GNAT Reference Manual

GNAT, The GNU Ada 95 Compiler
GCC version 3.4.4

Ada Core Technologies, Inc.

Copyright (©) 1995-2004, Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU Free Documenta-
tion License”, with the Front-Cover Texts being “GNAT Reference Manual”, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the standard.

Ada 95 is designed to be highly portable. In general, a program will have the same effect
even when compiled by different compilers on different platforms. However, since Ada 95
is designed to be used in a wide variety of applications, it also contains a number of system
dependent features to be used in interfacing to the external world.

Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

What This Reference Manual Contains

This reference manual contains the following chapters:

e Chapter 1 [Implementation Defined Pragmas|, page 3, lists GNAT implementation-
dependent pragmas, which can be used to extend and enhance the functionality of the
compiler.

e Chapter 2 [Implementation Defined Attributes|, page 45, lists GNAT implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler.

e Chapter 3 [Implementation Advice], page 55, provides information on generally desir-
able behavior which are not requirements that all compilers must follow since it cannot
be provided on all systems, or which may be undesirable on some systems.

e Chapter 4 [Implementation Defined Characteristics], page 81, provides a guide to min-
imizing implementation dependent features.

e Chapter 5 [Intrinsic Subprograms], page 107, describes the intrinsic subprograms im-
plemented by GNAT, and how they can be imported into user application programs.

e Chapter 6 [Representation Clauses and Pragmas], page 111, describes in detail the way
that GNAT represents data, and in particular the exact set of representation clauses
and pragmas that is accepted.

e Chapter 7 [Standard Library Routines|, page 135, provides a listing of packages and a
brief description of the functionality that is provided by Ada’s extensive set of standard
library routines as implemented by GNAT.

e Chapter 8 [The Implementation of Standard I/0], page 143, details how the GNAT
implementation of the input-output facilities.

e Chapter 9 [The GNAT Library], page 157, is a catalog of packages that complement
the Ada predefined library.

e Chapter 10 [Interfacing to Other Languages|, page 169, describes how programs written
in Ada using GNAT can be interfaced to other programming languages.

Chapter 11 [Specialized Needs Annexes], page 171, describes the GNAT implementation
of all of the specialized needs annexes.

2 GNAT Reference Manual

e Chapter 12 [Implementation of Specific Ada Features|, page 173, discusses issues re-
lated to GNAT’s implementation of machine code insertions, tasking, and several other
features.

e Chapter 13 [Project File Reference], page 181, presents the syntax and semantics of
project files.

This reference manual assumes that you are familiar with Ada 95 language, as described in
the International Standard ANSI/ISO/IEC-8652:1995, Jan 1995.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
e Functions, utility program names, standard names, and classes.
e (Option flags
e ‘File Names’, ‘button names’, and ‘field names’.
e Variables.
e Emphasis.

[optional information or parameters|
e Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters ‘$
’ (dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the ‘$’ replaced by whatever prompt
character you are using.

Related Information

See the following documents for further information on GNAT:

e GNAT User’s Guide, which provides information on how to use the GNAT compiler
system.

e Ada 95 Reference Manual, which contains all reference material for the Ada 95 pro-
gramming language.

e Ada 95 Annotated Reference Manual, which is an annotated version of the standard
reference manual cited above. The annotations describe detailed aspects of the design
decision, and in particular contain useful sections on Ada 83 compatibility.

e DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains
specific information on compatibility between GNAT and DEC Ada 83 systems.

e DEC Ada, Language Reference Manual, part number AA-PYZAB-TK which describes
in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

Chapter 1: Implementation Defined Pragmas 3

1 Implementation Defined Pragmas

Ada 95 defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada 95 Reference Manual.

In addition, Ada 95 allows implementations to define additional pragmas whose meaning
is defined by the implementation. GNAT provides a number of these implementation-
dependent pragmas which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas may not be portable to other compilers
(although GNAT implements this set of pragmas on all platforms). Therefore if portabil-
ity to other compilers is an important consideration, the use of these pragmas should be
minimized.

Pragma Abort_Defer

Syntax:
pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled sequence of
statements (right after the begin). It has the effect of deferring aborts for the sequence of
statements (but not for the declarations or handlers, if any, associated with this statement
sequence).

Pragma Ada_83

Syntax:
pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which it applies, re-
gardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts
to be as compatible with the syntax and semantics of Ada 83, as defined in the original
Ada 83 Reference Manual as possible. In particular, the new Ada 95 keywords are not
recognized, optional package bodies are allowed, and generics may name types with un-
known discriminants without using the (<>) notation. In addition, some but not all of the
additional restrictions of Ada 83 are enforced.

Ada 83 mode is intended for two purposes. Firstly, it allows existing legacy Ada 83
code to be compiled and adapted to GNAT with less effort. Secondly, it aids in keeping
code backwards compatible with Ada 83. However, there is no guarantee that code that is
processed correctly by GNAT in Ada 83 mode will in fact compile and execute with an Ada
83 compiler, since GNAT does not enforce all the additional checks required by Ada 83.

Pragma Ada_95

Syntax:

pragma Ada_95;
A configuration pragma that establishes Ada 95 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these

4 GNAT Reference Manual

contexts. This pragma is useful when writing a reusable component that itself uses Ada 95
features, but which is intended to be usable from either Ada 83 or Ada 95 programs.

Pragma Annotate

Syntax:
pragma Annotate (IDENTIFIER {, ARG});

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. identifier identifies the type of annotation.
GNAT verifies this is an identifier, but does not otherwise analyze it. The arg argument
can be either a string literal or an expression. String literals are assumed to be of type
Standard.String. Names of entities are simply analyzed as entity names. All other ex-
pressions are analyzed as expressions, and must be unambiguous.

The analyzed pragma is retained in the tree, but not otherwise processed by any part of
the GNAT compiler. This pragma is intended for use by external tools, including ASIS.

Pragma Assert

Syntax:
pragma Assert (
boolean_EXPRESSION
[, static_string EXPRESSION]);
The effect of this pragma depends on whether the corresponding command line switch is
set to activate assertions. The pragma expands into code equivalent to the following:
if assertions-enabled then
if not boolean_EXPRESSION then
System.Assertions.Raise_Assert_Failure
(string_EXPRESSION) ;
end if;
end if;
The string argument, if given, is the message that will be associated with the exception
occurrence if the exception is raised. If no second argument is given, the default message is
‘file:nnn’, where file is the name of the source file containing the assert, and nnn is the
line number of the assert. A pragma is not a statement, so if a statement sequence contains
nothing but a pragma assert, then a null statement is required in addition, as in:

if J > 3 then
pragma Assert (K > 3, "Bad value for K");
null;
end if;
Note that, as with the if statement to which it is equivalent, the type of the expression is
either Standard.Boolean, or any type derived from this standard type.

If assertions are disabled (switch -gnata not used), then there is no effect (and in
particular, any side effects from the expression are suppressed). More precisely it is not
quite true that the pragma has no effect, since the expression is analyzed, and may cause
types to be frozen if they are mentioned here for the first time.

If assertions are enabled, then the given expression is tested, and if it is False then
System.Assertions.Raise_Assert_Failure is called which results in the raising of
Assert_Failure with the given message.

Chapter 1: Implementation Defined Pragmas 5

If the boolean expression has side effects, these side effects will turn on and off with the
setting of the assertions mode, resulting in assertions that have an effect on the program.
You should generally avoid side effects in the expression arguments of this pragma. However,
the expressions are analyzed for semantic correctness whether or not assertions are enabled,
so turning assertions on and off cannot affect the legality of a program.

Pragma Ast_Entry

Syntax:
pragma AST_Entry (entry_IDENTIFIER);

This pragma is implemented only in the OpenVMS implementation of GNAT. The argu-
ment is the simple name of a single entry; at most one AST_Entry pragma is allowed for any
given entry. This pragma must be used in conjunction with the AST_Entry attribute, and
is only allowed after the entry declaration and in the same task type specification or single
task as the entry to which it applies. This pragma specifies that the given entry may be
used to handle an OpenVMS asynchronous system trap (AST) resulting from an OpenVMS
system service call. The pragma does not affect normal use of the entry. For further details
on this pragma, see the DEC Ada Language Reference Manual, section 9.12a.

Pragma C_Pass_By_Copy

Syntax:
pragma C_Pass_By_Copy
([Max_Size =>] static_integer_ EXPRESSION);
Normally the default mechanism for passing C convention records to C convention subpro-
grams is to pass them by reference, as suggested by RM B.3(69). Use the configuration
pragma C_Pass_By_Copy to change this default, by requiring that record formal parameters
be passed by copy if all of the following conditions are met:

e The size of the record type does not exceed
static_integer_expression.
e The record type has Convention C.

e The formal parameter has this record type, and the subprogram has a foreign (non-Ada)
convention.

If these conditions are met the argument is passed by copy, i.e. in a manner consistent with
what C expects if the corresponding formal in the C prototype is a struct (rather than a
pointer to a struct).

You can also pass records by copy by specifying the convention C_Pass_By_Copy for the
record type, or by using the extended Import and Export pragmas, which allow specification
of passing mechanisms on a parameter by parameter basis.

Pragma Comment

Syntax:

pragma Comment (static_string EXPRESSION);
This is almost identical in effect to pragma Ident. It allows the placement of a comment
into the object file and hence into the executable file if the operating system permits such
usage. The difference is that Comment, unlike Ident, has no limitations on placement of the

6 GNAT Reference Manual

pragma (it can be placed anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.

Pragma Common_Object

Syntax:

pragma Common_Object (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION
This pragma enables the shared use of variables stored in overlaid linker areas corresponding
to the use of COMMON in Fortran. The single object local_name is assigned to the area
designated by the External argument. You may define a record to correspond to a series of
fields. The size argument is syntax checked in GNAT, but otherwise ignored.

Common_0bject is not supported on all platforms. If no support is available, then the
code generator will issue a message indicating that the necessary attribute for implementa-
tion of this pragma is not available.

Pragma Compile_Time_Warning

Syntax:
pragma Compile_Time_Warning
(boolean_EXPRESSION, static_string EXPRESSION) ;

This pragma can be used to generate additional compile time warnings. It is particularly
useful in generics, where warnings can be issued for specific problematic instantiations. The
first parameter is a boolean expression. The pragma is effective only if the value of this
expression is known at compile time, and has the value True. The set of expressions whose
values are known at compile time includes all static boolean expressions, and also other
values which the compiler can determine at compile time (e.g. the size of a record type set
by an explicit size representation clause, or the value of a variable which was initialized to
a constant and is known not to have been modified). If these conditions are met, a warning
message is generated using the value given as the second argument. This string value may
contain embedded ASCIL.LF characters to break the message into multiple lines.

Pragma Complex_Representation

Syntax:
pragma Complex_Representation
([Entity =>] LOCAL_NAME);

The Entity argument must be the name of a record type which has two fields of the same
floating-point type. The effect of this pragma is to force gcc to use the special internal
complex representation form for this record, which may be more efficient. Note that this
may result in the code for this type not conforming to standard ABI (application binary
interface) requirements for the handling of record types. For example, in some environments,
there is a requirement for passing records by pointer, and the use of this pragma may result
in passing this type in floating-point registers.

Chapter 1: Implementation Defined Pragmas 7

Pragma Component_Alignment

Syntax:

pragma Component_Alignment (
[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]);

ALIGNMENT_CHOICE ::=
Component_Size
| Component_Size_4
| Storage_Unit
| Default
Specifies the alignment of components in array or record types. The meaning of the Form

argument is as follows:

Component_Size
Aligns scalar components and subcomponents of the array or record type on
boundaries appropriate to their inherent size (naturally aligned). For example,
1-byte components are aligned on byte boundaries, 2-byte integer components
are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-
byte boundaries and so on. These alignment rules correspond to the normal
rules for C compilers on all machines except the VAX.

Component_Size_4
Naturally aligns components with a size of four or fewer bytes. Components
that are larger than 4 bytes are placed on the next 4-byte boundary.

Storage_Unit
Specifies that array or record components are byte aligned, i.e. aligned on
boundaries determined by the value of the constant System.Storage_Unit.

Default Specifies that array or record components are aligned on default boundaries,
appropriate to the underlying hardware or operating system or both. For Open-
VMS VAX systems, the Default choice is the same as the Storage_Unit choice
(byte alignment). For all other systems, the Default choice is the same as
Component_Size (natural alignment).

If the Name parameter is present, type_local_name must refer to a local record or array type,
and the specified alignment choice applies to the specified type. The use of Component_
Alignment together with a pragma Pack causes the Component_Alignment pragma to be
ignored. The use of Component_Alignment together with a record representation clause is
only effective for fields not specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a configuration pragma,
in which case it applies to one or more units in accordance with the normal rules for
configuration pragmas, or it can be used within a declarative part, in which case it applies
to types that are declared within this declarative part, or within any nested scope within
this declarative part. In either case it specifies the alignment to be applied to any record
or array type which has otherwise standard representation.

If the alignment for a record or array type is not specified (using pragma Pack, pragma
Component_Alignment, or a record rep clause), the GNAT uses the default alignment as
described previously.

8 GNAT Reference Manual

Pragma Convention_Identifier

Syntax:
pragma Convention_Identifier (

[Name =>] IDENTIFIER,

[Convention =>] convention_IDENTIFIER);
This pragma provides a mechanism for supplying synonyms for existing convention identi-
fiers. The Name identifier can subsequently be used as a synonym for the given convention in
other pragmas (including for example pragma Import or another Convention_Identifier
pragma). As an example of the use of this, suppose you had legacy code which used For-
tran77 as the identifier for Fortran. Then the pragma:

pragma Convention_Indentifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code, avoiding
the need to modify the sources. As another example, you could use this to parametrize
convention requirements according to systems. Suppose you needed to use Stdcall on
windows systems, and C on some other system, then you could define a convention identifier
Library and use a single Convention_Identifier pragma to specify which convention
would be used system-wide.

Pragma CPP_Class

Syntax:
pragma CPP_Class ([Entity =>] LOCAL_NAME);

The argument denotes an entity in the current declarative region that is declared as a tagged
or untagged record type. It indicates that the type corresponds to an externally declared
C++ class type, and is to be laid out the same way that C++ would lay out the type.

If (and only if) the type is tagged, at least one component in the record must be of type
Interfaces.CPP.Vtable_Ptr, corresponding to the C++ Vtable (or Vtables in the case of
multiple inheritance) used for dispatching.

Types for which CPP_Class is specified do not have assignment or equality operators
defined (such operations can be imported or declared as subprograms as required). Initial-
ization is allowed only by constructor functions (see pragma CPP_Constructor).

Pragma CPP_Class is intended primarily for automatic generation using an automatic
binding generator tool. See Section 10.2 [Interfacing to C++|, page 170 for related informa-
tion.

Pragma CPP _Constructor
Syntax:
pragma CPP_Constructor ([Entity =>] LOCAL_NAME);

This pragma identifies an imported function (imported in the usual way with pragma
Import) as corresponding to a C++ constructor. The argument is a name that must have
been previously mentioned in a pragma Import with Convention = CPP, and must be of
one of the following forms:

o function Fname return T’Class

e function Fname (...) return T’Class

Chapter 1: Implementation Defined Pragmas 9

where T is a tagged type to which the pragma CPP_Class applies.

The first form is the default constructor, used when an object of type T is created on the
Ada side with no explicit constructor. Other constructors (including the copy constructor,
which is simply a special case of the second form in which the one and only argument is of
type T), can only appear in two contexts:

e On the right side of an initialization of an object of type T.

e In an extension aggregate for an object of a type derived from T.

Although the constructor is described as a function that returns a value on the Ada side,
it is typically a procedure with an extra implicit argument (the object being initialized)
at the implementation level. GNAT issues the appropriate call, whatever it is, to get the
object properly initialized.

In the case of derived objects, you may use one of two possible forms for declaring and
creating an object:

e New_0Object : Derived_T

e New_Object : Derived_T := (constructor-call with ...)

In the first case the default constructor is called and extension fields if any are initialized
according to the default initialization expressions in the Ada declaration. In the second case,
the given constructor is called and the extension aggregate indicates the explicit values of
the extension fields.

If no constructors are imported, it is impossible to create any objects on the Ada side.
If no default constructor is imported, only the initialization forms using an explicit call to
a constructor are permitted.

Pragma CPP_Constructor is intended primarily for automatic generation using an au-
tomatic binding generator tool. See Section 10.2 [Interfacing to C++|, page 170 for more
related information.

Pragma CPP_Virtual

Syntax:

pragma CPP_Virtual
[Entity =>] ENTITY,

[, [Vtable_Ptr =>] vtable_ENTITY,]

[, [Position =>] static_integer_EXPRESSION]);
This pragma serves the same function as pragma Import in that case of a virtual function
imported from C++. The Entity argument must be a primitive subprogram of a tagged type
to which pragma CPP_Class applies. The Vtable_Ptr argument specifies the Vtable_Ptr
component which contains the entry for this virtual function. The Position argument is the
sequential number counting virtual functions for this Vtable starting at 1.

The Vtable_Ptr and Position arguments may be omitted if there is one Vtable_Ptr
present (single inheritance case) and all virtual functions are imported. In that case the
compiler can deduce both these values.

No External_Name or Link_Name arguments are required for a virtual function, since it
is always accessed indirectly via the appropriate Vtable entry.

10 GNAT Reference Manual

Pragma CPP_Virtual is intended primarily for automatic generation using an automatic
binding generator tool. See Section 10.2 [Interfacing to C++|, page 170 for related informa-
tion.

Pragma CPP_Vtable

Syntax:
pragma CPP_Vtable (

[Entity =>] ENTITY,

[Vtable_Ptr =>] vtable_ENTITY,

[Entry_Count =>] static_integer_ EXPRESSION);
Given a record to which the pragma CPP_Class applies, this pragma can be specified for each
component of type CPP.Interfaces.Vtable_Ptr. Entity is the tagged type, Vtable_ Ptr is
the record field of type Vtable_Ptr, and Entry_Count is the number of virtual functions
on the C++ side. Not all of these functions need to be imported on the Ada side.

You may omit the CPP_Vtable pragma if there is only one Vtable_Ptr component in
the record and all virtual functions are imported on the Ada side (the default value for the
entry count in this case is simply the total number of virtual functions).

Pragma CPP_Vtable is intended primarily for automatic generation using an automatic
binding generator tool. See Section 10.2 [Interfacing to C++|, page 170 for related informa-
tion.

Pragma Debug

Syntax:
pragma Debug (PROCEDURE_CALL_WITHOUT_SEMICOLON) ;

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME
| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART
The argument has the syntactic form of an expression, meeting the syntactic requirements
for pragmas.

If assertions are not enabled on the command line, this pragma has no effect. If asserts
are enabled, the semantics of the pragma is exactly equivalent to the procedure call state-
ment corresponding to the argument with a terminating semicolon. Pragmas are permitted
in sequences of declarations, so you can use pragma Debug to intersperse calls to debug
procedures in the middle of declarations.

Pragma Elaboration_Checks

Syntax:
pragma Elaboration_Checks (RM | Static);

This is a configuration pragma that provides control over the elaboration model used by the
compilation affected by the pragma. If the parameter is RM, then the dynamic elaboration
model described in the Ada Reference Manual is used, as though the -gnatE switch had
been specified on the command line. If the parameter is Static, then the default GNAT
static model is used. This configuration pragma overrides the setting of the command
line. For full details on the elaboration models used by the GNAT compiler, see section

“Elaboration Order Handling in GNAT” in the GNAT User’s Guide.

Chapter 1: Implementation Defined Pragmas 11

Pragma Eliminate

Syntax:

pragma Eliminate (
[Unit_Name =>] IDENTIFIER |
SELECTED_COMPONENT) ;

pragma Eliminate (

[Unit_Name =>] IDENTIFIER |
SELECTED_COMPONENT,
[Entity =>] IDENTIFIER |

SELECTED_COMPONENT |
STRING_LITERAL
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_NAME]
[, [Homonym_Number =>] INTEGER_LITERAL]);

PARAMETER_TYPES ::
SUBTYPE_NAME

(SUBTYPE_NAME {, SUBTYPE_NAME})
STRING_LITERAL

This pragma indicates that the given entity is not used outside the compilation unit it is
defined in. The entity may be either a subprogram or a variable.

If the entity to be eliminated is a library level subprogram, then the first form of pragma
Eliminate is used with only a single argument. In this form, the Unit_Name argument
specifies the name of the library level unit to be eliminated.

In all other cases, both Unit_Name and Entity arguments are required. If item is an
entity of a library package, then the first argument specifies the unit name, and the second
argument specifies the particular entity. If the second argument is in string form, it must
correspond to the internal manner in which GNAT stores entity names (see compilation
unit Namet in the compiler sources for details).

The remaining parameters are optionally used to distinguish between overloaded sub-
programs. There are two ways of doing this.

Use Parameter_Types and Result_Type to specify the profile of the subprogram to be
eliminated in a manner similar to that used for the extended Import and Export pragmas,
except that the subtype names are always given as string literals, again corresponding to
the internal manner in which GNAT stores entity names.

Alternatively, the Homonym_Number parameter is used to specify which overloaded alter-
native is to be eliminated. A value of 1 indicates the first subprogram (in lexical order), 2
indicates the second etc.

The effect of the pragma is to allow the compiler to eliminate the code or data associated
with the named entity. Any reference to an eliminated entity outside the compilation unit
it is defined in, causes a compile time or link time error.

The parameters of this pragma may be given in any order, as long as the usual rules for
use of named parameters and position parameters are used.

The intention of pragma Eliminate is to allow a program to be compiled in a system
independent manner, with unused entities eliminated, without the requirement of modifying
the source text. Normally the required set of Eliminate pragmas is constructed automati-
cally using the gnatelim tool. Elimination of unused entities local to a compilation unit is
automatic, without requiring the use of pragma Eliminate.

12 GNAT Reference Manual

Note that the reason this pragma takes string literals where names might be expected is
that a pragma Eliminate can appear in a context where the relevant names are not visible.

Pragma Export_Exception

Syntax:

pragma Export_Exception (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL,]
[, [Form =>] Ada | VMS]
[, [Code =>] static_integer_ EXPRESSION]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string EXPRESSION
This pragma is implemented only in the OpenVMS implementation of GNAT. It causes the
specified exception to be propagated outside of the Ada program, so that it can be handled
by programs written in other OpenVMS languages. This pragma establishes an external
name for an Ada exception and makes the name available to the OpenVMS Linker as a
global symbol. For further details on this pragma, see the DEC Ada Language Reference
Manual, section 13.9a3.2.

Pragma Export_Function

Syntax:
pragma Export_Function (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value

Chapter 1: Implementation Defined Pragmas 13

| Reference

Use this pragma to make a function externally callable and optionally provide information
on mechanisms to be used for passing parameter and result values. We recommend, for the
purposes of improving portability, this pragma always be used in conjunction with a separate
pragma Export, which must precede the pragma Export_Function. GNAT does not require
a separate pragma Export, but if none is present, Convention Ada is assumed, which is
usually not what is wanted, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention. Pragma
Export_Function (and Export, if present) must appear in the same declarative region as
the function to which they apply.

internal_name must uniquely designate the function to which the pragma applies. If
more than one function name exists of this name in the declarative part you must use
the Parameter_Types and Result_Type parameters is mandatory to achieve the required
unique designation. subtype_ marks in these parameters must exactly match the subtypes in
the corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an ’Access attribute can be used to match an anonymous
access parameter.

Note that passing by descriptor is not supported, even on the OpenVMS ports of GNAT.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Export_Object

Syntax:

pragma Export_0Object
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL : :=
IDENTIFIER

| static_string EXPRESSION
This pragma designates an object as exported, and apart from the extended rules for ex-
ternal symbols, is identical in effect to the use of the normal Export pragma applied to an
object. You may use a separate Export pragma (and you probably should from the point
of view of portability), but it is not required. Size is syntax checked, but otherwise ignored
by GNAT.

Pragma Export_Procedure

Syntax:
pragma Export_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISMI]);

EXTERNAL_SYMBOL ::=

14 GNAT Reference Manual

IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value

| Reference
This pragma is identical to Export_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.
GNAT does not require a separate pragma Export, but if none is present, Convention Ada
is assumed, which is usually not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a Export or Convention pragma that specifies the desired
foreign convention.

Note that passing by descriptor is not supported, even on the OpenVMS ports of GNAT.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Export_Value

Syntax:
pragma Export_Value (

[Value =>] static_integer_ EXPRESSION,

[Link_Name =>] static_string_EXPRESSION);
This pragma serves to export a static integer value for external use. The first argument
specifies the value to be exported. The Link_Name argument specifies the symbolic name to
be associated with the integer value. This pragma is useful for defining a named static value
in Ada that can be referenced in assembly language units to be linked with the application.
This pragma is currently supported only for the AAMP target and is ignored for other
targets.

Pragma Export_Valued_Procedure

Syntax:

pragma Export_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]

Chapter 1: Implementation Defined Pragmas 15

[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value

| Reference
This pragma is identical to Export_Procedure except that the first parameter of
local_name, which must be present, must be of mode 0OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. GNAT provides
for this capability to allow the use of OUT and IN OUT parameters in interfacing to external
functions (which are not permitted in Ada functions). GNAT does not require a separate
pragma Export, but if none is present, Convention Ada is assumed, which is almost
certainly not what is wanted since the whole point of this pragma is to interface with
foreign language functions, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention.

Note that passing by descriptor is not supported, even on the OpenVMS ports of GNAT.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Extend_System

Syntax:
pragma Extend_System ([Name =>] IDENTIFIER);

This pragma is used to provide backwards compatibility with other implementations that
extend the facilities of package System. In GNAT, System contains only the definitions that
are present in the Ada 95 RM. However, other implementations, notably the DEC Ada 83
implementation, provide many extensions to package System.

For each such implementation accommodated by this pragma, GNAT provides a package
Aux_xxx, e.g. Aux_DEC for the DEC Ada 83 implementation, which provides the required
additional definitions. You can use this package in two ways. You can with it in the normal

16 GNAT Reference Manual

way and access entities either by selection or using a use clause. In this case no special
processing is required.

However, if existing code contains references such as System.xxx where xxx is an entity
in the extended definitions provided in package System, you may use this pragma to extend
visibility in System in a non-standard way that provides greater compatibility with the
existing code. Pragma Extend_System is a configuration pragma whose single argument
is the name of the package containing the extended definition (e.g. Aux_DEC for the DEC
Ada case). A unit compiled under control of this pragma will be processed using special
visibility processing that looks in package System.Aux_xxx where Aux_xxx is the pragma
argument for any entity referenced in package System, but not found in package System.

You can use this pragma either to access a predefined System extension supplied with
the compiler, for example Aux_DEC or you can construct your own extension unit following
the above definition. Note that such a package is a child of System and thus is considered
part of the implementation. To compile it you will have to use the appropriate switch for
compiling system units. See the GNAT User’s Guide for details.

Pragma External

Syntax:
pragma External (
[Convention =>] convention_IDENTIFIER,
[Entity =>] local_NAME
[, [External_Name =>] static_string_ EXPRESSION]
[, [Link_Name =>] static_string_ EXPRESSION]);

This pragma is identical in syntax and semantics to pragma Export as defined in the
Ada Reference Manual. It is provided for compatibility with some Ada 83 compilers that
used this pragma for exactly the same purposes as pragma Export before the latter was
standardized.

Pragma External_Name_Casing

Syntax:
pragma External_Name_Casing (
Uppercase | Lowercase
[, Uppercase | Lowercase | As_Is]);
This pragma provides control over the casing of external names associated with Import and
Export pragmas. There are two cases to consider:

Implicit external names
Implicit external names are derived from identifiers. The most common case
arises when a standard Ada 95 Import or Export pragma is used with only two
arguments, as in:
pragma Import (C, C_Routine);

Since Ada is a case insensitive language, the spelling of the identifier in the Ada
source program does not provide any information on the desired casing of the
external name, and so a convention is needed. In GNAT the default treatment
is that such names are converted to all lower case letters. This corresponds
to the normal C style in many environments. The first argument of pragma

Chapter 1: Implementation Defined Pragmas 17

External_Name_Casing can be used to control this treatment. If Uppercase is
specified, then the name will be forced to all uppercase letters. If Lowercase is
specified, then the normal default of all lower case letters will be used.

This same implicit treatment is also used in the case of extended DEC Ada 83
compatible Import and Export pragmas where an external name is explicitly
specified using an identifier rather than a string.

Explicit external names

Explicit external names are given as string literals. The most common case
arises when a standard Ada 95 Import or Export pragma is used with three
arguments, as in:

pragma Import (C, C_Routine, "C_routine");

In this case, the string literal normally provides the exact casing required for
the external name. The second argument of pragma External_Name_Casing
may be used to modify this behavior. If Uppercase is specified, then the name
will be forced to all uppercase letters. If Lowercase is specified, then the name
will be forced to all lowercase letters. A specification of As_Is provides the
normal default behavior in which the casing is taken from the string provided.

This pragma may appear anywhere that a pragma is valid. In particular, it can be used
as a configuration pragma in the ‘gnat.adc’ file, in which case it applies to all subsequent
compilations, or it can be used as a program unit pragma, in which case it only applies
to the current unit, or it can be used more locally to control individual Import/Export

pragmas.

It is primarily intended for use with OpenVMS systems, where many compilers convert
all symbols to upper case by default. For interfacing to such compilers (e.g. the DEC C
compiler), it may be convenient to use the pragma:

pragma External_Name_Casing (Uppercase, Uppercase);

to enforce the upper casing of all external symbols.

Pragma Finalize_Storage_Only

Syntax:

pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME) ;

This pragma allows the compiler not to emit a Finalize call for objects defined at the library
level. This is mostly useful for types where finalization is only used to deal with storage
reclamation since in most environments it is not necessary to reclaim memory just before
terminating execution, hence the name.

Pragma Float_Representation

Syntax:

pragma Float_Representation (FLOAT_REP);

FLOAT_REP ::= VAX_Float | IEEE_Float

This pragma allows control over the internal representation chosen for the predefined floating
point types declared in the packages Standard and System. On all systems other than
OpenVMS, the argument must be IEEE_Float and the pragma has no effect. On OpenVMS,

18 GNAT Reference Manual

the argument may be VAX_Float to specify the use of the VAX float format for the floating-
point types in Standard. This requires that the standard runtime libraries be recompiled.
See the description of the GNAT LIBRARY command in the OpenVMS version of the GNAT
Users Guide for details on the use of this command.

Pragma Ident

Syntax:
pragma Ident (static_string EXPRESSION);

This pragma provides a string identification in the generated object file, if the system
supports the concept of this kind of identification string. This pragma is allowed only in
the outermost declarative part or declarative items of a compilation unit. If more than one
Ident pragma is given, only the last one processed is effective. On OpenVMS systems,
the effect of the pragma is identical to the effect of the DEC Ada 83 pragma of the same
name. Note that in DEC Ada 83, the maximum allowed length is 31 characters, so if it is
important to maintain compatibility with this compiler, you should obey this length limit.

Pragma Import_Exception

Syntax:

pragma Import_Exception (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL,]
[, [Form =>] Ada | VMS]
[, [Code =>] static_integer_EXPRESSION]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string EXPRESSION
This pragma is implemented only in the OpenVMS implementation of GNAT. It allows
OpenVMS conditions (for example, from OpenVMS system services or other OpenVMS lan-
guages) to be propagated to Ada programs as Ada exceptions. The pragma specifies that
the exception associated with an exception declaration in an Ada program be defined ex-
ternally (in non-Ada code). For further details on this pragma, see the DEC Ada Language
Reference Manual, section 13.9a.3.1.

Pragma Import_Function

Syntax:
pragma Import_Function (
[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] SUBTYPE_MARK]

[, [Mechanism =>] MECHANISM]

[, [Result_Mechanism =>] MECHANISM_NAME]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION

Chapter 1: Implementation Defined Pragmas 19

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is used in conjunction with a pragma Import to specify additional information
for an imported function. The pragma Import (or equivalent pragma Interface) must
precede the Import_Function pragma and both must appear in the same declarative part
as the function specification.

The Internal argument must uniquely designate the function to which the pragma ap-
plies. If more than one function name exists of this name in the declarative part you must
use the Parameter_Types and Result_Type parameters to achieve the required unique des-
ignation. Subtype marks in these parameters must exactly match the subtypes in the
corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an ’Access attribute can be used to match an anonymous
access parameter.

You may optionally use the Mechanism and Result_Mechanism parameters to specify
passing mechanisms for the parameters and result. If you specify a single mechanism name,
it applies to all parameters. Otherwise you may specify a mechanism on a parameter by
parameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

Passing by descriptor is supported only on the OpenVMS ports of GNAT.

First_Optional_Parameter applies only to OpenVMS ports of GNAT. It specifies that
the designated parameter and all following parameters are optional, meaning that they are
not passed at the generated code level (this is distinct from the notion of optional parameters
in Ada where the parameters are passed anyway with the designated optional parameters).
All optional parameters must be of mode IN and have default parameter values that are
either known at compile time expressions, or uses of the >Null_Parameter attribute.

Pragma Import_Object

Syntax:

pragma Import_Object
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL],

20 GNAT Reference Manual

[, [Size =>] EXTERNAL_SYMBOL]) ;

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string EXPRESSION
This pragma designates an object as imported, and apart from the extended rules for
external symbols, is identical in effect to the use of the normal Import pragma applied
to an object. Unlike the subprogram case, you need not use a separate Import pragma,
although you may do so (and probably should do so from a portability point of view). size
is syntax checked, but otherwise ignored by GNAT.

Pragma Import_Procedure

Syntax:
pragma Import_Procedure (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Import_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.

Pragma Import_Valued_Procedure

Syntax:

pragma Import_Valued_Procedure (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]

Chapter 1: Implementation Defined Pragmas 21

[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Import_Procedure except that the first parameter of
local_name, which must be present, must be of mode OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. The purpose
of this capability is to allow the use of OUT and IN OUT parameters in interfacing to
external functions (which are not permitted in Ada functions). You may optionally use the
Mechanism parameters to specify passing mechanisms for the parameters. If you specify
a single mechanism name, it applies to all parameters. Otherwise you may specify a
mechanism on a parameter by parameter basis using either positional or named notation.
If the mechanism is not specified, the default mechanism is used.

Note that it is important to use this pragma in conjunction with a separate pragma

Import that specifies the desired convention, since otherwise the default convention is Ada,
which is almost certainly not what is required.

Pragma Initialize_Scalars

Syntax:

pragma Initialize_Scalars;

This pragma is similar to Normalize_Scalars conceptually but has two important differ-
ences. First, there is no requirement for the pragma to be used uniformly in all units of a
partition, in particular, it is fine to use this just for some or all of the application units of
a partition, without needing to recompile the run-time library.

In the case where some units are compiled with the pragma, and some without, then
a declaration of a variable where the type is defined in package Standard or is locally

22 GNAT Reference Manual

declared will always be subject to initialization, as will any declaration of a scalar variable.
For composite variables, whether the variable is initialized may also depend on whether the
package in which the type of the variable is declared is compiled with the pragma.

The other important difference is that there is control over the value used for initializing
scalar objects. At bind time, you can select whether to initialize with invalid values (like
Normalize_Scalars), or with high or low values, or with a specified bit pattern. See the users
guide for binder options for specifying these cases.

This means that you can compile a program, and then without having to recompile the
program, you can run it with different values being used for initializing otherwise uninitial-
ized values, to test if your program behavior depends on the choice. Of course the behavior
should not change, and if it does, then most likely you have an erroneous reference to an
uninitialized value.

Note that pragma Initialize_Scalars is particularly useful in conjunction with the
enhanced validity checking that is now provided in GNAT, which checks for invalid values
under more conditions. Using this feature (see description of the -gnatV flag in the users
guide) in conjunction with pragma Initialize_Scalars provides a powerful new tool to
assist in the detection of problems caused by uninitialized variables.

Pragma Inline_Always
Syntax:
pragma Inline_Always (NAME [, NAME]);

Similar to pragma Inline except that inlining is not subject to the use of option -gnatn
and the inlining happens regardless of whether this option is used.

Pragma Inline_Generic

Syntax:

pragma Inline_Generic (generic_package_NAME);

This is implemented for compatibility with DEC Ada 83 and is recognized, but otherwise
ignored, by GNAT. All generic instantiations are inlined by default when using GNAT.

Pragma Interface

Syntax:

pragma Interface (
[Convention =>] convention_identifier,
[Entity =>] local_name
[, [External_Name =>] static_string_expression],
[, [Link_Name =>] static_string_expression]);

This pragma is identical in syntax and semantics to the standard Ada 95 pragma Import.
It is provided for compatibility with Ada 83. The definition is upwards compatible both
with pragma Interface as defined in the Ada 83 Reference Manual, and also with some
extended implementations of this pragma in certain Ada 83 implementations.

Chapter 1: Implementation Defined Pragmas 23

Pragma Interface_Name

Syntax:
pragma Interface_Name (
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string EXPRESSION]
[, [Link_Name =>] static_string_EXPRESSION]);

This pragma provides an alternative way of specifying the interface name for an interfaced
subprogram, and is provided for compatibility with Ada 83 compilers that use the pragma
for this purpose. You must provide at least one of External Name or Link_Name.

Pragma Interrupt_Handler

Syntax:
pragma Interrupt_Handler (procedure_LOCAL_NAME);

This program unit pragma is supported for parameterless protected procedures as described
in Annex C of the Ada Reference Manual. On the AAMP target the pragma can also be
specified for nonprotected parameterless procedures that are declared at the library level
(which includes procedures declared at the top level of a library package). In the case of
AAMP, when this pragma is applied to a nonprotected procedure, the instruction IERET
is generated for returns from the procedure, enabling maskable interrupts, in place of the
normal return instruction.

Pragma Interrupt_State

Syntax:
pragma Interrupt_State (Name => value, State => SYSTEM | RUNTIME | USER);

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for an Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl1-C can be used to interrupt
execution. Additionally, signals such as SIGSEGV, SIGABRT, SIGFPE and SIGILL are often
mapped to specific Ada exceptions, or used to implement run-time functions such as the
abort statement and stack overflow checking.

Pragma Interrupt_State provides a general mechanism for overriding such uses of
interrupts. It subsumes the functionality of pragma Unreserve_All_Interrupts. Pragma
Interrupt_State is not available on OS/2, Windows or VMS. On all other platforms than
VxWorks, it applies to signals; on VxWorks, it applies to vectored hardware interrupts and
may be used to mark interrupts required by the board support package as reserved.

Interrupts can be in one of three states:

e System
The interrupt is reserved (no Ada handler can be installed), and the Ada run-time may
not install a handler. As a result you are guaranteed standard system default action if
this interrupt is raised.

e Runtime
The interrupt is reserved (no Ada handler can be installed). The run time is allowed
to install a handler for internal control purposes, but is not required to do so.

24 GNAT Reference Manual

e User

The interrupt is unreserved. The user may install a handler to provide some other
action.

These states are the allowed values of the State parameter of the pragma. The Name
parameter is a value of the type Ada.Interrupts.Interrupt_ID. Typically, it is a name
declared in Ada.Interrupts.Names.

This is a configuration pragma, and the binder will check that there are no inconsistencies
between different units in a partition in how a given interrupt is specified. It may appear
anywhere a pragma is legal.

The effect is to move the interrupt to the specified state.

By declaring interrupts to be SYSTEM, you guarantee the standard system action, such
as a core dump.

By declaring interrupts to be USER, you guarantee that you can install a handler.

Note that certain signals on many operating systems cannot be caught and handled by
applications. In such cases, the pragma is ignored. See the operating system documentation,
or the value of the array Reserved declared in the specification of package System.0S_
Interface.

Overriding the default state of signals used by the Ada runtime may interfere with an
application’s runtime behavior in the cases of the synchronous signals, and in the case of
the signal used to implement the abort statement.

Pragma Keep_Names

Syntax:
pragma Keep_Names ([0On =>] enumeration_first_subtype_LOCAL_NAME) ;

The LOCAL_NAME argument must refer to an enumeration first subtype in the current
declarative part. The effect is to retain the enumeration literal names for use by Image and
Value even if a global Discard_Names pragma applies. This is useful when you want to
generally suppress enumeration literal names and for example you therefore use a Discard_
Names pragma in the ‘gnat.adc’ file, but you want to retain the names for specific enumer-
ation types.

Pragma License

Syntax:
pragma License (Unrestricted | GPL | Modified_GPL | Restricted);

This pragma is provided to allow automated checking for appropriate license conditions with
respect to the standard and modified GPL. A pragma License, which is a configuration
pragma that typically appears at the start of a source file or in a separate ‘gnat.adc’ file,
specifies the licensing conditions of a unit as follows:

e Unrestricted This is used for a unit that can be freely used with no license restrictions.
Examples of such units are public domain units, and units from the Ada Reference
Manual.

e GPL This is used for a unit that is licensed under the unmodified GPL, and which
therefore cannot be with’ed by a restricted unit.

Chapter 1: Implementation Defined Pragmas 25

e Modified_GPL This is used for a unit licensed under the GNAT modified GPL that
includes a special exception paragraph that specifically permits the inclusion of the
unit in programs without requiring the entire program to be released under the GPL.
This is the license used for the GNAT run-time which ensures that the run-time can
be used freely in any program without GPL concerns.

e Restricted This is used for a unit that is restricted in that it is not permitted to depend
on units that are licensed under the GPL. Typical examples are proprietary code that
is to be released under more restrictive license conditions. Note that restricted units
are permitted to with units which are licensed under the modified GPL (this is the
whole point of the modified GPL).

Normally a unit with no License pragma is considered to have an unknown license, and no
checking is done. However, standard GNAT headers are recognized, and license information
is derived from them as follows.

A GNAT license header starts with a line containing 78 hyphens. The following com-
ment text is searched for the appearance of any of the following strings.

If the string “GNU General Public License” is found, then the unit is assumed to have
GPL license, unless the string “As a special exception” follows, in which case the license
is assumed to be modified GPL.

If one of the strings “This specification is adapted from the Ada Semantic Interface” or
“This specification is derived from the Ada Reference Manual” is found then the unit
is assumed to be unrestricted.

These default actions means that a program with a restricted license pragma will automat-
ically get warnings if a GPL unit is inappropriately with’ed. For example, the program:

with Sem_Ch3;
with GNAT.Sockets;
procedure Secret_Stuff is

end Secret_Stuff

if compiled with pragma License (Restricted) in a ‘gnat.adc’ file will generate the warn-
ing:
1. with Sem_Ch3;
I

>>> license of withed unit "Sem_Ch3" is incompatible

2. with GNAT.Sockets;

3. procedure Secret_Stuff is
Here we get a warning on Sem_Ch3 since it is part of the GNAT compiler and is licensed
under the GPL, but no warning for GNAT.Sockets which is part of the GNAT run time,
and is therefore licensed under the modified GPL.

Pragma Link_With

Syntax:

pragma Link With (static_string EXPRESSION {,static_string EXPRESSION});
This pragma is provided for compatibility with certain Ada 83 compilers. It has exactly
the same effect as pragma Linker_Options except that spaces occurring within one of the
string expressions are treated as separators. For example, in the following case:

26 GNAT Reference Manual

pragma Link_With ("-labc -ldef");

results in passing the strings -labc and -1def as two separate arguments to the linker. In
addition pragma Link_With allows multiple arguments, with the same effect as successive
pragmas.

Pragma Linker_Alias

Syntax:
pragma Linker_Alias (
[Entity =>] LOCAL_NAME
[Alias =>] static_string_ EXPRESSION) ;
This pragma establishes a linker alias for the given named entity. For further details on the
exact effect, consult the GCC manual.

Pragma Linker_Section

Syntax:
pragma Linker_Section (
[Entity =>] LOCAL_NAME
[Section =>] static_string_ EXPRESSION) ;
This pragma specifies the name of the linker section for the given entity. For further details
on the exact effect, consult the GCC manual.

Pragma Long_Float

Syntax:
pragma Long_Float (FLOAT_FORMAT);

FLOAT_FORMAT ::= D_Float | G_Float

This pragma is implemented only in the OpenVMS implementation of GNAT. It allows
control over the internal representation chosen for the predefined type Long_Float and
for floating point type representations with digits specified in the range 7 through 15.
For further details on this pragma, see the DEC Ada Language Reference Manual, section
3.5.7b. Note that to use this pragma, the standard runtime libraries must be recompiled.
See the description of the GNAT LIBRARY command in the OpenVMS version of the GNAT
User’s Guide for details on the use of this command.

Pragma Machine_Attribute

Syntax:
pragma Machine_Attribute (

[Attribute_Name =>] string EXPRESSION,

[Entity =>] LOCAL_NAME) ;
Machine dependent attributes can be specified for types and/or declarations. Currently
only subprogram entities are supported. This pragma is semantically equivalent to _
_attribute__((string_expression)) in GNU C, where string_expression is recog-
nized by the GNU C macros VALID_MACHINE_TYPE_ATTRIBUTE and VALID_MACHINE_DECL_
ATTRIBUTE which are defined in the configuration header file ‘tm.h’ for each machine. See
the GCC manual for further information.

Chapter 1: Implementation Defined Pragmas 27

Pragma Main_Storage

Syntax:

pragma Main_Storage
(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);

MAIN_STORAGE_OPTION ::=
[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
| [TOP_GUARD =>] static_SIMPLE_EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect in
GNAT, other than being syntax checked. Note that the pragma also has no effect in DEC
Ada 83 for OpenVMS Alpha Systems.

Pragma No_Return

Syntax:
pragma No_Return (procedure_LOCAL_NAME);

procedure_local NAME must refer to one or more procedure declarations in the current
declarative part. A procedure to which this pragma is applied may not contain any explicit
return statements, and also may not contain any implicit return statements from falling
off the end of a statement sequence. One use of this pragma is to identify procedures whose
only purpose is to raise an exception.

Another use of this pragma is to suppress incorrect warnings about missing returns in
functions, where the last statement of a function statement sequence is a call to such a
procedure.

Pragma Normalize_Scalars

Syntax:

pragma Normalize_Scalars;

This is a language defined pragma which is fully implemented in GNAT. The effect is to
cause all scalar objects that are not otherwise initialized to be initialized. The initial values
are implementation dependent and are as follows:

Standard.Character
Objects whose root type is Standard.Character are initialized to Character’Last.
This will be out of range of the subtype only if the subtype range excludes this
value.

Standard.Wide_Character
Objects whose root type is Standard.Wide_Character are initialized to
Wide_Character’Last. This will be out of range of the subtype only if the
subtype range excludes this value.

Integer types
Objects of an integer type are initialized to base_type’First, where base_type
is the base type of the object type. This will be out of range of the subtype
only if the subtype range excludes this value. For example, if you declare the
subtype:

28 GNAT Reference