two
approaches, one a simple static approach, and the other allowing arbitrary dynamic hash
tables.

9.35 GNAT.IO (‘g-io.ads’)

A simple preealborable input-output package that provides a subset of simple Text IO functions
for reading characters and strings from Standard Input, and writing characters, strings and
integers to either Standard Output or Standard Error.

9.36 GNAT.IO_Aux (‘g-io_aux.ads’)

Provides some auxiliary functions for use with Text IO, including a test for whether a file
exists, and functions for reading a line of text.

9.37 GNAT.Lock_Files (‘g-locfil.ads’)

Provides a general interface for using files as locks. Can be used for providing program level
synchronization.

9.38 GNAT.MD5 (‘g-md5.ads’)

Implements the MD5 Message-Digest Algorithm as described in RFC 1321.

9.39 GNAT.Most_Recent_Exception (‘g-moreex.ads’)

Provides access to the most recently raised exception. Can be used for various logging purposes,
including duplicating functionality of some Ada 83 implementation dependent extensions.

Chapter 9: The GNAT Library 153

9.40 GNAT.OS_Lib (‘g-os_lib.ads’)

Provides a range of target independent operating system interface functions, including
time/date management, file operations, subprocess management, including a portable
spawn procedure, and access to environment variables and error return codes.

9.41 GNAT.Regexp (‘g-regexp.ads’)

A simple implementation of regular expressions, using a subset of regular expression syntax
copied from familiar Unix style utilities. This is the simples of the three pattern matching
packages provided, and is particularly suitable for “file globbing” applications.

9.42 GNAT.Registry (‘g-regist.ads’)

This is a high level binding to the Windows registry. It is possible to do simple things like
reading a key value, creating a new key. For full registry API, but at a lower level of
abstraction, refer to the Win32.Winreg package provided with the Win32Ada binding

9.43 GNAT.Regpat (‘g-regpat.ads’)

A complete implementation of Unix-style regular expression matching, copied from the original
V7 style regular expression library written in C by Henry Spencer (and binary compatible
with this C library).

9.44 GNAT.Sockets (‘g-socket.ads’)

A high level and portable interface to develop sockets based applications. This package is
based on the sockets thin binding found in GNAT.Sockets.Thin. Currently GNAT.Sockets
is implemented on all native GNAT ports except for OpenVMS. It is not implemented for
the LynxOS cross port.

9.45 GNAT.Source_Info (‘g-souinf.ads’)

Provides subprograms that give access to source code information known at compile time, such
as the current file name and line number.

9.46 GNAT.Spell_Checker (‘g-speche.ads’)

Provides a function for determining whether one string is a plausible near misspelling of another
string.

154 GNAT Reference Manual

9.47 GNAT.Spitbol.Patterns (‘g-spipat.ads’)

A complete implementation of SNOBOL4 style pattern matching. This is the most elaborate of
the pattern matching packages provided. It fully duplicates the SNOBOL4 dynamic pattern
construction and matching capabilities, using the efficient algorithm developed by Robert
Dewar for the SPITBOL system.

9.48 GNAT.Spitbol (‘g-spitbo.ads’)

The top level package of the collection of SPITBOL-style functionality, this package provides
basic SNOBOL4 string manipulation functions, such as Pad, Reverse, Trim, Substr capa-
bility, as well as a generic table function useful for constructing arbitrary mappings from
strings in the style of the SNOBOL4 TABLE function.

9.49 GNAT.Spitbol.Table_Boolean (‘g-sptabo.ads’)

A library level of instantiation of GNAT.Spitbol.Patterns.Table for type Standard.Boolean,
giving an implementation of sets of string values.

9.50 GNAT.Spitbol.Table_Integer (‘g-sptain.ads’)

A library level of instantiation of GNAT.Spitbol.Patterns.Table for type Standard.Integer,
giving an implementation of maps from string to integer values.

9.51 GNAT.Spitbol.Table_VString (‘g-sptavs.ads’)

A library level of instantiation of GNAT.Spitbol.Patterns.Table for a variable length string
type, giving an implementation of general maps from strings to strings.

9.52 GNAT.Table (‘g-table.ads’)

A generic package providing a single dimension array abstraction where the length of the array
can be dynamically modified.

This package provides a facility similar to that of GNAT.Dynamic Tables, except that
this package declares a single instance of the table type, while an instantiation of
GNAT.Dynamic Tables creates a type that can be used to define dynamic instances of the
table.

9.53 GNAT.Task_Lock (‘g-tasloc.ads’)

A very simple facility for locking and unlocking sections of code using a single global task lock.
Appropriate for use in situations where contention between tasks is very rarely expected.

Chapter 9: The GNAT Library 155

9.54 GNAT.Threads (‘g-thread.ads’)

Provides facilities for creating and destroying threads with explicit calls. These threads are
known to the GNAT run-time system. These subprograms are exported C-convention pro-
cedures intended to be called from foreign code. By using these primitives rather than
directly calling operating systems routines, compatibility with the Ada tasking runt-time is
provided.

9.55 GNAT.Traceback (‘g-traceb.ads’)

Provides a facility for obtaining non-symbolic traceback information, useful in various debug-
ging situations.

9.56 GNAT.Traceback.Symbolic (‘g-trasym.ads’)

Provides symbolic traceback information that includes the subprogram name and line number
information.

9.57 Interfaces.C.Extensions (‘i-cexten.ads’)

This package contains additional C-related definitions, intended for use with either manually
or automatically generated bindings to C libraries.

9.58 Interfaces.C.Streams (‘i-cstrea.ads’)

This package is a binding for the most commonly used operations on C streams.

9.59 Interfaces.CPP (‘i-cpp.ads’)

This package provides facilities for use in interfacing to C++. It is primarily intended to be
used in connection with automated tools for the generation of C++ interfaces.

9.60 Interfaces.Os2lib (‘i-os2lib.ads’)

This package provides interface definitions to the OS/2 library. It is a thin binding which is a
direct translation of the various ‘<bse.h>’ files.

9.61 Interfaces.Os2lib.Errors (‘i-os2err.ads’)

This package provides definitions of the OS/2 error codes.

156 GNAT Reference Manual

9.62 Interfaces.Os2lib.Synchronization (‘i-os2syn.ads’)

This is a child package that provides definitions for interfacing to the OS/2 synchronization
primitives.

9.63 Interfaces.Os2lib.Threads (‘i-os2thr.ads’)

This is a child package that provides definitions for interfacing to the OS/2 thread primitives.

9.64 Interfaces.Packed_Decimal (‘i-pacdec.ads’)

This package provides a set of routines for conversions to and from a packed decimal format
compatible with that used on IBM mainframes.

9.65 Interfaces.VxWorks (‘i-vxwork.ads’)

This package provides a limited binding to the VxWorks API. In particular, it interfaces with
the VxWorks hardware interrupt facilities.

9.66 Interfaces.VxWorks.IO (‘i-vxwoio.ads’)

This package provides a limited binding to the VxWorks’ I/O API. In particular, it provides
procedures that enable the use of Get Immediate under VxWorks.

9.67 System.Address_Image (‘s-addima.ads’)

This function provides a useful debugging function that gives an (implementation dependent)
string which identifies an address.

9.68 System.Assertions (‘s-assert.ads’)

This package provides the declaration of the exception raised by an run-time assertion failure,
as well as the routine that is used internally to raise this assertion.

9.69 System.Partition_Interface (‘s-parint.ads’)

This package provides facilities for partition interfacing. It is used primarily in a distribution
context when using Annex E with GLADE.

9.70 System.Task_Info (‘s-tasinf.ads’)

This package provides target dependent functionality that is used to support the Task_Info
pragma

Chapter 9: The GNAT Library 157

9.71 System.Wch_Cnv (‘s-wchcnv.ads’)

This package provides routines for converting between wide characters and a representation
as a value of type Standard.String, using a specified wide character encoding method. It
uses definitions in package System.Wch_Con.

9.72 System.Wch_Con (‘s-wchcon.ads’)

This package provides definitions and descriptions of the various methods used for encoding
wide characters in ordinary strings. These definitions are used by the package System.Wch_
Cnv.

158 GNAT Reference Manual

Chapter 10: Interfacing to Other Languages 159

10 Interfacing to Other Languages

The facilities in annex B of the Ada 95 Reference Manual are fully implemented in GNAT, and
in addition, a full interface to C++ is provided.

10.1 Interfacing to C

Interfacing to C with GNAT can use one of two approaches:
1. The types in the package Interfaces.C may be used.
2. Standard Ada types may be used directly. This may be less portable to other compilers,

but will work on all GNAT compilers, which guarantee correspondence between the C
and Ada types.

Pragma Convention C maybe applied to Ada types, but mostly has no effect, since this is
the default. The following table shows the correspondence between Ada scalar types and
the corresponding C types.

Integer int

Short_Integer
short

Short_Short_Integer
signed char

Long_Integer
long

Long_Long_Integer
long long

Short_Float
float

Float float

Long_Float
double

Long_Long_Float
This is the longest floating-point type supported by the hardware.

• Ada enumeration types map to C enumeration types directly if pragma Convention
C is specified, which causes them to have int length. Without pragma Convention C,
Ada enumeration types map to 8, 16, or 32 bits (i.e. C types signed char, short, int,
respectively) depending on the number of values passed. This is the only case in which
pragma Convention C affects the representation of an Ada type.

• Ada access types map to C pointers, except for the case of pointers to unconstrained
types in Ada, which have no direct C equivalent.

• Ada arrays map directly to C arrays.
• Ada records map directly to C structures.
• Packed Ada records map to C structures where all members are bit fields of the length

corresponding to the type’Size value in Ada.

160 GNAT Reference Manual

10.2 Interfacing to C++

The interface to C++ makes use of the following pragmas, which are primarily intended to be
constructed automatically using a binding generator tool, although it is possible to construct
them by hand. No suitable binding generator tool is supplied with GNAT though.

Using these pragmas it is possible to achieve complete inter-operability between Ada
tagged types and C class definitions. See Chapter 1 [Implementation Defined Pragmas],
page 3 for more details.

pragma CPP_Class ([Entity =>] local_name)
The argument denotes an entity in the current declarative region that is declared
as a tagged or untagged record type. It indicates that the type corresponds to
an externally declared C++ class type, and is to be laid out the same way that
C++ would lay out the type.

pragma CPP_Constructor ([Entity =>] local_name)
This pragma identifies an imported function (imported in the usual way with
pragma Import) as corresponding to a C++ constructor.

pragma CPP_Vtable ...
One CPP_Vtable pragma can be present for each component of type
CPP.Interfaces.Vtable_Ptr in a record to which pragma CPP_Class applies.

10.3 Interfacing to COBOL

Interfacing to COBOL is achieved as described in section B.4 of the Ada 95 reference manual.

10.4 Interfacing to Fortran

Interfacing to Fortran is achieved as described in section B.5 of the reference manual. The
pragma Convention Fortran, applied to a multi-dimensional array causes the array to be
stored in column-major order as required for convenient interface to Fortran.

10.5 Interfacing to non-GNAT Ada code

It is possible to specify the convention Ada in a pragma Import or pragma Export. However
this refers to the calling conventions used by GNAT, which may or may not be similar enough
to those used by some other Ada 83 or Ada 95 compiler to allow interoperation.

If arguments types are kept simple, and if the foreign compiler generally follows sys-
tem calling conventions, then it may be possible to integrate files compiled by other Ada
compilers, provided that the elaboration issues are adequately addressed (for example by
eliminating the need for any load time elaboration).

In particular, GNAT running on VMS is designed to be highly compatible with the DEC
Ada 83 compiler, so this is one case in which it is possible to import foreign units of this
type, provided that the data items passed are restricted to simple scalar values or simple
record types without variants, or simple array types with fixed bounds.

Chapter 11: Machine Code Insertions 161

11 Machine Code Insertions

Package Machine_Code provides machine code support as described in the Ada 95 Reference
Manual in two separate forms:
• Machine code statements, consisting of qualified expressions that fit the requirements

of RM section 13.8.
• An intrinsic callable procedure, providing an alternative mechanism of including ma-

chine instructions in a subprogram.

The two features are similar, and both closely related to the mechanism provided by the
asm instruction in the GNU C compiler. Full understanding and use of the facilities in this
package requires understanding the asm instruction as described in Using and Porting the
GNU Compiler Collection (GCC) by Richard Stallman. Calls to the function Asm and the
procedure Asm have identical semantic restrictions and effects as described below. Both are
provided so that the procedure call can be used as a statement, and the function call can
be used to form a code statement.

The first example given in the GCC documentation is the C asm instruction:
asm ("fsinx %1 %0" : "=f" (result) : "f" (angle));

The equivalent can be written for GNAT as:
Asm ("fsinx %1 %0",

My_Float’Asm_Output ("=f", result),

My_Float’Asm_Input ("f", angle));

The first argument to Asm is the assembler template, and is identical to what is used
in GNU C. This string must be a static expression. The second argument is the output
operand list. It is either a single Asm_Output attribute reference, or a list of such references
enclosed in parentheses (technically an array aggregate of such references).

The Asm_Output attribute denotes a function that takes two parameters. The first is
a string, the second is the name of a variable of the type designated by the attribute
prefix. The first (string) argument is required to be a static expression and designates the
constraint for the parameter (e.g. what kind of register is required). The second argument
is the variable to be updated with the result. The possible values for constraint are the
same as those used in the RTL, and are dependent on the configuration file used to build
the GCC back end. If there are no output operands, then this argument may either be
omitted, or explicitly given as No_Output_Operands.

The second argument of my_float’Asm_Output functions as though it were an out
parameter, which is a little curious, but all names have the form of expressions, so there
is no syntactic irregularity, even though normally functions would not be permitted out
parameters. The third argument is the list of input operands. It is either a single Asm_
Input attribute reference, or a list of such references enclosed in parentheses (technically
an array aggregate of such references).

The Asm_Input attribute denotes a function that takes two parameters. The first is a
string, the second is an expression of the type designated by the prefix. The first (string)
argument is required to be a static expression, and is the constraint for the parameter, (e.g.
what kind of register is required). The second argument is the value to be used as the input
argument. The possible values for the constant are the same as those used in the RTL, and
are dependent on the configuration file used to built the GCC back end.

162 GNAT Reference Manual

If there are no input operands, this argument may either be omitted, or explicitly given
as No_Input_Operands. The fourth argument, not present in the above example, is a list
of register names, called the clobber argument. This argument, if given, must be a static
string expression, and is a space or comma separated list of names of registers that must
be considered destroyed as a result of the Asm call. If this argument is the null string (the
default value), then the code generator assumes that no additional registers are destroyed.

The fifth argument, not present in the above example, called the volatile argument, is by
default False. It can be set to the literal value True to indicate to the code generator that
all optimizations with respect to the instruction specified should be suppressed, and that in
particular, for an instruction that has outputs, the instruction will still be generated, even
if none of the outputs are used. See the full description in the GCC manual for further
details.

The Asm subprograms may be used in two ways. First the procedure forms can be
used anywhere a procedure call would be valid, and correspond to what the RM calls
“intrinsic” routines. Such calls can be used to intersperse machine instructions with other
Ada statements. Second, the function forms, which return a dummy value of the limited
private type Asm_Insn, can be used in code statements, and indeed this is the only context
where such calls are allowed. Code statements appear as aggregates of the form:

Asm_Insn’(Asm (...));

Asm_Insn’(Asm_Volatile (...));

In accordance with RM rules, such code statements are allowed only within subpro-
grams whose entire body consists of such statements. It is not permissible to intermix such
statements with other Ada statements.

Typically the form using intrinsic procedure calls is more convenient and more flexible.
The code statement form is provided to meet the RM suggestion that such a facility should
be made available. The following is the exact syntax of the call to Asm (of course if named
notation is used, the arguments may be given in arbitrary order, following the normal rules
for use of positional and named arguments)

ASM_CALL ::= Asm (

[Template =>] static_string_EXPRESSION

[,[Outputs =>] OUTPUT_OPERAND_LIST]

[,[Inputs =>] INPUT_OPERAND_LIST]

[,[Clobber =>] static_string_EXPRESSION]

[,[Volatile =>] static_boolean_EXPRESSION])

OUTPUT_OPERAND_LIST ::=

No_Output_Operands

| OUTPUT_OPERAND_ATTRIBUTE

| (OUTPUT_OPERAND_ATTRIBUTE {,OUTPUT_OPERAND_ATTRIBUTE})

OUTPUT_OPERAND_ATTRIBUTE ::=

SUBTYPE_MARK’Asm_Output (static_string_EXPRESSION, NAME)

INPUT_OPERAND_LIST ::=

No_Input_Operands

| INPUT_OPERAND_ATTRIBUTE

| (INPUT_OPERAND_ATTRIBUTE {,INPUT_OPERAND_ATTRIBUTE})

INPUT_OPERAND_ATTRIBUTE ::=

SUBTYPE_MARK’Asm_Input (static_string_EXPRESSION, EXPRESSION)

Chapter 12: GNAT Implementation of Tasking 163

12 GNAT Implementation of Tasking

12.1 Mapping Ada Tasks onto the Underlying Kernel
Threads

GNAT run-time system comprises two layers:
• GNARL (GNAT Run-time Layer)
• GNULL (GNAT Low-level Library)

In GNAT, Ada’s tasking services rely on a platform and OS independent layer known
as GNARL. This code is responsible for implementing the correct semantics of Ada’s task
creation, rendezvous, protected operations etc.

GNARL decomposes Ada’s tasking semantics into simpler lower level operations such as
create a thread, set the priority of a thread, yield, create a lock, lock/unlock, etc. The spec
for these low-level operations constitutes GNULLI, the GNULL Interface. This interface is
directly inspired from the POSIX real-time API.

If the underlying executive or OS implements the POSIX standard faithfully, the GNULL
Interface maps as is to the services offered by the underlying kernel. Otherwise, some target
dependent glue code maps the services offered by the underlying kernel to the semantics
expected by GNARL.

Whatever the underlying OS (VxWorks, UNIX, OS/2, Windows NT, etc.) the key point
is that each Ada task is mapped on a thread in the underlying kernel. For example, in the
case of VxWorks, one Ada task = one VxWorks task.

In addition Ada task priorities map onto the underlying thread priorities. Mapping Ada
tasks onto the underlying kernel threads has several advantages:
1. The underlying scheduler is used to schedule the Ada tasks. This makes Ada tasks as

efficient as kernel threads from a scheduling standpoint.
2. Interaction with code written in C containing threads is eased since at the lowest level

Ada tasks and C threads map onto the same underlying kernel concept.
3. When an Ada task is blocked during I/O the remaining Ada tasks are able to proceed.
4. On multi-processor systems Ada Tasks can execute in parallel.

12.2 Ensuring Compliance with the Real-Time Annex

The reader will be quick to notice that while mapping Ada tasks onto the underlying threads
has significant advantages, it does create some complications when it comes to respecting
the scheduling semantics specified in the real-time annex (Annex D).

For instance Annex D requires that for the FIFO Within Priorities scheduling policy we
have:

When the active priority of a ready task that is not running

changes, or the setting of its base priority takes effect, the

task is removed from the ready queue for its old active priority

and is added at the tail of the ready queue for its new active

priority, except in the case where the active priority is lowered

164 GNAT Reference Manual

due to the loss of inherited priority, in which case the task is

added at the head of the ready queue for its new active priority.

While most kernels do put tasks at the end of the priority queue when a task changes
its priority, (which respects the main FIFO Within Priorities requirement), almost none
keep a thread at the beginning of its priority queue when its priority drops from the loss of
inherited priority.

As a result most vendors have provided incomplete Annex D implementations.
The GNAT run-time, has a nice cooperative solution to this problem which ensures that

accurate FIFO Within Priorities semantics are respected.
The principle is as follows. When an Ada task T is about to start running, it checks

whether some other Ada task R with the same priority as T has been suspended due to
the loss of priority inheritance. If this is the case, T yields and is placed at the end of its
priority queue. When R arrives at the front of the queue it executes.

Note that this simple scheme preserves the relative order of the tasks that were ready
to execute in the priority queue where R has been placed at the end.

Chapter 13: Code generation for array aggregates 165

13 Code generation for array aggregates

Aggregate have a rich syntax and allow the user to specify the values of complex data
structures by means of a single construct. As a result, the code generated for aggregates
can be quite complex and involve loops, case statements and multiple assignments. In the
simplest cases, however, the compiler will recognize aggregates whose components and con-
straints are fully static, and in those cases the compiler will generate little or no executable
code. The following is an outline of the code that GNAT generates for various aggregate
constructs. For further details, the user will find it useful to examine the output produced
by the -gnatG flag to see the expanded source that is input to the code generator. The user
will also want to examine the assembly code generated at various levels of optimization.

The code generated for aggregates depends on the context, the component values, and
the type. In the context of an object declaration the code generated is generally simpler
than in the case of an assignment. As a general rule, static component values and static
subtypes also lead to simpler code.

13.1 Static constant aggregates with static bounds

For the declarations:
type One_Dim is array (1..10) of integer;

ar0 : constant One_Dim := (1, 2, 3, 4, 5, 6, 7, 8, 9, 0);

GNAT generates no executable code: the constant ar0 is placed in static memory. The
same is true for constant aggregates with named associations:

Cr1 : constant One_Dim := (4 => 16, 2 => 4, 3 => 9, 1=> 1);

Cr3 : constant One_Dim := (others => 7777);

The same is true for multidimensional constant arrays such as:
type two_dim is array (1..3, 1..3) of integer;

Unit : constant two_dim := ((1,0,0), (0,1,0), (0,0,1));

The same is true for arrays of one-dimensional arrays: the following are static:
type ar1b is array (1..3) of boolean;

type ar_ar is array (1..3) of ar1b;

None : constant ar1b := (others => false); -- fully static

None2 : constant ar_ar := (1..3 => None); -- fully static

However, for multidimensional aggregates with named associations, GNAT will generate
assignments and loops, even if all associations are static. The following two declarations
generate a loop for the first dimension, and individual component assignments for the second
dimension:

Zero1: constant two_dim := (1..3 => (1..3 => 0));

Zero2: constant two_dim := (others => (others => 0));

13.2 Constant aggregates with an unconstrained nominal
types

In such cases the aggregate itself establishes the subtype, so that associations with others
cannot be used. GNAT determines the bounds for the actual subtype of the aggregate, and
allocates the aggregate statically as well. No code is generated for the following:

type One_Unc is array (natural range <>) of integer;

Cr_Unc : constant One_Unc := (12,24,36);

166 GNAT Reference Manual

13.3 Aggregates with static bounds

In all previous examples the aggregate was the initial (and immutable) value of a constant.
If the aggregate initializes a variable, then code is generated for it as a combination of
individual assignments and loops over the target object. The declarations

Cr_Var1 : One_Dim := (2, 5, 7, 11);

Cr_Var2 : One_Dim := (others > -1);

generate the equivalent of
Cr_Var1 (1) := 2;

Cr_Var1 (2) := 3;

Cr_Var1 (3) := 5;

Cr_Var1 (4) := 11;

for I in Cr_Var2’range loop

Cr_Var2 (I) := =-1;

end loop;

13.4 Aggregates with non-static bounds

If the bounds of the aggregate are not statically compatible with the bounds of the nominal
subtype of the target, then constraint checks have to be generated on the bounds. For a
multidimensional array, constraint checks may have to be applied to sub-arrays individually,
if they do not have statically compatible subtypes.

13.5 Aggregates in assignments statements

In general, aggregate assignment requires the construction of a temporary, and a copy from
the temporary to the target of the assignment. This is because it is not always possible
to convert the assignment into a series of individual component assignments. For example,
consider the simple case:

A := (A(2), A(1));
This cannot be converted into:

A(1) := A(2);

A(2) := A(1);

So the aggregate has to be built first in a separate location, and then copied into the
target. GNAT recognizes simple cases where this intermediate step is not required, and the
assignments can be performed in place, directly into the target. The following sufficient
criteria are applied:
1. The bounds of the aggregate are static, and the associations are static.
2. The components of the aggregate are static constants, names of simple variables that

are not renamings, or expressions not involving indexed components whose operands
obey these rules.

If any of these conditions are violated, the aggregate will be built in a temporary (created
either by the front-end or the code generator) and then that temporary will be copied onto
the target.

Chapter 14: Specialized Needs Annexes 167

14 Specialized Needs Annexes

Ada 95 defines a number of specialized needs annexes, which are not required in all implemen-
tations. However, as described in this chapter, GNAT implements all of these special needs
annexes:

Systems Programming (Annex C)
The Systems Programming Annex is fully implemented.

Real-Time Systems (Annex D)
The Real-Time Systems Annex is fully implemented.

Distributed Systems (Annex E)
Stub generation is fully implemented in the GNAT compiler. In addition, a
complete compatible PCS is available as part of the GLADE system, a separate
product. When the two products are used in conjunction, this annex is fully
implemented.

Information Systems (Annex F)
The Information Systems annex is fully implemented.

Numerics (Annex G)
The Numerics Annex is fully implemented.

Safety and Security (Annex H)
The Safety and Security annex is fully implemented.

168 GNAT Reference Manual

Chapter 15: Compatibility Guide 169

15 Compatibility Guide

This chapter contains sections that describe compatibility issues between GNAT and other
Ada 83 and Ada 95 compilation systems, to aid in porting applications developed in other
Ada environments.

15.1 Compatibility with Ada 83

Ada 95 is designed to be highly upwards compatible with Ada 83. In particular, the design
intention is that the difficulties associated with moving from Ada 83 to Ada 95 should be
no greater than those that occur when moving from one Ada 83 system to another.

However, there are a number of points at which there are minor incompatibilities. The
Ada 95 Annotated Reference Manual contains full details of these issues, and should be
consulted for a complete treatment. In practice the following are the most likely issues to
be encountered.

Character range
The range of Standard.Character is now the full 256 characters of Latin-1,
whereas in most Ada 83 implementations it was restricted to 128 characters.
This may show up as compile time or runtime errors. The desirable fix is to
adapt the program to accommodate the full character set, but in some cases it
may be convenient to define a subtype or derived type of Character that covers
only the restricted range.

New reserved words
The identifiers abstract, aliased, protected, requeue, tagged, and until
are reserved in Ada 95. Existing Ada 83 code using any of these identifiers
must be edited to use some alternative name.

Freezing rules
The rules in Ada 95 are slightly different with regard to the point at which enti-
ties are frozen, and representation pragmas and clauses are not permitted past
the freeze point. This shows up most typically in the form of an error message
complaining that a representation item appears too late, and the appropriate
corrective action is to move the item nearer to the declaration of the entity to
which it refers.
A particular case is that representation pragmas (including the extended DEC
Ada 83 compatibility pragmas such as Export_Procedure), cannot be applied
to a subprogram body. If necessary, a separate subprogram declaration must
be introduced to which the pragma can be applied.

Optional bodies for library packages
In Ada 83, a package that did not require a package body was nevertheless
allowed to have one. This lead to certain surprises in compiling large systems
(situations in which the body could be unexpectedly ignored). In Ada 95, if
a package does not require a body then it is not permitted to have a body.
To fix this problem, simply remove a redundant body if it is empty, or, if it is
non-empty, introduce a dummy declaration into the spec that makes the body

170 GNAT Reference Manual

required. One approach is to add a private part to the package declaration (if
necessary), and define a parameterless procedure called Requires Body, which
must then be given a dummy procedure body in the package body, which then
becomes required.

Numeric_Error is now the same as Constraint_Error
In Ada 95, the exception Numeric_Error is a renaming of Constraint_Error.
This means that it is illegal to have separate exception handlers for the two
exceptions. The fix is simply to remove the handler for the Numeric_Error
case (since even in Ada 83, a compiler was free to raise Constraint_Error in
place of Numeric_Error in all cases).

Indefinite subtypes in generics
In Ada 83, it was permissible to pass an indefinite type (e.g. String) as the
actual for a generic formal private type, but then the instantiation would be
illegal if there were any instances of declarations of variables of this type in the
generic body. In Ada 95, to avoid this clear violation of the contract model,
the generic declaration clearly indicates whether or not such instantiations are
permitted. If a generic formal parameter has explicit unknown discriminants,
indicated by using (<>) after the type name, then it can be instantiated with
indefinite types, but no variables can be declared of this type. Any attempt to
declare a variable will result in an illegality at the time the generic is declared.
If the (<>) notation is not used, then it is illegal to instantiate the generic with
an indefinite type. This will show up as a compile time error, and the fix is
usually simply to add the (<>) to the generic declaration.

All implementations of GNAT provide a switch that causes GNAT to operate in Ada
83 mode. In this mode, some but not all compatibility problems of the type described
above are handled automatically. For example, the new Ada 95 protected keywords are not
recognized in this mode. However, in practice, it is usually advisable to make the necessary
modifications to the program to remove the need for using this switch.

15.2 Compatibility with Other Ada 95 Systems

Providing that programs avoid the use of implementation dependent and implementation de-
fined features of Ada 95, as documented in the Ada 95 reference manual, there should be
a high degree of portability between GNAT and other Ada 95 systems. The following are
specific items which have proved troublesome in moving GNAT programs to other Ada 95
compilers, but do not affect porting code to GNAT.

Ada 83 Pragmas and Attributes
Ada 95 compilers are allowed, but not required, to implement the missing Ada
83 pragmas and attributes that are no longer defined in Ada 95. GNAT im-
plements all such pragmas and attributes, eliminating this as a compatibility
concern, but some other Ada 95 compilers reject these pragmas and attributes.

Special-needs Annexes
GNAT implements the full set of special needs annexes. At the current time,
it is the only Ada 95 compiler to do so. This means that programs making use
of these features may not be portable to other Ada 95 compilation systems.

Chapter 15: Compatibility Guide 171

Representation Clauses
Some other Ada 95 compilers implement only the minimal set of representation
clauses required by the Ada 95 reference manual. GNAT goes far beyond this
minimal set, as described in the next section.

15.3 Representation Clauses

The Ada 83 reference manual was quite vague in describing both the minimal required imple-
mentation of representation clauses, and also their precise effects. The Ada 95 reference
manual is much more explicit, but the minimal set of capabilities required in Ada 95 is
quite limited.

GNAT implements the full required set of capabilities described in the Ada 95 reference
manual, but also goes much beyond this, and in particular an effort has been made to be
compatible with existing Ada 83 usage to the greatest extent possible.

A few cases exist in which Ada 83 compiler behavior is incompatible with requirements in
the Ada 95 reference manual. These are instances of intentional or accidental dependence on
specific implementation dependent characteristics of these Ada 83 compilers. The following
is a list of the cases most likely to arise in existing legacy Ada 83 code.

Implicit Packing
Some Ada 83 compilers allowed a Size specification to cause implicit packing of
an array or record. This could cause expensive implicit conversions for change
of representation in the presence of derived types, and the Ada design intends
to avoid this possibility. Subsequent AI’s were issued to make it clear that such
implicit change of representation in response to a Size clause is inadvisable,
and this recommendation is represented explicitly in the Ada 95 RM as imple-
mentation advice that is followed by GNAT. The problem will show up as an
error message rejecting the size clause. The fix is simply to provide the explicit
pragma Pack, or for more fine tuned control, provide a Component Size clause.

Meaning of Size Attribute
The Size attribute in Ada 95 for discrete types is defined as being the minimal
number of bits required to hold values of the type. For example, on a 32-bit
machine, the size of Natural will typically be 31 and not 32 (since no sign bit
is required). Some Ada 83 compilers gave 31, and some 32 in this situation.
This problem will usually show up as a compile time error, but not always.
It is a good idea to check all uses of the ’Size attribute when porting Ada 83
code. The GNAT specific attribute Object Size can provide a useful way of
duplicating the behavior of some Ada 83 compiler systems.

Size of Access Types
A common assumption in Ada 83 code is that an access type is in fact a pointer,
and that therefore it will be the same size as a System.Address value. This
assumption is true for GNAT in most cases with one exception. For the case
of a pointer to an unconstrained array type (where the bounds may vary from
one value of the access type to another), the default is to use a “fat pointer”,
which is represented as two separate pointers, one to the bounds, and one to
the array. This representation has a number of advantages, including improved

172 GNAT Reference Manual

efficiency. However, it may cause some difficulties in porting existing Ada 83
code which makes the assumption that, for example, pointers fit in 32 bits on
a machine with 32-bit addressing.
To get around this problem, GNAT also permits the use of “thin pointers” for
access types in this case (where the designated type is an unconstrained array
type). These thin pointers are indeed the same size as a System.Address value.
To specify a thin pointer, use a size clause for the type, for example:

type X is access all String;

for X’Size use Standard’Address_Size;

which will cause the type X to be represented using a single pointer. When using
this representation, the bounds are right behind the array. This representation
is slightly less efficient, and does not allow quite such flexibility in the use of
foreign pointers or in using the Unrestricted Access attribute to create pointers
to non-aliased objects. But for any standard portable use of the access type
it will work in a functionally correct manner and allow porting of existing
code. Note that another way of forcing a thin pointer representation is to use a
component size clause for the element size in an array, or a record representation
clause for an access field in a record.

15.4 Compatibility with DEC Ada 83

The VMS version of GNAT fully implements all the pragmas and attributes provided by DEC
Ada 83, as well as providing the standard DEC Ada 83 libraries, including Starlet. In
addition, data layouts and parameter passing conventions are highly compatible. This
means that porting existing DEC Ada 83 code to GNAT in VMS systems should be easier
than most other porting efforts. The following are some of the most significant differences
between GNAT and DEC Ada 83.

Default floating-point representation
In GNAT, the default floating-point format is IEEE, whereas in DEC Ada 83,
it is VMS format. GNAT does implement the necessary pragmas (Long Float,
Float Representation) for changing this default.

System The package System in GNAT exactly corresponds to the definition in the Ada
95 reference manual, which means that it excludes many of the DEC Ada 83
extensions. However, a separate package Aux DEC is provided that contains
the additional definitions, and a special pragma, Extend System allows this
package to be treated transparently as an extension of package System.

To Address
The definitions provided by Aux DEC are exactly compatible with those in the
DEC Ada 83 version of System, with one exception. DEC Ada provides the
following declarations:

TO_ADDRESS(INTEGER)

TO_ADDRESS(UNSIGNED_LONGWORD)

TO_ADDRESS(universal_integer)

The version of TO ADDRESS taking a universal integer argument is in fact
an extension to Ada 83 not strictly compatible with the reference manual. In

Chapter 15: Compatibility Guide 173

GNAT, we are constrained to be exactly compatible with the standard, and
this means we cannot provide this capability. In DEC Ada 83, the point of this
definition is to deal with a call like:

TO_ADDRESS (16#12777#);

Normally, according to the Ada 83 standard, one would expect this to be am-
biguous, since it matches both the INTEGER and UNSIGNED LONGWORD
forms of TO ADDRESS. However, in DEC Ada 83, there is no ambiguity, since
the definition using universal integer takes precedence.
In GNAT, since the version with universal integer cannot be supplied, it is not
possible to be 100% compatible. Since there are many programs using numeric
constants for the argument to TO ADDRESS, the decision in GNAT was to
change the name of the function in the UNSIGNED LONGWORD case, so the
declarations provided in the GNAT version of AUX Dec are:

function To_Address (X : Integer) return Address;

pragma Pure_Function (To_Address);

function To_Address_Long (X : Unsigned_Longword)

return Address;

pragma Pure_Function (To_Address_Long);

This means that programs using TO ADDRESS for UNSIGNED LONGWORD
must change the name to TO ADDRESS LONG.

Task Id values
The Task Id values assigned will be different in the two systems, and GNAT
does not provide a specified value for the Task Id of the environment task,
which in GNAT is treated like any other declared task.

For full details on these and other less significant compatibility issues, see appendix
E of the Digital publication entitled DEC Ada, Technical Overview and Comparison on
DIGITAL Platforms.

For GNAT running on other than VMS systems, all the DEC Ada 83 pragmas and
attributes are recognized, although only a subset of them can sensibly be implemented.
The description of pragmas in this reference manual indicates whether or not they are
applicable to non-VMS systems.

174 GNAT Reference Manual

GNU Free Documentation License 175

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

176 GNAT Reference Manual

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a publicly
available dtd, and standard-conforming simple html, PostScript or pdf designed for
human modification. Examples of transparent image formats include png, xcf and
jpg. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, sgml or xml for which the dtd and/or processing
tools are not generally available, and the machine-generated html, PostScript or pdf
produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

GNU Free Documentation License 177

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

178 GNAT Reference Manual

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

GNU Free Documentation License 179

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

180 GNAT Reference Manual

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

GNU Free Documentation License 181

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

182 GNAT Reference Manual

Index 183

Index

-
-gnatR switch . 121

A
Abort_Defer . 3
Abort_Signal . 41
Access, unrestricted . 48
Accuracy requirements . 72
Accuracy, complex arithmetic 72
Ada 83 attributes 43, 44, 45, 47
Ada 95 ISO/ANSI Standard 2
Ada.Characters.Handling 62
Ada.Characters.Latin_9 (‘a-chlat9.ads’) . . . 147
Ada.Characters.Wide_Latin_1 (‘a-cwila1.ads’)

. 147
Ada.Characters.Wide_Latin_9 (‘a-cwila1.ads’)

. 147
Ada.Command_Line.Remove (‘a-colire.ads’) . . 148
Ada.Direct_IO.C_Streams (‘a-diocst.ads’) . . 148
Ada.Exceptions.Is_Null_Occurrence

(‘a-einuoc.ads’) . 148
Ada.Sequential_IO.C_Streams (‘a-siocst.ads’)

. 148
Ada.Streams.Stream_IO.C_Streams

(‘a-ssicst.ads’) . 148
Ada.Strings.Unbounded.Text_IO

(‘a-suteio.ads’) . 148
Ada.Strings.Wide_Unbounded.Wide_Text_IO

(‘a-swuwti.ads’) . 148
Ada.Text_IO.C_Streams (‘a-tiocst.ads’) 149
Ada.Wide_Text_IO.C_Streams (‘a-wtcstr.ads’)

. 149
Ada_83 . 3
Ada_95 . 3
Address Clause . 118
Address clauses . 56
Address image . 156
Address of subprogram code 42
Address, as private type . 60
Address, operations of . 60
Address_Size . 41
Alignment Clause . 103
Alignment clauses . 57
Alignment, default . 104
Alignment, maximum . 45
Alignments of components . 6
Alternative Character Sets 53
Annotate . 4
Argument passing mechanisms 12
Arrays, extendable . 151, 154
Arrays, multidimensional . 54
Asm_Input . 41
Asm_Output . 41

Assert . 4
Assert Failure, exception . 156
Assertions . 156
Ast_Entry. 5
AST_Entry . 42
Attribute . 119
AWK . 149

B
Biased representation . 107
Big endian . 43
Bit . 42
bit ordering . 110
Bit ordering . 60
Bit Order Clause . 110
Bit_Position . 42
Boolean_Entry_Barriers . 83
Bounded errors . 51
Bounded-length strings . 62
Bubble sort . 149
byte ordering . 111

C
C streams, interfacing . 155
C Streams, Interfacing with Direct IO 148
C Streams, Interfacing with Sequential IO 148
C Streams, Interfacing with Stream IO 148
C Streams, Interfacing with Text_IO 149
C Streams, Interfacing with Wide_Text_IO 149
C++ interfacing . 155
C, interfacing with . 64
C_Pass_By_Copy . 5
Calendar . 149
Casing of External names . 15
Casing utilities . 150
CGI (Common Gateway Interface) 150
CGI (Common Gateway Interface) cookie support

. 150
CGI (Common Gateway Interface) debugging

. 150
Character handling (GNAT.Case_Util) 150
Character Sets . 53
Checks, suppression of . 55
Child Units . 51
COBOL support . 71
COBOL, interfacing with . 65
Code_Address . 42
Command line . 150
Command line, argument removal 148
Comment . 5
Common_Object . 6
Compatibility (between Ada 83 and Ada 95) . . 169
Complex arithmetic accuracy 72

184 GNAT Reference Manual

Complex elementary functions 72
Complex types . 71
Complex_Representation . 6
Component Clause . 117
Component_Alignment . 6
Component_Size . 7
Component Size Clause . 110
Component_Size clauses . 59
Component_Size_4 . 7
Convention, effect on representation 120
Convention_Identifier . 7
Conventions, synonyms . 7
Conventions, typographical . 2
Cookie support in CGI . 150
CPP_Class. 8
CPP_Constructor . 8
CPP_Virtual . 9
CPP_Vtable . 9
CRC32 . 150
Current exception . 150
Cyclic Redundancy Check 150

D
Debug . 10
Debug pools . 151
Debugging . 151
debugging with Initialize Scalars 20
Dec Ada 83 . 15
Dec Ada 83 casing compatibility 15
Decimal radix support . 71
Default_Bit_Order . 43
Deferring aborts . 3
Directory operations . 151
Discriminants, testing for . 44
Duration’Small . 54

E
Elab_Body . 43
Elab_Spec . 43
Elaborated . 43
Elaboration control . 10
Elaboration_Checks . 10
Eliminate . 10
Elimination of unused subprograms 10
Emax . 43
Enclosing Entity . 99
Entry queuing policies . 69
Enum_Rep . 43
Enumeration representation clauses 59
Enumeration values . 53
Epsilon . 44
Error detection . 51
Exception information . 55
Exception retrieval . 150
Exception traces . 151
Exception, obtaining most recent 152

Exception Information’ . 99
Exception Message . 100
Exception Name . 100
Export . 63, 119
Export_Exception . 12
Export_Function . 12
Export_Object . 13
Export_Procedure . 13
Export_Valued_Procedure 14
Extend_System . 15
External . 15
External Names, casing . 15
External_Name_Casing . 15

F
FDL, GNU Free Documentation License 175
File . 100
File locking . 152
Finalize_Storage_Only . 17
Fixed_Value . 44
Float types . 53
Float_Representation . 17
Floating-Point Processor . 151
Foreign threads . 155
Fortran, interfacing with . 66

G
Get_Immediate . 63
Get Immediate . 137
GNAT.AWK (‘g-awk.ads’) . 149
GNAT.Bubble_Sort_A (‘g-busora.ads’) 149
GNAT.Bubble_Sort_G (‘g-busorg.ads’) 149
GNAT.Calendar (‘g-calend.ads’) 149
GNAT.Calendar.Time_IO (‘g-catiio.ads’) 149
GNAT.Case_Util (‘g-casuti.ads’). 150
GNAT.CGI (‘g-cgi.ads’) . 150
GNAT.CGI.Cookie (‘g-cgicoo.ads’) 150
GNAT.CGI.Debug (‘g-cgideb.ads’). 150
GNAT.Command_Line (‘g-comlin.ads’) 150
GNAT.CRC32 (‘g-crc32.ads’) 150
GNAT.Current_Exception (‘g-curexc.ads’) . . . 150
GNAT.Debug_Pools (‘g-debpoo.ads’) 151
GNAT.Debug_Utilities (‘g-debuti.ads’) 151
GNAT.Directory_Operations (g-dirope.ads) . . . 151
GNAT.Dynamic_Tables (‘g-dyntab.ads’) 151
GNAT.Exception_Traces (‘g-exctra.ads’) 151
GNAT.Expect (‘g-expect.ads’) 151
GNAT.Float_Control (‘g-flocon.ads’) 151
GNAT.Heap_Sort_A (‘g-hesora.ads’) 152
GNAT.Heap_Sort_G (‘g-hesorg.ads’) 152
GNAT.HTable (‘g-htable.ads’) 152
GNAT.IO (‘g-io.ads’) . 152
GNAT.IO_Aux (‘g-io_aux.ads’) 152
GNAT.Lock_Files (‘g-locfil.ads’) 152
GNAT.MD5 (‘g-md5.ads’) . 152

Index 185

GNAT.Most_Recent_Exception (‘g-moreex.ads’)
. 152

GNAT.OS_Lib (‘g-os_lib.ads’) 153
GNAT.Regexp (‘g-regexp.ads’) 153
GNAT.Registry (‘g-regist.ads’) 153
GNAT.Regpat (‘g-regpat.ads’) 153
GNAT.Sockets (‘g-socket.ads’) 153
GNAT.Source_Info (‘g-souinf.ads’) 153
GNAT.Spell_Checker (‘g-speche.ads’) 153
GNAT.Spitbol (‘g-spitbo.ads’) 154
GNAT.Spitbol.Patterns (‘g-spipat.ads’) 154
GNAT.Spitbol.Table_Boolean (‘g-sptabo.ads’)

. 154
GNAT.Spitbol.Table_Integer (‘g-sptain.ads’)

. 154
GNAT.Spitbol.Table_VString (‘g-sptavs.ads’)

. 154
GNAT.Table (‘g-table.ads’) 154
GNAT.Task_Lock (‘g-tasloc.ads’). 154
GNAT.Threads (‘g-thread.ads’) 155
GNAT.Traceback (‘g-traceb.ads’). 155
GNAT.Traceback.Symbolic (‘g-trasym.ads’) . . 155

H
Has_Discriminants . 44
Hash tables . 152
Heap usage, implicit . 61

I
IBM Packed Format . 156
Ident . 17
Image, of an address . 156
Img . 44
Implementation-dependent features. 1
Import . 119
Import_Exception . 17
Import_Function . 18
Import_Object . 19
Import_Procedure . 19
Import_Valued_Procedure 20
Initialization, suppression of 34
Initialize_Scalars . 20
Inline_Always . 21
Inline_Generic . 21
Input/Output facilities . 152
Integer maps . 154
Integer types . 53
Integer_Value . 44
Interface . 21
Interface_Name . 22
Interfaces . 64
Interfaces.C.Extensions (‘i-cexten.ads’) . . 155
Interfaces.C.Streams (‘i-cstrea.ads’) 155
Interfaces.CPP (‘i-cpp.ads’) 155
Interfaces.Os2lib (‘i-os2lib.ads’) 155

Interfaces.Os2lib.Errors (‘i-os2err.ads’)
. 155

Interfaces.Os2lib.Synchronization

(‘i-os2syn.ads’) . 156
Interfaces.Os2lib.Threads (‘i-os2thr.ads’)

. 156
Interfaces.Packed_Decimal (‘i-pacdec.ads’)

. 156
Interfaces.VxWorks (‘i-vxwork.ads’) 156
Interfaces.VxWorks.IO (‘i-vxwoio.ads’) 156
Interfacing to C++ . 9
Interfacing to VxWorks . 156
Interfacing to VxWorks’ I/O 156
Interfacing with C++ . 8, 9
Interfacing, to C++ . 155
Interfacing, to OS/2 . 155, 156
Interrupt priority, maximum 45
Interrupt support . 68
Interrupts . 68
Intrinsic operator . 99
Intrinsic Subprograms . 99

L
Large . 45
Latin-1 . 169
Latin 1 constants for Wide Character 147
Latin 9 constants for Character 147
Latin 9 constants for Wide Character 147
License . 22
License checking . 22
Line . 100
Link_With . 23
Linker_Alias . 23
Linker_Section . 23
Little endian . 43
Locking . 154
Locking Policies . 69
Locking using files . 152
Long_Float . 25

M
Machine operations . 66
Machine_Attribute . 25
Machine_Size . 45
Main_Storage . 25
Mantissa . 45
Maps . 154
Max_Entry_Queue_Depth . 83
Max_Interrupt_Priority . 45
Max_Priority . 45
Maximum_Alignment . 45
Mechanism_Code . 45
Memory corruption debugging 151
Message Digest MD5 . 152
Multidimensional arrays . 54

186 GNAT Reference Manual

N
Named numbers, representation of 48
No_Calendar . 83
No_Dynamic_Interrupts . 83
No_Elaboration_Code . 85
No_Entry_Calls_In_Elaboration_Code 83
No_Entry_Queue . 85
No_Enumeration_Maps . 83
No_Exception_Handlers . 84
No_Implementation_Attributes 85
No_Implementation_Pragmas 86
No_Implementation_Restrictions 86
No_Implicit_Conditionals 84
No_Implicit_Loops . 84
No_Local_Protected_Objects 84
No_Protected_Type_Allocators 84
No_Return . 25
No_Run_Time . 24
No_Secondary_Stack . 84
No_Select_Statements . 84
No_Standard_Storage_Pools 84
No_Streams . 84
No_Task_Attributes . 84
No_Task_Termination . 85
No_Tasking . 85
No_Wide_Characters . 85
Normalize_Scalars . 24
Null Occurrence, testing for 148
Null_Parameter . 46
Numerics . 71

O
Object_Size . 46, 107
OpenVMS 5, 7, 12, 13, 17, 18, 25, 35, 42, 46
Operating System interface 153
Operations, on Address . 60
ordering, of bits . 110
ordering, of bytes . 111
OS/2 Error codes . 155
OS/2 interfacing . 155
OS/2 synchronization primitives 156
OS/2 thread interfacing . 156

P
Package Interfaces . 64
Package Interrupts . 68
Package Task_Attributes . 69
Packed Decimal . 156
Packed types . 56
Parameters, passing mechanism 45
Parameters, when passed by reference 46
Parsing . 149
Partition communication subsystem 70
Partition intefacing functions 156
Passed_By_Reference . 46
Passing by copy . 5

Passing by descriptor . 13, 18
Passive . 26
Pattern matching . 153, 154
PCS . 70
Polling . 26
Portability . 1
Pragma Pack (for arrays) . 115
Pragma Pack (for records) 116
Pragma, representation. 103
Pragmas . 51
Pre-elaboration requirements 68
Preemptive abort . 69
Priority, maximum . 45
Propagate_Exceptions . 26
Protected procedure handlers 68
Psect_Object . 27
Pure . 28
Pure_Function . 27

R
Random number generation 63
Range_Length . 46
Ravenscar . 28
Record Representation Clause 117
Record representation clauses 59
Regular expressions . 153
Removing command line arguments 148
Representation Clause . 103
Representation clauses . 55
Representation Clauses . 103
Representation clauses, enumeration. 59
Representation clauses, records 59
Representation of enums . 43
Representation of wide characters 157
Representation Pragma . 103
Representation, determination of 121
Restricted_Run_Time . 30
Return values, passing mechanism 45
Rotate Left . 100
Rotate Right . 101

S
Safe_Emax . 47
Safe_Large . 47
Sets of strings . 154
Share_Generic . 30
Shift Left . 101
Shift Right . 101
Shift Right Arithmetic . 101
Simple I/O . 152
Size Clause . 104
Size clauses . 58
Size for biased representation 107
Size of Address . 41
Size, of objects . 107
Size, setting for not-first subtype 48

Index 187

Size, used for objects . 46
Size, VADS compatibility. 38, 48
Size, variant record objects 106
Small . 47
Sockets . 153
Sorting . 149, 152
Source Information . 153
Source_File_Name . 31
Source Location . 101
Source_Reference . 31
Spawn capability . 153
Spell checking . 153
SPITBOL interface . 154
SPITBOL pattern matching 154
SPITBOL Tables . 154
Static_Priorities . 85
Static_Storage_Size . 85
Storage place attributes . 60
Storage Size Clause . 105
Storage_Unit . 7, 47
Stream files . 137
Stream oriented attributes . 62
Stream_Convert . 32
String maps . 154
Style_Checks . 33
Subprogram address . 42
Subtitle . 33
Suppress_All . 34
Suppress_Initialization 34
Suppressing initialization . 34
Suppression of checks . 55
Synchronization, OS/2 . 156
system, extending . 15
System.Address_Image (‘s-addima.ads’) 156
System.Assertions (‘s-assert.ads’) 156
System.Partition_Interface (‘s-parint.ads’)

. 156
System.Task_Info (‘s-tasinf.ads’) 156
System.Wch_Cnv (‘s-wchcnv.ads’). 157
System.Wch_Con (‘s-wchcon.ads’). 157

T
Table implementation 151, 154
Task locking . 154
Task synchronization . 154
Task_Attributes . 69
Task_Info . 34
Task Info pragma . 156
Task_Name . 34
Task_Storage . 35
Tasking restrictions . 70
Text IO . 152
Text IO extensions . 137
Text IO for unbounded strings 137
Text_IO, extensions for unbounded strings 148
Text_IO, extensions for unbounded wide strings

. 148

Thread control, OS/2 . 156
Threads, foreign . 155
Tick . 47
Time . 149
Time, monotonic . 70
Time_Slice . 35
Title . 35
To_Address . 47, 119
Trace back facilities . 155
Type_Class . 47
Typographical conventions . 2

U
UET_Address . 48
Unbounded_String, IO support 148
Unbounded String, Text IO operations 137
Unbounded_Wide_String, IO support 148
Unchecked conversion . 61
Unchecked deallocation . 62
Unchecked_Union . 36
Unimplemented_Unit . 37
Unions in C . 36
Universal_Literal_String 48
Unreferenced . 37
Unreserve_All_Interrupts 37
Unrestricted_Access . 48
Unsuppress . 37
Use_VADS_Size . 38

V
VADS_Size . 48
Validity_Checks . 38
Value_Size . 48, 107
Variant record objects, size 106
Volatile . 39
VxWorks, Get Immediate 156
VxWorks, I/O interfacing 156
VxWorks, interfacing . 156

W
Warnings . 39
Warnings, unreferenced . 37
Wchar_T_Size . 49
Weak_External . 39
Wide Character, Representation 157
Wide String, Conversion . 157
Windows Registry . 153
Word_Size . 49

Z
Zero address, passing. 46
Zero Cost Exceptions . 26

188 GNAT Reference Manual

i

Table of Contents

About This Guide. 1
What This Reference Manual Contains . 1
Conventions . 2
Related Information . 2

1 Implementation Defined Pragmas 3

2 Implementation Defined Attributes 41

3 Implementation Advice 51

4 Implementation Defined Characteristics 75

5 Intrinsic Subprograms . 99
5.1 Intrinsic Operators . 99
5.2 Enclosing Entity . 99
5.3 Exception Information . 99
5.4 Exception Message . 99
5.5 Exception Name . 100
5.6 File . 100
5.7 Line . 100
5.8 Rotate Left . 100
5.9 Rotate Right . 100
5.10 Shift Left . 101
5.11 Shift Right . 101
5.12 Shift Right Arithmetic . 101
5.13 Source Location . 101

6 Representation Clauses and Pragmas 103
6.1 Alignment Clauses . 103
6.2 Size Clauses . 104
6.3 Storage Size Clauses . 105
6.4 Size of Variant Record Objects . 105
6.5 Biased Representation . 107
6.6 Value Size and Object Size Clauses . 107
6.7 Component Size Clauses . 110
6.8 Bit Order Clauses . 110
6.9 Effect of Bit Order on Byte Ordering 111
6.10 Pragma Pack for Arrays . 115
6.11 Pragma Pack for Records . 115
6.12 Record Representation Clauses . 116

ii GNAT Reference Manual

6.13 Enumeration Clauses . 117
6.14 Address Clauses. 117
6.15 Effect of Convention on Representation 120
6.16 Determining the Representations chosen by GNAT 121

7 Standard Library Routines 125

8 The Implementation of Standard I/O 133
8.1 Standard I/O Packages . 133
8.2 FORM Strings . 133
8.3 Direct IO. 134
8.4 Sequential IO . 134
8.5 Text IO . 135

8.5.1 Stream Pointer Positioning . 135
8.5.2 Reading and Writing Non-Regular Files 136
8.5.3 Get Immediate . 136
8.5.4 Treating Text IO Files as Streams 137
8.5.5 Text IO Extensions . 137
8.5.6 Text IO Facilities for Unbounded Strings 137

8.6 Wide Text IO . 138
8.6.1 Stream Pointer Positioning . 139
8.6.2 Reading and Writing Non-Regular Files 140

8.7 Stream IO . 140
8.8 Shared Files . 140
8.9 Open Modes . 141
8.10 Operations on C Streams . 141
8.11 Interfacing to C Streams . 144

9 The GNAT Library . 147
9.1 Ada.Characters.Latin_9 (‘a-chlat9.ads’) 147
9.2 Ada.Characters.Wide_Latin_1 (‘a-cwila1.ads’) 147
9.3 Ada.Characters.Wide_Latin_9 (‘a-cwila1.ads’) 147
9.4 Ada.Command_Line.Remove (‘a-colire.ads’) 147
9.5 Ada.Direct_IO.C_Streams (‘a-diocst.ads’) 148
9.6 Ada.Exceptions.Is_Null_Occurrence (‘a-einuoc.ads’)

. 148
9.7 Ada.Sequential_IO.C_Streams (‘a-siocst.ads’) 148
9.8 Ada.Streams.Stream_IO.C_Streams (‘a-ssicst.ads’) . . 148
9.9 Ada.Strings.Unbounded.Text_IO (‘a-suteio.ads’) 148
9.10 Ada.Strings.Wide_Unbounded.Wide_Text_IO

(‘a-swuwti.ads’) . 148
9.11 Ada.Text_IO.C_Streams (‘a-tiocst.ads’) 148
9.12 Ada.Wide_Text_IO.C_Streams (‘a-wtcstr.ads’) 149
9.13 GNAT.AWK (‘g-awk.ads’) . 149
9.14 GNAT.Bubble_Sort_A (‘g-busora.ads’) 149
9.15 GNAT.Bubble_Sort_G (‘g-busorg.ads’) 149
9.16 GNAT.Calendar (‘g-calend.ads’) . 149

iii

9.17 GNAT.Calendar.Time_IO (‘g-catiio.ads’) 149
9.18 GNAT.CRC32 (‘g-crc32.ads’) . 149
9.19 GNAT.Case_Util (‘g-casuti.ads’) . 150
9.20 GNAT.CGI (‘g-cgi.ads’) . 150
9.21 GNAT.CGI.Cookie (‘g-cgicoo.ads’) 150
9.22 GNAT.CGI.Debug (‘g-cgideb.ads’) . 150
9.23 GNAT.Command_Line (‘g-comlin.ads’) 150
9.24 GNAT.Current_Exception (‘g-curexc.ads’) 150
9.25 GNAT.Debug_Pools (‘g-debpoo.ads’) 150
9.26 GNAT.Debug_Utilities (‘g-debuti.ads’). 151
9.27 GNAT.Directory_Operations (g-dirope.ads) 151
9.28 GNAT.Dynamic_Tables (‘g-dyntab.ads’) 151
9.29 GNAT.Exception_Traces (‘g-exctra.ads’) 151
9.30 GNAT.Expect (‘g-expect.ads’) . 151
9.31 GNAT.Float_Control (‘g-flocon.ads’) 151
9.32 GNAT.Heap_Sort_A (‘g-hesora.ads’) 151
9.33 GNAT.Heap_Sort_G (‘g-hesorg.ads’) 152
9.34 GNAT.HTable (‘g-htable.ads’) . 152
9.35 GNAT.IO (‘g-io.ads’) . 152
9.36 GNAT.IO_Aux (‘g-io_aux.ads’) . 152
9.37 GNAT.Lock_Files (‘g-locfil.ads’) 152
9.38 GNAT.MD5 (‘g-md5.ads’) . 152
9.39 GNAT.Most_Recent_Exception (‘g-moreex.ads’) 152
9.40 GNAT.OS_Lib (‘g-os_lib.ads’) . 152
9.41 GNAT.Regexp (‘g-regexp.ads’) . 153
9.42 GNAT.Registry (‘g-regist.ads’) . 153
9.43 GNAT.Regpat (‘g-regpat.ads’) . 153
9.44 GNAT.Sockets (‘g-socket.ads’) . 153
9.45 GNAT.Source_Info (‘g-souinf.ads’) 153
9.46 GNAT.Spell_Checker (‘g-speche.ads’) 153
9.47 GNAT.Spitbol.Patterns (‘g-spipat.ads’) 153
9.48 GNAT.Spitbol (‘g-spitbo.ads’) . 154
9.49 GNAT.Spitbol.Table_Boolean (‘g-sptabo.ads’) 154
9.50 GNAT.Spitbol.Table_Integer (‘g-sptain.ads’) 154
9.51 GNAT.Spitbol.Table_VString (‘g-sptavs.ads’) 154
9.52 GNAT.Table (‘g-table.ads’) . 154
9.53 GNAT.Task_Lock (‘g-tasloc.ads’) . 154
9.54 GNAT.Threads (‘g-thread.ads’) . 154
9.55 GNAT.Traceback (‘g-traceb.ads’) . 155
9.56 GNAT.Traceback.Symbolic (‘g-trasym.ads’) 155
9.57 Interfaces.C.Extensions (‘i-cexten.ads’) 155
9.58 Interfaces.C.Streams (‘i-cstrea.ads’). 155
9.59 Interfaces.CPP (‘i-cpp.ads’) . 155
9.60 Interfaces.Os2lib (‘i-os2lib.ads’) 155
9.61 Interfaces.Os2lib.Errors (‘i-os2err.ads’) 155
9.62 Interfaces.Os2lib.Synchronization (‘i-os2syn.ads’)

. 155
9.63 Interfaces.Os2lib.Threads (‘i-os2thr.ads’) 156

iv GNAT Reference Manual

9.64 Interfaces.Packed_Decimal (‘i-pacdec.ads’) 156
9.65 Interfaces.VxWorks (‘i-vxwork.ads’) 156
9.66 Interfaces.VxWorks.IO (‘i-vxwoio.ads’) 156
9.67 System.Address_Image (‘s-addima.ads’). 156
9.68 System.Assertions (‘s-assert.ads’) 156
9.69 System.Partition_Interface (‘s-parint.ads’) 156
9.70 System.Task_Info (‘s-tasinf.ads’) 156
9.71 System.Wch_Cnv (‘s-wchcnv.ads’) . 156
9.72 System.Wch_Con (‘s-wchcon.ads’) . 157

10 Interfacing to Other Languages 159
10.1 Interfacing to C . 159
10.2 Interfacing to C++ . 159
10.3 Interfacing to COBOL . 160
10.4 Interfacing to Fortran . 160
10.5 Interfacing to non-GNAT Ada code . 160

11 Machine Code Insertions 161

12 GNAT Implementation of Tasking 163
12.1 Mapping Ada Tasks onto the Underlying Kernel Threads

. 163
12.2 Ensuring Compliance with the Real-Time Annex 163

13 Code generation for array aggregates 165
13.1 Static constant aggregates with static bounds 165
13.2 Constant aggregates with an unconstrained nominal types

. 165
13.3 Aggregates with static bounds . 165
13.4 Aggregates with non-static bounds . 166
13.5 Aggregates in assignments statements. 166

14 Specialized Needs Annexes 167

15 Compatibility Guide . 169
15.1 Compatibility with Ada 83 . 169
15.2 Compatibility with Other Ada 95 Systems 170
15.3 Representation Clauses . 171
15.4 Compatibility with DEC Ada 83 . 172

GNU Free Documentation License 175
ADDENDUM: How to use this License for your documents 181

Index . 183

