GNU libiberty

September 2001
for GCC 3

Phil Edwards et al.

Copyright (©) 2001 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

Table of Contents

1 Using.....covviiiiiiiiiiiiennnnnnns 1
2 OVervVieW.......'viiiiiiinnnneennnnnnnnnnns 2
2.1 Supplemental Functions.................................. 2
2.2 Replacement Functions 2
2.2.1 Memory Allocation 2
222 ExitHandlers.................................. 2
2.2.3 Error Reporting 2
2.3 Extensions................ 3
3 Obstacksoiiiiiiiiiiinin.. 4
3.1 Creating Obstacks.co ... 4
3.2 Preparing for Using Obstacks 4
3.3 Allocation in an Obstack................... 5
3.4 Freeing Objects in an Obstack............................ 6
3.5 Obstack Functions and Macros........................... 7
3.6 Growing Objectsooiiiiiii 8
3.7 Extra Fast Growing Objects 9
3.8 Statusof an Obstack 10
3.9 Alignment of Data in Obstacks.......................... 11
3.10 Obstack Chunks 11
3.11 Summary of Obstack Functions 12
4 Function, Variable, and Macro Listing...... 15
Appendix A Licenses...........ccovviiinnn.. 28
A.1 GNU LESSER GENERAL PUBLIC LICENSE 28
A1l Preamble......... 28
A.1.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION.......... 29

A.1.3 How to Apply These Terms to Your New Libraries
.. 36
A2 BSD .. 37

Chapter 1: Using 1

1 Using

To date, 1ibiberty is generally not installed on its own. It has evolved over years but
does not have its own version number nor release schedule.

Possibly the easiest way to use libiberty in your projects is to drop the libiberty
code into your project’s sources, and to build the library along with your own sources; the
library would then be linked in at the end. This prevents any possible version mismatches
with other copies of libiberty elsewhere on the system.

Passing ‘--enable-install-libiberty’ to the configure script when building

libiberty causes the header files and archive library to be installed when make install
is run. This option also takes an (optional) argument to specify the installation location,
in the same manner as ‘--prefix’.

For your own projects, an approach which offers stability and flexibility is to include
libiberty with your code, but allow the end user to optionally choose to use a previously-
installed version instead. In this way the user may choose (for example) to install 1ibiberty
as part of GCC, and use that version for all software built with that compiler. (This
approach has proven useful with software using the GNU readline library.)

Making use of libiberty code usually requires that you include one or more header files
from the 1ibiberty distribution. (They will be named as necessary in the function descrip-
tions.) At link time, you will need to add ‘-1liberty’ to your link command invocation.

Chapter 2: Overview 2

2 Overview

Functions contained in 1ibiberty can be divided into three general categories.

2.1 Supplemental Functions

Certain operating systems do not provide functions which have since become standard-
ized, or at least common. For example, the Single Unix Specification Version 2 requires
that the basename function be provided, but an OS which predates that specification might
not have this function. This should not prevent well-written code from running on such a
system.

Similarly, some functions exist only among a particular “fHavor” or “family” of operating
systems. As an example, the bzero function is often not present on systems outside the
BSD-derived family of systems.

Many such functions are provided in libiberty. They are quickly listed here with little
description, as systems which lack them become less and less common. Each function foo is
implemented in ‘foo.c’ but not declared in any libiberty header file; more comments and
caveats for each function’s implementation are often available in the source file. Generally,
the function can simply be declared as extern.

2.2 Replacement Functions

Some functions have extremely limited implementations on different platforms. Other
functions are tedious to use correctly; for example, proper use of malloc calls for the return
value to be checked and appropriate action taken if memory has been exhausted. A group
of “replacement functions” is available in 1ibiberty to address these issues for some of the
most commonly used subroutines.

All of these functions are declared in the ‘libiberty.h’ header file. Many of the imple-
mentations will use preprocessor macros set by GNU Autoconf, if you decide to make use
of that program. Some of these functions may call one another.

2.2.1 Memory Allocation

The functions beginning with the letter ‘x’ are wrappers around standard functions; the
functions provided by the system environment are called and their results checked before
the results are passed back to client code. If the standard functions fail, these wrappers
will terminate the program. Thus, these versions can be used with impunity.

2.2.2 Exit Handlers

The existence and implementation of the atexit routine varies amongst the flavors
of Unix. libiberty provides an unvarying dependable implementation via xatexit and
xexit.

Chapter 2: Overview 3

2.2.3 Error Reporting

These are a set of routines to facilitate programming with the system errno interface.
The 1ibiberty source file ‘strerror.c’ contains a good deal of documentation for these
functions.

2.3 Extensions

libiberty includes additional functionality above and beyond standard functions, which
has proven generically useful in GNU programs, such as obstacks and regex. These functions
are often copied from other projects as they gain popularity, and are included here to provide
a central location from which to use, maintain, and distribute them.

Chapter 3: Obstacks 4

3 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create any
number of separate obstacks, and then allocate objects in specified obstacks. Within each
obstack, the last object allocated must always be the first one freed, but distinct obstacks
are independent of each other.

Aside from this one constraint of order of freeing, obstacks are totally general: an obstack
can contain any number of objects of any size. They are implemented with macros, so
allocation is usually very fast as long as the objects are usually small. And the only space
overhead per object is the padding needed to start each object on a suitable boundary.

3.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file ‘obstack.h’.

struct obstack [Data Type]
An obstack is represented by a data structure of type struct obstack. This structure
has a small fixed size; it records the status of the obstack and how to find the space in
which objects are allocated. It does not contain any of the objects themselves. You
should not try to access the contents of the structure directly; use only the functions
described in this chapter.

You can declare variables of type struct obstack and use them as obstacks, or you can
allocate obstacks dynamically like any other kind of object. Dynamic allocation of obstacks
allows your program to have a variable number of different stacks. (You can even allocate
an obstack structure in another obstack, but this is rarely useful.)

All the functions that work with obstacks require you to specify which obstack to use.
You do this with a pointer of type struct obstack *. In the following, we often say “an
obstack” when strictly speaking the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The struct
obstack structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that won’t
fit in the previous chunk. Since the obstack library manages chunks automatically, you
don’t need to pay much attention to them, but you do need to supply a function which the
obstack library should use to get a chunk. Usually you supply a function which uses malloc
directly or indirectly. You must also supply a function to free a chunk. These matters are
described in the following section.

3.2 Preparing for Using Obstacks

Each source file in which you plan to use the obstack functions must include the header
file ‘obstack.h’, like this:
#include <obstack.h>

Also, if the source file uses the macro obstack_init, it must declare or define two

functions or macros that will be called by the obstack library. One, obstack_chunk_alloc,

Chapter 3: Obstacks 5

is used to allocate the chunks of memory into which objects are packed. The other, obstack_
chunk_free, is used to return chunks when the objects in them are freed. These macros
should appear before any use of obstacks in the source file.

Usually these are defined to use malloc via the intermediary xmalloc (see section “Un-
constrained Allocation” in The GNU C Library Reference Manual). This is done with the
following pair of macro definitions:

#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
Though the memory you get using obstacks really comes from malloc, using obstacks is

faster because malloc is called less often, for larger blocks of memory. See Section 3.10
[Obstack Chunks]|, page 12, for full details.

At run time, before the program can use a struct obstack object as an obstack, it must
initialize the obstack by calling obstack_init.

int obstack_init (struct obstack *obstack-ptr) [Function]
Initialize obstack obstack-ptr for allocation of objects. This function calls the ob-
stack’s obstack_chunk_alloc function. If allocation of memory fails, the function
pointed to by obstack_alloc_failed_handler is called. The obstack_init func-
tion always returns 1 (Compatibility notice: Former versions of obstack returned 0 if
allocation failed).

Here are two examples of how to allocate the space for an obstack and initialize it. First,
an obstack that is a static variable:

static struct obstack myobstack;

obstack_init (&myobstack) ;

Second, an obstack that is itself dynamically allocated:
struct obstack *myobstack_ptr
= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

obstack_alloc_failed _handler [Variable]
The value of this variable is a pointer to a function that obstack uses when obstack_
chunk_alloc fails to allocate memory. The default action is to print a message and
abort. You should supply a function that either calls exit (see section “Program
Termination” in The GNU C Library Reference Manual) or longjmp (see section
“Non-Local Exits” in The GNU C Library Reference Manual) and doesn’t return.

void my_obstack_alloc_failed (void)

obstack_alloc_failed_handler = &my_obstack_alloc_failed;

3.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_alloc, which
is invoked almost like malloc.

Chapter 3: Obstacks 6

void * obstack_alloc (struct obstack *obstack-ptr, int size) [Function]
This allocates an uninitialized block of size bytes in an obstack and returns its address.
Here obstack-ptr specifies which obstack to allocate the block in; it is the address of
the struct obstack object which represents the obstack. Each obstack function or
macro requires you to specify an obstack-ptr as the first argument.

This function calls the obstack’s obstack_chunk_alloc function if it needs to allocate
a new chunk of memory; it calls obstack_alloc_failed_handler if allocation of
memory by obstack_chunk_alloc failed.

For example, here is a function that allocates a copy of a string str in a specific obstack,
which is in the variable string_obstack:

struct obstack string_obstack;

char *
copystring (char *string)

size_t len = strlen (string) + 1;
char *s = (char *) obstack_alloc (&string_obstack, len);
memcpy (s, string, len);
return s;
}
To allocate a block with specified contents, use the function obstack_copy, declared like

this:

void * obstack_copy (struct obstack *obstack-ptr, void [Function]
*address, int size)
This allocates a block and initializes it by copying size bytes of data starting at ad-
dress. It calls obstack_alloc_failed_handler if allocation of memory by obstack_
chunk_alloc failed.

void * obstack_copyO (struct obstack *obstack-ptr, void [Function]
*address, int size)
Like obstack_copy, but appends an extra byte containing a null character. This
extra byte is not counted in the argument size.

The obstack_copy0 function is convenient for copying a sequence of characters into an
obstack as a null-terminated string. Here is an example of its use:

char *
obstack_savestring (char *addr, int size)
{
return obstack_copy0 (&myobstack, addr, size);
}
Contrast this with the previous example of savestring using malloc (see section “Basic

Allocation” in The GNU C Library Reference Manual).
3.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the function obstack_free. Since the
obstack is a stack of objects, freeing one object automatically frees all other objects allocated
more recently in the same obstack.

Chapter 3: Obstacks 7

void obstack_free (struct obstack *obstack-ptr, void *object) [Function]
If object is a null pointer, everything allocated in the obstack is freed. Otherwise,
object must be the address of an object allocated in the obstack. Then object is freed,
along with everything allocated in obstack since object.

Note that if object is a null pointer, the result is an uninitialized obstack. To free all
memory in an obstack but leave it valid for further allocation, call obstack_free with the
address of the first object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);

Recall that the objects in an obstack are grouped into chunks. When all the objects
in a chunk become free, the obstack library automatically frees the chunk (see Section 3.2
[Preparing for Obstacks], page 4). Then other obstacks, or non-obstack allocation, can reuse
the space of the chunk.

3.5 Obstack Functions and Macros

The interfaces for using obstacks may be defined either as functions or as macros, depend-
ing on the compiler. The obstack facility works with all C compilers, including both ISO C
and traditional C, but there are precautions you must take if you plan to use compilers

other than GNU C.

If you are using an old-fashioned non-ISO C compiler, all the obstack “functions” are
actually defined only as macros. You can call these macros like functions, but you cannot
use them in any other way (for example, you cannot take their address).

Calling the macros requires a special precaution: namely, the first operand (the obstack
pointer) may not contain any side effects, because it may be computed more than once. For
example, if you write this:

obstack_alloc (get_obstack (), 4);

you will find that get_obstack may be called several times. If you use *obstack_list_
ptr++ as the obstack pointer argument, you will get very strange results since the incre-
mentation may occur several times.

In ISO C, each function has both a macro definition and a function definition. The
function definition is used if you take the address of the function without calling it. An
ordinary call uses the macro definition by default, but you can request the function definition
instead by writing the function name in parentheses, as shown here:

char *x;

void *(xfuncp) ();

/* Use the macro. */

x = (char *) obstack_alloc (obptr, size);
/* Call the function. */

x = (char *) (obstack_alloc) (obptr, size);
/* Take the address of the function. */

funcp = obstack_alloc;

This is the same situation that exists in ISO C for the standard library functions. See
section “Macro Definitions” in The GNU C Library Reference Manual.

Warning: When you do use the macros, you must observe the precaution of avoiding
side effects in the first operand, even in ISO C.

Chapter 3: Obstacks 8

If you use the GNU C compiler, this precaution is not necessary, because various language
extensions in GNU C permit defining the macros so as to compute each argument only once.

3.6 Growing Objects

Because memory in obstack chunks is used sequentially, it is possible to build up an
object step by step, adding one or more bytes at a time to the end of the object. With this
technique, you do not need to know how much data you will put in the object until you
come to the end of it. We call this the technique of growing objects. The special functions
for adding data to the growing object are described in this section.

You don’t need to do anything special when you start to grow an object. Using one of
the functions to add data to the object automatically starts it. However, it is necessary to
say explicitly when the object is finished. This is done with the function obstack_finish.

The actual address of the object thus built up is not known until the object is finished.
Until then, it always remains possible that you will add so much data that the object must
be copied into a new chunk.

While the obstack is in use for a growing object, you cannot use it for ordinary allocation
of another object. If you try to do so, the space already added to the growing object will
become part of the other object.

void obstack_blank (struct obstack *obstack-ptr, int size) [Function]
The most basic function for adding to a growing object is obstack_blank, which adds
space without initializing it.

void obstack_grow (struct obstack *obstack-ptr, void *data, int [Function]
size)
To add a block of initialized space, use obstack_grow, which is the growing-object
analogue of obstack_copy. It adds size bytes of data to the growing object, copying
the contents from data.

void obstack_growOQ (struct obstack *obstack-ptr, void *data, [Function]
int size)
This is the growing-object analogue of obstack_copy0. It adds size bytes copied from
data, followed by an additional null character.

void obstack_lgrow (struct obstack *obstack-ptr, char c) [Function]
To add one character at a time, use the function obstack_1igrow. It adds a single
byte containing ¢ to the growing object.

void obstack_ptr_grow (struct obstack *obstack-ptr, void *data) [Function]

Adding the value of a pointer one can use the function obstack_ptr_grow. It adds
sizeof (void *) bytes containing the value of data.

void obstack_int_grow (struct obstack *obstack-ptr, int data) [Function]
A single value of type int can be added by using the obstack_int_grow function. It
adds sizeof (int) bytes to the growing object and initializes them with the value
of data.

Chapter 3: Obstacks 9

void * obstack_finish (struct obstack *obstack-ptr) [Function]
When you are finished growing the object, use the function obstack_finish to close
it off and return its final address.

Once you have finished the object, the obstack is available for ordinary allocation or
for growing another object.

This function can return a null pointer under the same conditions as obstack_alloc
(see Section 3.3 [Allocation in an Obstack], page 5).

When you build an object by growing it, you will probably need to know afterward
how long it became. You need not keep track of this as you grow the object, because you
can find out the length from the obstack just before finishing the object with the function
obstack_object_size, declared as follows:

int obstack_object_size (struct obstack *obstack-ptr) [Function]
This function returns the current size of the growing object, in bytes. Remember to
call this function before finishing the object. After it is finished, obstack_object_
size will return zero.

If you have started growing an object and wish to cancel it, you should finish it and then
free it, like this:
obstack_free (obstack_ptr, obstack_finish (obstack_ptr));

This has no effect if no object was growing.

You can use obstack_blank with a negative size argument to make the current object
smaller. Just don’t try to shrink it beyond zero length—there’s no telling what will happen
if you do that.

3.7 Extra Fast Growing Objects

The usual functions for growing objects incur overhead for checking whether there is
room for the new growth in the current chunk. If you are frequently constructing objects
in small steps of growth, this overhead can be significant.

You can reduce the overhead by using special “fast growth” functions that grow the
object without checking. In order to have a robust program, you must do the checking
yourself. If you do this checking in the simplest way each time you are about to add data to
the object, you have not saved anything, because that is what the ordinary growth functions
do. But if you can arrange to check less often, or check more efficiently, then you make the
program faster.

The function obstack_room returns the amount of room available in the current chunk.
It is declared as follows:

int obstack_room (struct obstack *obstack-ptr) [Function]
This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack using the fast growth
functions.

While you know there is room, you can use these fast growth functions for adding data
to a growing object:

Chapter 3: Obstacks 10

void obstack_lgrow_fast (struct obstack *obstack-ptr, char c) [Function]
The function obstack_lgrow_fast adds one byte containing the character ¢ to the
growing object in obstack obstack-ptr.

void obstack_ptr_grow_fast (struct obstack *obstack-ptr, void [Function]
*data)
The function obstack_ptr_grow_fast adds sizeof (void *) bytes containing the
value of data to the growing object in obstack obstack-ptr.

void obstack_int_grow_fast (struct obstack *obstack-ptr, int [Function]
data)
The function obstack_int_grow_fast adds sizeof (int) bytes containing the value
of data to the growing object in obstack obstack-ptr.

void obstack_blank_fast (struct obstack *obstack-ptr, int size) [Function]
The function obstack_blank_fast adds size bytes to the growing object in obstack
obstack-ptr without initializing them.

When you check for space using obstack_room and there is not enough room for what
you want to add, the fast growth functions are not safe. In this case, simply use the
corresponding ordinary growth function instead. Very soon this will copy the object to a
new chunk; then there will be lots of room available again.

So, each time you use an ordinary growth function, check afterward for sufficient space
using obstack_room. Once the object is copied to a new chunk, there will be plenty of
space again, so the program will start using the fast growth functions again.

Here is an example:

void
add_string (struct obstack *obstack, const char *ptr, int len)
{
while (len > 0)
{
int room = obstack_room (obstack);
if (room == 0)
{
/* Not enough room. Add one character slowly,
which may copy to a new chunk and make room. */
obstack_lgrow (obstack, *ptr++);
len--;
}
else
{
if (room > len)
room = len;
/* Add fast as much as we have room for. */
len -= room;
while (room-- > 0)
obstack_lgrow_fast (obstack, *ptr++);
}
}

Chapter 3: Obstacks 11

3.8 Status of an Obstack

Here are functions that provide information on the current status of allocation in an
obstack. You can use them to learn about an object while still growing it.

void * obstack_base (struct obstack *obstack-ptr) [Function]
This function returns the tentative address of the beginning of the currently growing
object in obstack-ptr. If you finish the object immediately, it will have that address.
If you make it larger first, it may outgrow the current chunk—then its address will
change!

If no object is growing, this value says where the next object you allocate will start
(once again assuming it fits in the current chunk).

void * obstack_next_free (struct obstack *obstack-ptr) [Function]
This function returns the address of the first free byte in the current chunk of obstack
obstack-ptr. This is the end of the currently growing object. If no object is growing,
obstack_next_free returns the same value as obstack_base.

int obstack_object_size (struct obstack *obstack-ptr) [Function]
This function returns the size in bytes of the currently growing object. This is equiv-
alent to

obstack_next_free (obstack-ptr) - obstack_base (obstack-ptr)

3.9 Alignment of Data in Obstacks

FEach obstack has an alignment boundary; each object allocated in the obstack auto-
matically starts on an address that is a multiple of the specified boundary. By default, this
boundary is 4 bytes.

To access an obstack’s alignment boundary, use the macro obstack_alignment_mask,
whose function prototype looks like this:

int obstack_alignment_mask (struct obstack *obstack-ptr) [Macro]
The value is a bit mask; a bit that is 1 indicates that the corresponding bit in the
address of an object should be 0. The mask value should be one less than a power of
2; the effect is that all object addresses are multiples of that power of 2. The default
value of the mask is 3, so that addresses are multiples of 4. A mask value of 0 means
an object can start on any multiple of 1 (that is, no alignment is required).

The expansion of the macro obstack_alignment_mask is an lvalue, so you can alter
the mask by assignment. For example, this statement:
obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next time an
object is allocated or finished in the obstack. If you are not growing an object, you can
make the new alignment mask take effect immediately by calling obstack_finish. This
will finish a zero-length object and then do proper alignment for the next object.

Chapter 3: Obstacks 12

3.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then parceling out
space in the chunks to satisfy your requests. Chunks are normally 4096 bytes long unless
you specify a different chunk size. The chunk size includes 8 bytes of overhead that are
not actually used for storing objects. Regardless of the specified size, longer chunks will be
allocated when necessary for long objects.

The obstack library allocates chunks by calling the function obstack_chunk_alloc,
which you must define. When a chunk is no longer needed because you have freed all the
objects in it, the obstack library frees the chunk by calling obstack_chunk_free, which
you must also define.

These two must be defined (as macros) or declared (as functions) in each source file
that uses obstack_init (see Section 3.1 [Creating Obstacks|, page 4). Most often they are
defined as macros like this:

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

Note that these are simple macros (no arguments). Macro definitions with arguments
will not work! It is necessary that obstack_chunk_alloc or obstack_chunk_free, alone,
expand into a function name if it is not itself a function name.

If you allocate chunks with malloc, the chunk size should be a power of 2. The default
chunk size, 4096, was chosen because it is long enough to satisfy many typical requests on
the obstack yet short enough not to waste too much memory in the portion of the last chunk
not yet used.

int obstack_chunk_size (struct obstack *obstack-ptr) [Macro]
This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by assigning
it a new value. Doing so does not affect the chunks already allocated, but will change the
size of chunks allocated for that particular obstack in the future. It is unlikely to be useful
to make the chunk size smaller, but making it larger might improve efficiency if you are
allocating many objects whose size is comparable to the chunk size. Here is how to do so
cleanly:

if (obstack_chunk_size (obstack_ptr) < new-chunk-size)
obstack_chunk_size (obstack_ptr) = new-chunk-size;

3.11 Summary of Obstack Functions

Here is a summary of all the functions associated with obstacks. Each takes the address
of an obstack (struct obstack *) as its first argument.

void obstack_init (struct obstack *obstack-ptr)
Initialize use of an obstack. See Section 3.1 [Creating Obstacks|, page 4.

void *obstack_alloc (struct obstack *obstack-ptr, int size)
Allocate an object of size uninitialized bytes. See Section 3.3 [Allocation in an
Obstack]|, page 5.

Chapter 3: Obstacks 13

void *obstack_copy (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size bytes, with contents copied from address. See Sec-
tion 3.3 [Allocation in an Obstack], page 5.

void *obstack_copyO (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size+l bytes, with size of them copied from address,
followed by a null character at the end. See Section 3.3 [Allocation in an
Obstack]|, page 5.

void obstack_free (struct obstack *obstack-ptr, void *object)
Free object (and everything allocated in the specified obstack more recently
than object). See Section 3.4 [Freeing Obstack Objects], page 6.

void obstack_blank (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object. See Section 3.6 [Growing
Objects], page 8.

void obstack_grow (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object. See Section 3.6
[Growing Objects|, page 8.

void obstack_grow0 (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object, and then add another
byte containing a null character. See Section 3.6 [Growing Objects], page 8.

void obstack_lgrow (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object. See Section 3.6 [Grow-
ing Objects]|, page 8.

void *obstack_finish (struct obstack *obstack-ptr)
Finalize the object that is growing and return its permanent address. See
Section 3.6 [Growing Objects], page 8.

int obstack_object_size (struct obstack *obstack-ptr)
Get the current size of the currently growing object. See Section 3.6 [Growing
Objects], page 8.

void obstack_blank_fast (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object without checking that there is
enough room. See Section 3.7 [Extra Fast Growing], page 9.

void obstack_lgrow_fast (struct obstack *xobstack-ptr, char data-char)
Add one byte containing data-char to a growing object without checking that
there is enough room. See Section 3.7 [Extra Fast Growing|, page 9.

int obstack_room (struct obstack *obstack-ptr)
Get the amount of room now available for growing the current object. See
Section 3.7 [Extra Fast Growing], page 9.

int obstack_alignment_mask (struct obstack *obstack-ptr)
The mask used for aligning the beginning of an object. This is an lvalue. See
Section 3.9 [Obstacks Data Alignment|, page 11.

Chapter 3: Obstacks 14

int obstack_chunk_size (struct obstack *obstack-ptr)
The size for allocating chunks. This is an lvalue. See Section 3.10 [Obstack
Chunks], page 12.

void *obstack_base (struct obstack *obstack-ptr)
Tentative starting address of the currently growing object. See Section 3.8
[Status of an Obstack], page 11.

void *obstack_next_free (struct obstack *obstack-ptr)
Address just after the end of the currently growing object. See Section 3.8
[Status of an Obstack], page 11.

Chapter 4: Function, Variable, and Macro Listing. 15

4 Function, Variable, and Macro Listing.

HOST_CHARSET [Extension]
This macro indicates the basic character set and encoding used by the host: more
precisely, the encoding used for character constants in preprocessor ‘#if’ statements
(the C "execution character set"). It is defined by ‘safe-ctype.h’, and will be an
integer constant with one of the following values:

HOST_CHARSET_UNKNOWN
The host character set is unknown - that is, not one of the next two
possibilities.

HOST_CHARSET_ASCII
The host character set is ASCII.

HOST_CHARSET_EBCDIC
The host character set is some variant of EBCDIC. (Only one of the
nineteen EBCDIC varying characters is tested; exercise caution.)

voidx* alloca (size_t size) [Replacement]
This function allocates memory which will be automatically reclaimed after the pro-
cedure exits. The 1libiberty implementation does not free the memory immediately
but will do so eventually during subsequent calls to this function. Memory is allocated
using xmalloc under normal circumstances.

The header file ‘alloca-conf.h’ can be used in conjunction with the GNU Autoconf
test AC_FUNC_ALLOCA to test for and properly make available this function. The AC_
FUNC_ALLOCA test requires that client code use a block of preprocessor code to be safe
(see the Autoconf manual for more); this header incorporates that logic and more,
including the possibility of a GCC built-in function.

int asprintf (char **resptr, const char *format, ...) [Extension]
Like sprintf, but instead of passing a pointer to a buffer, you pass a pointer to a
pointer. This function will compute the size of the buffer needed, allocate memory
with malloc, and store a pointer to the allocated memory in *resptr. The value
returned is the same as sprintf would return. If memory could not be allocated,
minus one is returned and NULL is stored in *resptr.

int atexit (void (*£)()) [Supplemental]
Causes function f to be called at exit. Returns 0.

char* basename (const char *name) [Supplemental]
Returns a pointer to the last component of pathname name. Behavior is undefined if
the pathname ends in a directory separator.

int bemp (char *x, char xy, int count) [Supplemental]
Compares the first count bytes of two areas of memory. Returns zero if they are
the same, nonzero otherwise. Returns zero if count is zero. A nonzero result only
indicates a difference, it does not indicate any sorting order (say, by having a positive
result mean x sorts before y).

Chapter 4: Function, Variable, and Macro Listing. 16

void bcopy (char *in, char *out, int length) [Supplemental]
Copies length bytes from memory region in to region out. The use of bcopy is depre-
cated in new programs.

void* bsearch (const void *key, const void *base, size_t [Supplemental]
nmemb, size_t size, int (*compar)(const void *, const void *))

Performs a search over an array of nmemb elements pointed to by base for a member
that matches the object pointed to by key. The size of each member is specified by
size. The array contents should be sorted in ascending order according to the compar
comparison function. This routine should take two arguments pointing to the key and
to an array member, in that order, and should return an integer less than, equal to,
or greater than zero if the key object is respectively less than, matching, or greater
than the array member.

char**x buildargv (char *sp) [Extension]
Given a pointer to a string, parse the string extracting fields separated by whitespace
and optionally enclosed within either single or double quotes (which are stripped off),
and build a vector of pointers to copies of the string for each field. The input string
remains unchanged. The last element of the vector is followed by a NULL element.

All of the memory for the pointer array and copies of the string is obtained from
malloc. All of the memory can be returned to the system with the single function
call freeargv, which takes the returned result of buildargv, as it’s argument.

Returns a pointer to the argument vector if successful. Returns NULL if sp is NULL or
if there is insufficient memory to complete building the argument vector.

If the input is a null string (as opposed to a NULL pointer), then buildarg returns an
argument vector that has one arg, a null string.

void bzero (char *mem, int count) [Supplemental]
Zeros count bytes starting at mem. Use of this function is deprecated in favor of
memset.

void* calloc (size_t nelem, size_t elsize) [Supplemental]
Uses malloc to allocate storage for nelem objects of elsize bytes each, then zeros the
memory.

char* choose_temp_base (void) [Extension]

Return a prefix for temporary file names or NULL if unable to find one. The current
directory is chosen if all else fails so the program is exited if a temporary directory
can’t be found (mktemp fails). The buffer for the result is obtained with xmalloc.

This function is provided for backwards compatability only. Its use is not recom-
mended.

char* choose_tmpdir () [Replacement]
Returns a pointer to a directory path suitable for creating temporary files in.

long clock (void) [Supplemental]
Returns an approximation of the CPU time used by the process as a clock_t; divide
this number by ‘CLOCKS_PER_SEC’ to get the number of seconds used.

Chapter 4: Function, Variable, and Macro Listing. 17

char* concat (const char *s1, const char *s2, ..., NULL) [Extension)]
Concatenate zero or more of strings and return the result in freshly xmalloced mem-
ory. Returns NULL if insufficient memory is available. The argument list is terminated
by the first NULL pointer encountered. Pointers to empty strings are ignored.

char*x dupargv (char **vector) [Extension]
Duplicate an argument vector. Simply scans through vector, duplicating each argu-
ment until the terminating NULL is found. Returns a pointer to the argument vector
if successful. Returns NULL if there is insufficient memory to complete building the
argument vector.

int errno_max (void) [Extension)]
Returns the maximum errno value for which a corresponding symbolic name or mes-
sage is available. Note that in the case where we use the sys_errlist supplied by
the system, it is possible for there to be more symbolic names than messages, or
vice versa. In fact, the manual page for perror (3C) explicitly warns that one should
check the size of the table (sys_nerr) before indexing it, since new error codes may
be added to the system before they are added to the table. Thus sys_nerr might be
smaller than value implied by the largest errno value defined in <errno.h>.

We return the maximum value that can be used to obtain a meaningful symbolic
name or message.

int fdmatch (int fdi1, int fd2) [Extension]
Check to see if two open file descriptors refer to the same file. This is useful, for
example, when we have an open file descriptor for an unnamed file, and the name of
a file that we believe to correspond to that fd. This can happen when we are exec’d
with an already open file (stdout for example) or from the SVR4 ‘/proc’ calls that
return open file descriptors for mapped address spaces. All we have to do is open
the file by name and check the two file descriptors for a match, which is done by
comparing major and minor device numbers and inode numbers.

int ffs (int valu) [Supplemental]
Find the first (least significant) bit set in valu. Bits are numbered from right to left,
starting with bit 1 (corresponding to the value 1). If valu is zero, zero is returned.

int fnmatch (const char *pattern, const char *string, int [Replacement]
flags)

Matches string against pattern, returning zero if it matches, FNM_NOMATCH if not.
pattern may contain the wildcards ? to match any one character, * to match any zero
or more characters, or a set of alternate characters in square brackets, like ‘[a-gt8]°,
which match one character (a through g, or t, or 8, in this example) if that one
character is in the set. A set may be inverted (i.e., match anything except what’s in
the set) by giving ~ or ! as the first character in the set. To include those characters
in the set, list them as anything other than the first character of the set. To include
a dash in the set, list it last in the set. A backslash character makes the following
character not special, so for example you could match against a literal asterisk with
“*’. To match a literal backslash, use ‘\\’.

flags controls various aspects of the matching process, and is a boolean OR of zero
or more of the following values (defined in <fnmatch.h>):

Chapter 4: Function, Variable, and Macro Listing. 18

FNM_PATHNAME
FNM_FILE_NAME
string is assumed to be a path name. No wildcard will ever match /.

FNM_NOESCAPE
Do not interpret backslashes as quoting the following special character.

FNM_PERIOD
A leading period (at the beginning of string, or if FNM_PATHNAME after a
slash) is not matched by * or ? but must be matched explicitly.

FNM_LEADING_DIR
Means that string also matches pattern if some initial part of string
matches, and is followed by / and zero or more characters. For example,
‘foo*’ would match either ‘foobar’ or ‘foobar/grill’.

FNM_CASEFOLD
Ignores case when performing the comparison.

void freeargv (char **vector) [Extension]
Free an argument vector that was built using buildargv. Simply scans through
vector, freeing the memory for each argument until the terminating NULL is found,
and then frees vector itself.

long get_run_time (void) [Replacement]
Returns the time used so far, in microseconds. If possible, this is the time used by
this process, else it is the elapsed time since the process started.

char* getcwd (char *pathname, int len) [Supplemental]
Copy the absolute pathname for the current working directory into pathname, which
is assumed to point to a buffer of at least len bytes, and return a pointer to the
buffer. If the current directory’s path doesn’t fit in len characters, the result is NULL
and errno is set. If pathname is a null pointer, getcwd will obtain len bytes of space
using malloc.

int getpagesize (void) [Supplemental]
Returns the number of bytes in a page of memory. This is the granularity of many
of the system memory management routines. No guarantee is made as to whether or
not it is the same as the basic memory management hardware page size.

char* getpwd (void) [Supplemental]
Returns the current working directory. This implementation caches the result on the
assumption that the process will not call chdir between calls to getpwd.

void hex_init (void) [Extension]
Initializes the array mapping the current character set to corresponding hex values.
This function must be called before any call to hex_p or hex_value. If you fail to
call it, a default ASCII-based table will normally be used on ASCII systems.

int hex_p (int c) [Extension)]
Evaluates to non-zero if the given character is a valid hex character, or zero if it is
not. Note that the value you pass will be cast to unsigned char within the macro.

Chapter 4: Function, Variable, and Macro Listing. 19

unsigned int hex_value (int c¢) [Extension]
Returns the numeric equivalent of the given character when interpreted as a hexidec-
imal digit. The result is undefined if you pass an invalid hex digit. Note that the
value you pass will be cast to unsigned char within the macro.

The hex_value macro returns unsigned int, rather than signed int, to make it easier
to use in parsing addresses from hex dump files: a signed int would be sign-extended
when converted to a wider unsigned type — like bfd_vma, on some systems.

char* index (char *s, int c) [Supplemental]
Returns a pointer to the first occurrence of the character ¢ in the string s, or NULL if
not found. The use of index is deprecated in new programs in favor of strchr.

void insque (struct gelem *elem, struct gelem *pred) [Supplemental]

void remque (struct gelem *elem) [Supplemental]
Routines to manipulate queues built from doubly linked lists. The insque routine
inserts elem in the queue immediately after pred. The remque routine removes elem
from its containing queue. These routines expect to be passed pointers to structures
which have as their first members a forward pointer and a back pointer, like this
prototype (although no prototype is provided):

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;
char q_datal[];

¥
ISALPHA (¢) [Extension]
ISALNUM (c) [Extension)]
ISBLANK (c¢) [Extension]
ISCNTRL (c¢) [Extension]
ISDIGIT (c¢) [Extension]
ISGRAPH (c¢) [Extension]
ISLOWER (¢) [Extension]
ISPRINT (c) [Extension]
ISPUNCT (c) [Extension]
ISSPACE (c¢) [Extension]
ISUPPER (c¢) [Extension]
ISXDIGIT (c) [Extension]

These twelve macros are defined by ‘safe-ctype.h’. Each has the same meaning as
the corresponding macro (with name in lowercase) defined by the standard header
‘ctype.h’. For example, ISALPHA returns true for alphabetic characters and false for
others. However, there are two differences between these macros and those provided
by ‘ctype.h’:
e These macros are guaranteed to have well-defined behavior for all values repre-
sentable by signed char and unsigned char, and for EOF.

e These macros ignore the current locale; they are true for these fixed sets of
characters:

ALPHA A-Za-z

Chapter 4: Function, Variable, and Macro Listing. 20

ALNUM A-Za-z0-9
BLANK space tab
CNTRL IPRINT

DIGIT 0-9
GRAPH ALNUM | | PUNCT
LOWER a-z

PRINT GRAPH || space

PUNCT oSl ex O _—=+[{I¥\|;:7",<.>/?
SPACE space tab \n \r \f \v

UPPER A-Z

XDIGIT 0-9A-Fa-f

Note that, if the host character set is ASCII or a superset thereof, all these
macros will return false for all values of char outside the range of 7-bit ASCII. In
particular, both ISPRINT and ISCNTRL return false for characters with numeric
values from 128 to 255.

ISIDNUM (¢) [Extension]
ISIDST (c) [Extension)]
IS_.VSPACE (c¢) [Extension]
IS_NVSPACE (¢) [Extension]
IS_.SPACE_OR_NUL (c) [Extension]

]

IS_ISOBASIC (¢) [Extension
These six macros are defined by ‘safe-ctype.h’ and provide additional character
classes which are useful when doing lexical analysis of C or similar languages. They
are true for the following sets of characters:

IDNUM A-Za-z0-9_
IDST A-Za-z_
VSPACE \r \n
NVSPACE space tab \f \v \0
SPACE_OR_NUL VSPACE || NVSPACE
ISOBASIC VSPACE | | NVSPACE || PRINT
const char* lbasename (const char *name) [Replacement]

Given a pointer to a string containing a typical pathname (‘/usr/src/cmd/1s/1s.c’
for example), returns a pointer to the last component of the pathname (‘ls.c’ in this
case). The returned pointer is guaranteed to lie within the original string. This latter
fact is not true of many vendor C libraries, which return special strings or modify the
passed strings for particular input.

In particular, the empty string returns the same empty string, and a path ending in
/ returns the empty string after it.

const char* lrealpath (const char *name) [Replacement)]
Given a pointer to a string containing a pathname, returns a canonical version of the
filename. Symlinks will be resolved, and “.” and “..” components will be simplified.

The returned value will be allocated using malloc, or NULL will be returned on a
memory allocation error.

Chapter 4: Function, Variable, and Macro Listing. 21

const char* make_relative_prefix (const char *progname, const [Extension)]
char *bin_prefix, const char *prefix)
Given three paths progname, bin_prefix, prefix, return the path that is in the same
position relative to progname’s directory as prefix is relative to bin_prefix. That
is, a string starting with the directory portion of progname, followed by a relative
pathname of the difference between bin_prefix and prefix.

If progname does not contain any directory separators, make_relative_prefix will
search PATH to find a program named progname. Also, if progname is a symbolic link,
the symbolic link will be resolved.

For example, if bin_prefix is /alpha/beta/gamma/gcc/delta, prefix is
/alpha/beta/gamma/omega/, and progname is /red/green/blue/gcc, then this
function will return /red/green/blue/../../omega/.

The return value is normally allocated via malloc. If no relative prefix can be found,
return NULL.

char* make_temp_file (const char *suffix) [Replacement]
Return a temporary file name (as a string) or NULL if unable to create one. suffix is
a suffix to append to the file name. The string is malloced, and the temporary file
has been created.

void* memchr (const void *s, int c, size_t n) [Supplemental]
This function searches memory starting at *s for the character c¢. The search only
ends with the first occurrence of ¢, or after length characters; in particular, a null
character does not terminate the search. If the character ¢ is found within length
characters of *s, a pointer to the character is returned. If ¢ is not found, then NULL
is returned.

int memcmp (const void *x, const void *y, size_t count) [Supplemental]
Compares the first count bytes of two areas of memory. Returns zero if they are the
same, a value less than zero if x is lexically less than y, or a value greater than zero
if x is lexically greater than y. Note that lexical order is determined as if comparing
unsigned char arrays.

void* memcpy (void *out, const void *in, size_t length) [Supplemental]
Copies length bytes from memory region in to region out. Returns a pointer to out.

void* memmove (void *from, const void *to, size_t count) [Supplemental]
Copies count bytes from memory area from to memory area to, returning a pointer
to to.

void* mempcpy (void *out, const void *in, size_t length) [Supplemental]
Copies length bytes from memory region in to region out. Returns a pointer to out +
length.

void* memset (void *s, int ¢, size_t count) [Supplemental]

Sets the first count bytes of s to the constant byte ¢, returning a pointer to s.

int mkstemps (char *template, int suffix_len) [Replacement]
Generate a unique temporary file name from template. template has the form:

Chapter 4: Function, Variable, and Macro Listing. 22

path/ccXXXXXXsuffix

suffix_len tells us how long suffix is (it can be zero length). The last six characters of
template before suffix must be ‘XXXXXX’; they are replaced with a string that makes
the filename unique. Returns a file descriptor open on the file for reading and writing.

int pexecute (const char *program, char * const *argv, const [Extension]
char *this_pname, const char *temp_base, char *xerrmsg_fmt, char
*x*xerrmsg_arg, int flags)
Executes a program.
program and argv are the arguments to execv/execvp.
this_pname is name of the calling program (i.e., argv[0]).

temp_base is the path name, sans suffix, of a temporary file to use if needed. This
is currently only needed for MS-DOS ports that don’t use go32 (do any still exist?).
Ports that don’t need it can pass NULL.

(flags & PEXECUTE_SEARCH) is non-zero if PATH should be searched (777 It’s not clear
that GCC passes this flag correctly). (flags & PEXECUTE_FIRST) is nonzero for the
first process in chain. (flags & PEXECUTE_FIRST) is nonzero for the last process in
chain. The first/last flags could be simplified to only mark the last of a chain of
processes but that requires the caller to always mark the last one (and not give up
early if some error occurs). It’s more robust to require the caller to mark both ends
of the chain.

The result is the pid on systems like Unix where we fork/exec and on systems like
WIN32 and OS/2 where we use spawn. It is up to the caller to wait for the child.

The result is the WEXITSTATUS on systems like MS-DOS where we spawn and wait for
the child here.

Upon failure, errmsg_fmt and errmsg_arg are set to the text of the error message with
an optional argument (if not needed, errmsg_arg is set to NULL), and —1 is returned.
errno is available to the caller to use.

void psignal (unsigned signo, char *message) [Supplemental]
Print message to the standard error, followed by a colon, followed by the description
of the signal specified by signo, followed by a newline.

int putenv (const char *string) [Supplemental]
Uses setenv or unsetenv to put string into the environment or remove it. If string
is of the form ‘name=value’ the string is added; if no ‘=’ is present the name is
unset /removed.

int pwait (int pid, int *status, int flags) [Extension]

Waits for a program started by pexecute to finish.

pid is the process id of the task to wait for. status is the ‘status’ argument to
wait. flags is currently unused (allows future enhancement without breaking upward
compatibility). Pass 0 for now.

The result is the pid of the child reaped, or -1 for failure (errno says why).

On systems that don’t support waiting for a particular child, pid is ignored. On
systems like MS-DOS that don’t really multitask pwait is just a mechanism to provide
a consistent interface for the caller.

Chapter 4: Function, Variable, and Macro Listing. 23

long int random (void) [Supplement]

void srandom (unsigned int seed) [Supplement]

void* initstate (unsigned int seed, void *arg_state, unsigned [Supplement]
long n)

voidx* setstate (void *arg_state) [Supplement]

Random number functions. random returns a random number in the range 0 to
LONG_MAX. srandom initializes the random number generator to some starting point
determined by seed (else, the values returned by random are always the same for each
run of the program). initstate and setstate allow fine-grained control over the
state of the random number generator.

char* reconcat (char *optr, const char *s1, ..., NULL) [Extension]
Same as concat, except that if optr is not NULL it is freed after the string is created.
This is intended to be useful when you’re extending an existing string or building up
a string in a loop:
str = reconcat (str, "pre-", str, NULL);

int rename (const char *old, const char *new) [Supplemental]
Renames a file from old to new. If new already exists, it is removed.

char* rindex (const char *s, int c) [Supplemental]
Returns a pointer to the last occurrence of the character ¢ in the string s, or NULL if
not found. The use of rindex is deprecated in new programs in favor of strrchr.

int setenv (const char *name, const char *value, int [Supplemental]
overwrite)
void unsetenv (const char *name) [Supplemental]

setenv adds name to the environment with value value. If the name was already
present in the environment, the new value will be stored only if overwrite is nonzero.
The companion unsetenv function removes name from the environment. This imple-
mentation is not safe for multithreaded code.

int signo_max (void) [Extension)]
Returns the maximum signal value for which a corresponding symbolic name or mes-
sage is available. Note that in the case where we use the sys_siglist supplied by
the system, it is possible for there to be more symbolic names than messages, or vice
versa. In fact, the manual page for psignal(3b) explicitly warns that one should
check the size of the table (NSIG) before indexing it, since new signal codes may be
added to the system before they are added to the table. Thus NSIG might be smaller
than value implied by the largest signo value defined in <signal.h>.

We return the maximum value that can be used to obtain a meaningful symbolic
name or message.

int sigsetmask (int set) [Supplemental]
Sets the signal mask to the one provided in set and returns the old mask (which, for
libiberty’s implementation, will always be the value 1).

int snprintf (char *buf, size_t n, const char *format, ...) [Supplemental]
This