
Contributed by James Craig Burley (craig@jcb-sc.com). Inspired by a first pass
at translating ‘g77-0.5.16/f/DOC’ that was contributed to Craig by David Ronis
(ronis@onsager.chem.mcgill.ca).

Using and Porting GNU Fortran

James Craig Burley

Last updated 2003-05-13

for version GCC-3.3.6

For the GCC-3.3.6 Version*

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Copyright c© 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Founda-
tion, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

GNU GENERAL PUBLIC LICENSE . 3

GNU Free Documentation License . 9

Contributors to GNU Fortran . 17

Funding Free Software . 19

1 Funding GNU Fortran . 21

2 Getting Started. 23

3 What is GNU Fortran? . 25

4 Compile Fortran, C, or Other Programs 29

5 GNU Fortran Command Options . 31

6 News About GNU Fortran . 55

7 User-visible Changes . 75

8 The GNU Fortran Language . 87

9 Other Dialects . 197

10 The GNU Fortran Compiler . 211

11 Other Compilers . 243

12 Other Languages . 247

13 Debugging and Interfacing . 251

14 Collected Fortran Wisdom . 263

15 Known Causes of Trouble with GNU Fortran 281

16 Open Questions . 311

17 Reporting Bugs . 313

18 How To Get Help with GNU Fortran 317

19 Adding Options . 319

20 Projects . 321

21 Front End. 327

22 Diagnostics . 351

Keyword Index . 359

ii Using and Porting GNU Fortran

iii

Table of Contents

Introduction . 1

GNU GENERAL PUBLIC LICENSE 3
Preamble . 3
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION. 3
How to Apply These Terms to Your New Programs 8

GNU Free Documentation License 9
ADDENDUM: How to use this License for your documents 15

Contributors to GNU Fortran 17

Funding Free Software . 19

1 Funding GNU Fortran . 21

2 Getting Started. 23

3 What is GNU Fortran? 25

4 Compile Fortran, C, or Other Programs 29

5 GNU Fortran Command Options 31
5.1 Option Summary . 31
5.2 Options Controlling the Kind of Output 32
5.3 Shorthand Options . 34
5.4 Options Controlling Fortran Dialect . 35
5.5 Options to Request or Suppress Warnings 40
5.6 Options for Debugging Your Program or GNU Fortran 44
5.7 Options That Control Optimization . 44
5.8 Options Controlling the Preprocessor . 47
5.9 Options for Directory Search . 47
5.10 Options for Code Generation Conventions 48
5.11 Environment Variables Affecting GNU Fortran 53

6 News About GNU Fortran 55

7 User-visible Changes . 75

iv Using and Porting GNU Fortran

8 The GNU Fortran Language. 87
8.1 Direction of Language Development . 87
8.2 ANSI FORTRAN 77 Standard Support 89

8.2.1 No Passing External Assumed-length 89
8.2.2 No Passing Dummy Assumed-length 89
8.2.3 No Pathological Implied-DO . 89
8.2.4 No Useless Implied-DO. 90

8.3 Conformance . 90
8.4 Notation Used in This Chapter . 91
8.5 Fortran Terms and Concepts . 92

8.5.1 Syntactic Items . 92
8.5.2 Statements, Comments, and Lines 92
8.5.3 Scope of Symbolic Names and Statement Labels . . 93

8.6 Characters, Lines, and Execution Sequence 93
8.6.1 GNU Fortran Character Set . 93
8.6.2 Lines . 94
8.6.3 Continuation Line . 95
8.6.4 Statements . 95
8.6.5 Statement Labels . 95
8.6.6 Order of Statements and Lines 96
8.6.7 Including Source Text . 96
8.6.8 Cpp-style directives . 97

8.7 Data Types and Constants . 97
8.7.1 Data Types . 98

8.7.1.1 Double Notation . 99
8.7.1.2 Star Notation . 99
8.7.1.3 Kind Notation . 100

8.7.2 Constants . 103
8.7.3 Integer Type . 103
8.7.4 Character Type . 103

8.8 Expressions . 104
8.8.1 The %LOC() Construct . 104

8.9 Specification Statements . 105
8.9.1 NAMELIST Statement . 105
8.9.2 DOUBLE COMPLEX Statement . 105

8.10 Control Statements . 105
8.10.1 DO WHILE . 105
8.10.2 END DO . 106
8.10.3 Construct Names . 106
8.10.4 The CYCLE and EXIT Statements 106

8.11 Functions and Subroutines . 107
8.11.1 The %VAL() Construct . 107
8.11.2 The %REF() Construct . 108
8.11.3 The %DESCR() Construct . 108
8.11.4 Generics and Specifics . 109
8.11.5 REAL() and AIMAG() of Complex 112
8.11.6 CMPLX() of DOUBLE PRECISION 113
8.11.7 MIL-STD 1753 Support . 113

v

8.11.8 f77/f2c Intrinsics . 113
8.11.9 Table of Intrinsic Functions 114

8.11.9.1 Abort Intrinsic . 114
8.11.9.2 Abs Intrinsic . 115
8.11.9.3 Access Intrinsic . 115
8.11.9.4 AChar Intrinsic . 115
8.11.9.5 ACos Intrinsic . 116
8.11.9.6 AdjustL Intrinsic 116
8.11.9.7 AdjustR Intrinsic 116
8.11.9.8 AImag Intrinsic . 116
8.11.9.9 AInt Intrinsic . 117
8.11.9.10 Alarm Intrinsic . 117
8.11.9.11 All Intrinsic . 117
8.11.9.12 Allocated Intrinsic 118
8.11.9.13 ALog Intrinsic . 118
8.11.9.14 ALog10 Intrinsic 118
8.11.9.15 AMax0 Intrinsic 118
8.11.9.16 AMax1 Intrinsic 118
8.11.9.17 AMin0 Intrinsic . 119
8.11.9.18 AMin1 Intrinsic . 119
8.11.9.19 AMod Intrinsic . 119
8.11.9.20 And Intrinsic . 120
8.11.9.21 ANInt Intrinsic . 120
8.11.9.22 Any Intrinsic . 120
8.11.9.23 ASin Intrinsic . 120
8.11.9.24 Associated Intrinsic 121
8.11.9.25 ATan Intrinsic . 121
8.11.9.26 ATan2 Intrinsic . 121
8.11.9.27 BesJ0 Intrinsic. 121
8.11.9.28 BesJ1 Intrinsic. 122
8.11.9.29 BesJN Intrinsic . 122
8.11.9.30 BesY0 Intrinsic . 122
8.11.9.31 BesY1 Intrinsic . 123
8.11.9.32 BesYN Intrinsic. 123
8.11.9.33 Bit Size Intrinsic 123
8.11.9.34 BTest Intrinsic. 123
8.11.9.35 CAbs Intrinsic . 124
8.11.9.36 CCos Intrinsic . 124
8.11.9.37 Ceiling Intrinsic 124
8.11.9.38 CExp Intrinsic . 124
8.11.9.39 Char Intrinsic . 125
8.11.9.40 ChDir Intrinsic (subroutine) 125
8.11.9.41 ChMod Intrinsic (subroutine) 126
8.11.9.42 CLog Intrinsic . 126
8.11.9.43 Cmplx Intrinsic . 127
8.11.9.44 Complex Intrinsic 127
8.11.9.45 Conjg Intrinsic . 128
8.11.9.46 Cos Intrinsic. 128

vi Using and Porting GNU Fortran

8.11.9.47 CosH Intrinsic . 128
8.11.9.48 Count Intrinsic . 128
8.11.9.49 CPU Time Intrinsic 129
8.11.9.50 CShift Intrinsic . 129
8.11.9.51 CSin Intrinsic . 129
8.11.9.52 CSqRt Intrinsic . 129
8.11.9.53 CTime Intrinsic (subroutine). 130
8.11.9.54 CTime Intrinsic (function) 130
8.11.9.55 DAbs Intrinsic . 130
8.11.9.56 DACos Intrinsic 131
8.11.9.57 DASin Intrinsic . 131
8.11.9.58 DATan Intrinsic 131
8.11.9.59 DATan2 Intrinsic 131
8.11.9.60 Date and Time Intrinsic 132
8.11.9.61 DbesJ0 Intrinsic 132
8.11.9.62 DbesJ1 Intrinsic 133
8.11.9.63 DbesJN Intrinsic 133
8.11.9.64 DbesY0 Intrinsic 133
8.11.9.65 DbesY1 Intrinsic 134
8.11.9.66 DbesYN Intrinsic 134
8.11.9.67 Dble Intrinsic . 134
8.11.9.68 DCos Intrinsic . 134
8.11.9.69 DCosH Intrinsic 135
8.11.9.70 DDiM Intrinsic . 135
8.11.9.71 DErF Intrinsic . 135
8.11.9.72 DErFC Intrinsic 136
8.11.9.73 DExp Intrinsic . 136
8.11.9.74 Digits Intrinsic . 136
8.11.9.75 DiM Intrinsic . 136
8.11.9.76 DInt Intrinsic . 136
8.11.9.77 DLog Intrinsic . 137
8.11.9.78 DLog10 Intrinsic 137
8.11.9.79 DMax1 Intrinsic 137
8.11.9.80 DMin1 Intrinsic . 137
8.11.9.81 DMod Intrinsic . 138
8.11.9.82 DNInt Intrinsic . 138
8.11.9.83 Dot Product Intrinsic 138
8.11.9.84 DProd Intrinsic . 138
8.11.9.85 DSign Intrinsic . 139
8.11.9.86 DSin Intrinsic . 139
8.11.9.87 DSinH Intrinsic . 139
8.11.9.88 DSqRt Intrinsic . 140
8.11.9.89 DTan Intrinsic . 140
8.11.9.90 DTanH Intrinsic 140
8.11.9.91 DTime Intrinsic (subroutine) 140
8.11.9.92 EOShift Intrinsic 141
8.11.9.93 Epsilon Intrinsic 141
8.11.9.94 ErF Intrinsic . 141

vii

8.11.9.95 ErFC Intrinsic . 141
8.11.9.96 ETime Intrinsic (subroutine) 142
8.11.9.97 ETime Intrinsic (function) 142
8.11.9.98 Exit Intrinsic . 143
8.11.9.99 Exp Intrinsic . 143
8.11.9.100 Exponent Intrinsic 143
8.11.9.101 FDate Intrinsic (subroutine) 143
8.11.9.102 FDate Intrinsic (function) 144
8.11.9.103 FGet Intrinsic (subroutine) 144
8.11.9.104 FGetC Intrinsic (subroutine). 145
8.11.9.105 Float Intrinsic . 145
8.11.9.106 Floor Intrinsic . 145
8.11.9.107 Flush Intrinsic . 145
8.11.9.108 FNum Intrinsic 146
8.11.9.109 FPut Intrinsic (subroutine) 146
8.11.9.110 FPutC Intrinsic (subroutine) 146
8.11.9.111 Fraction Intrinsic 147
8.11.9.112 FSeek Intrinsic 147
8.11.9.113 FStat Intrinsic (subroutine). 147
8.11.9.114 FStat Intrinsic (function) 148
8.11.9.115 FTell Intrinsic (subroutine) 149
8.11.9.116 FTell Intrinsic (function) 149
8.11.9.117 GError Intrinsic 150
8.11.9.118 GetArg Intrinsic 150
8.11.9.119 GetCWD Intrinsic (subroutine) 150
8.11.9.120 GetCWD Intrinsic (function) 150
8.11.9.121 GetEnv Intrinsic 151
8.11.9.122 GetGId Intrinsic 151
8.11.9.123 GetLog Intrinsic 151
8.11.9.124 GetPId Intrinsic 152
8.11.9.125 GetUId Intrinsic 152
8.11.9.126 GMTime Intrinsic 152
8.11.9.127 HostNm Intrinsic (subroutine) 153
8.11.9.128 HostNm Intrinsic (function) 153
8.11.9.129 Huge Intrinsic . 153
8.11.9.130 IAbs Intrinsic. 153
8.11.9.131 IAChar Intrinsic 154
8.11.9.132 IAnd Intrinsic . 154
8.11.9.133 IArgC Intrinsic 154
8.11.9.134 IBClr Intrinsic . 155
8.11.9.135 IBits Intrinsic . 155
8.11.9.136 IBSet Intrinsic . 155
8.11.9.137 IChar Intrinsic. 156
8.11.9.138 IDate Intrinsic (UNIX) 156
8.11.9.139 IDiM Intrinsic . 157
8.11.9.140 IDInt Intrinsic . 157
8.11.9.141 IDNInt Intrinsic 157
8.11.9.142 IEOr Intrinsic . 158

viii Using and Porting GNU Fortran

8.11.9.143 IErrNo Intrinsic 158
8.11.9.144 IFix Intrinsic . 158
8.11.9.145 Imag Intrinsic . 158
8.11.9.146 ImagPart Intrinsic 159
8.11.9.147 Index Intrinsic . 159
8.11.9.148 Int Intrinsic . 160
8.11.9.149 Int2 Intrinsic . 160
8.11.9.150 Int8 Intrinsic . 160
8.11.9.151 IOr Intrinsic . 161
8.11.9.152 IRand Intrinsic 161
8.11.9.153 IsaTty Intrinsic 162
8.11.9.154 IShft Intrinsic . 162
8.11.9.155 IShftC Intrinsic 162
8.11.9.156 ISign Intrinsic . 163
8.11.9.157 ITime Intrinsic 163
8.11.9.158 Kill Intrinsic (subroutine) 163
8.11.9.159 Kind Intrinsic . 164
8.11.9.160 LBound Intrinsic 164
8.11.9.161 Len Intrinsic . 164
8.11.9.162 Len Trim Intrinsic 164
8.11.9.163 LGe Intrinsic . 164
8.11.9.164 LGt Intrinsic . 165
8.11.9.165 Link Intrinsic (subroutine) 165
8.11.9.166 LLe Intrinsic . 166
8.11.9.167 LLt Intrinsic . 166
8.11.9.168 LnBlnk Intrinsic 167
8.11.9.169 Loc Intrinsic. 167
8.11.9.170 Log Intrinsic . 167
8.11.9.171 Log10 Intrinsic 168
8.11.9.172 Logical Intrinsic 168
8.11.9.173 Long Intrinsic . 168
8.11.9.174 LShift Intrinsic 168
8.11.9.175 LStat Intrinsic (subroutine) 169
8.11.9.176 LStat Intrinsic (function) 170
8.11.9.177 LTime Intrinsic 171
8.11.9.178 MatMul Intrinsic 171
8.11.9.179 Max Intrinsic . 171
8.11.9.180 Max0 Intrinsic . 172
8.11.9.181 Max1 Intrinsic . 172
8.11.9.182 MaxExponent Intrinsic 172
8.11.9.183 MaxLoc Intrinsic 172
8.11.9.184 MaxVal Intrinsic 172
8.11.9.185 MClock Intrinsic 172
8.11.9.186 MClock8 Intrinsic 173
8.11.9.187 Merge Intrinsic 173
8.11.9.188 Min Intrinsic . 173
8.11.9.189 Min0 Intrinsic . 174
8.11.9.190 Min1 Intrinsic . 174

ix

8.11.9.191 MinExponent Intrinsic 174
8.11.9.192 MinLoc Intrinsic 174
8.11.9.193 MinVal Intrinsic 174
8.11.9.194 Mod Intrinsic . 175
8.11.9.195 Modulo Intrinsic 175
8.11.9.196 MvBits Intrinsic 175
8.11.9.197 Nearest Intrinsic 175
8.11.9.198 NInt Intrinsic . 176
8.11.9.199 Not Intrinsic . 176
8.11.9.200 Or Intrinsic . 176
8.11.9.201 Pack Intrinsic . 177
8.11.9.202 PError Intrinsic 177
8.11.9.203 Precision Intrinsic. 177
8.11.9.204 Present Intrinsic 177
8.11.9.205 Product Intrinsic 177
8.11.9.206 Radix Intrinsic 177
8.11.9.207 Rand Intrinsic . 177
8.11.9.208 Random Number Intrinsic 178
8.11.9.209 Random Seed Intrinsic 178
8.11.9.210 Range Intrinsic 178
8.11.9.211 Real Intrinsic . 178
8.11.9.212 RealPart Intrinsic 179
8.11.9.213 Rename Intrinsic (subroutine) 179
8.11.9.214 Repeat Intrinsic 180
8.11.9.215 Reshape Intrinsic 180
8.11.9.216 RRSpacing Intrinsic 180
8.11.9.217 RShift Intrinsic 180
8.11.9.218 Scale Intrinsic . 180
8.11.9.219 Scan Intrinsic. 180
8.11.9.220 Second Intrinsic (function). 181
8.11.9.221 Second Intrinsic (subroutine) 181
8.11.9.222 Selected Int Kind Intrinsic 181
8.11.9.223 Selected Real Kind Intrinsic 181
8.11.9.224 Set Exponent Intrinsic 182
8.11.9.225 Shape Intrinsic 182
8.11.9.226 Short Intrinsic . 182
8.11.9.227 Sign Intrinsic . 182
8.11.9.228 Signal Intrinsic (subroutine) 182
8.11.9.229 Sin Intrinsic . 183
8.11.9.230 SinH Intrinsic . 184
8.11.9.231 Sleep Intrinsic . 184
8.11.9.232 Sngl Intrinsic . 184
8.11.9.233 Spacing Intrinsic 184
8.11.9.234 Spread Intrinsic. 184
8.11.9.235 SqRt Intrinsic . 184
8.11.9.236 SRand Intrinsic 185
8.11.9.237 Stat Intrinsic (subroutine) 185
8.11.9.238 Stat Intrinsic (function) 186

x Using and Porting GNU Fortran

8.11.9.239 Sum Intrinsic . 187
8.11.9.240 SymLnk Intrinsic (subroutine) 187
8.11.9.241 System Intrinsic (subroutine) 187
8.11.9.242 System Clock Intrinsic 188
8.11.9.243 Tan Intrinsic . 188
8.11.9.244 TanH Intrinsic . 188
8.11.9.245 Time Intrinsic (UNIX) 189
8.11.9.246 Time8 Intrinsic 189
8.11.9.247 Tiny Intrinsic. 190
8.11.9.248 Transfer Intrinsic 190
8.11.9.249 Transpose Intrinsic 190
8.11.9.250 Trim Intrinsic . 190
8.11.9.251 TtyNam Intrinsic (subroutine) 190
8.11.9.252 TtyNam Intrinsic (function) 190
8.11.9.253 UBound Intrinsic 191
8.11.9.254 UMask Intrinsic (subroutine) 191
8.11.9.255 Unlink Intrinsic (subroutine). 191
8.11.9.256 Unpack Intrinsic 192
8.11.9.257 Verify Intrinsic 192
8.11.9.258 XOr Intrinsic . 192
8.11.9.259 ZAbs Intrinsic . 192
8.11.9.260 ZCos Intrinsic . 192
8.11.9.261 ZExp Intrinsic . 193
8.11.9.262 ZLog Intrinsic . 193
8.11.9.263 ZSin Intrinsic . 193
8.11.9.264 ZSqRt Intrinsic 193

8.12 Scope and Classes of Symbolic Names 194
8.12.1 Underscores in Symbol Names 194

8.13 I/O . 194
8.14 Fortran 90 Features . 194

9 Other Dialects . 197
9.1 Source Form . 197

9.1.1 Carriage Returns . 197
9.1.2 Tabs . 197
9.1.3 Short Lines . 197
9.1.4 Long Lines . 198
9.1.5 Ampersand Continuation Line 198

9.2 Trailing Comment . 198
9.3 Debug Line . 198
9.4 Dollar Signs in Symbol Names . 199
9.5 Case Sensitivity . 199
9.6 VXT Fortran . 202

9.6.1 Meaning of Double Quote . 203
9.6.2 Meaning of Exclamation Point in Column 6. 203

9.7 Fortran 90 . 203
9.8 Pedantic Compilation . 204
9.9 Distensions . 205

xi

9.9.1 Implicit Argument Conversion 206
9.9.2 Ugly Assumed-Size Arrays . 206
9.9.3 Ugly Complex Part Extraction 206
9.9.4 Ugly Null Arguments . 207
9.9.5 Ugly Conversion of Initializers 207
9.9.6 Ugly Integer Conversions . 208
9.9.7 Ugly Assigned Labels . 208

10 The GNU Fortran Compiler 211
10.1 Compiler Limits . 211
10.2 Run-time Environment Limits. 211

10.2.1 Timer Wraparounds . 211
10.2.2 Year 2000 (Y2K) Problems 212
10.2.3 Array Size . 213
10.2.4 Character-variable Length . 214
10.2.5 Year 10000 (Y10K) Problems 214

10.3 Compiler Types . 214
10.4 Compiler Constants . 216
10.5 Compiler Intrinsics . 216

10.5.1 Intrinsic Groups . 216
10.5.2 Other Intrinsics . 218

10.5.2.1 ACosD Intrinsic . 218
10.5.2.2 AIMax0 Intrinsic 218
10.5.2.3 AIMin0 Intrinsic . 218
10.5.2.4 AJMax0 Intrinsic 218
10.5.2.5 AJMin0 Intrinsic . 218
10.5.2.6 ASinD Intrinsic . 218
10.5.2.7 ATan2D Intrinsic 218
10.5.2.8 ATanD Intrinsic . 219
10.5.2.9 BITest Intrinsic . 219
10.5.2.10 BJTest Intrinsic 219
10.5.2.11 CDAbs Intrinsic 219
10.5.2.12 CDCos Intrinsic 219
10.5.2.13 CDExp Intrinsic 219
10.5.2.14 CDLog Intrinsic 220
10.5.2.15 CDSin Intrinsic . 220
10.5.2.16 CDSqRt Intrinsic 220
10.5.2.17 ChDir Intrinsic (function) 220
10.5.2.18 ChMod Intrinsic (function) 221
10.5.2.19 CosD Intrinsic . 221
10.5.2.20 DACosD Intrinsic 221
10.5.2.21 DASinD Intrinsic 222
10.5.2.22 DATan2D Intrinsic 222
10.5.2.23 DATanD Intrinsic 222
10.5.2.24 Date Intrinsic. 222
10.5.2.25 DbleQ Intrinsic . 222
10.5.2.26 DCmplx Intrinsic 222
10.5.2.27 DConjg Intrinsic 223

xii Using and Porting GNU Fortran

10.5.2.28 DCosD Intrinsic 223
10.5.2.29 DFloat Intrinsic 223
10.5.2.30 DFlotI Intrinsic . 224
10.5.2.31 DFlotJ Intrinsic 224
10.5.2.32 DImag Intrinsic . 224
10.5.2.33 DReal Intrinsic . 224
10.5.2.34 DSinD Intrinsic . 225
10.5.2.35 DTanD Intrinsic 225
10.5.2.36 DTime Intrinsic (function) 225
10.5.2.37 FGet Intrinsic (function) 225
10.5.2.38 FGetC Intrinsic (function) 226
10.5.2.39 FloatI Intrinsic . 226
10.5.2.40 FloatJ Intrinsic . 226
10.5.2.41 FPut Intrinsic (function) 226
10.5.2.42 FPutC Intrinsic (function) 227
10.5.2.43 IDate Intrinsic (VXT) 227
10.5.2.44 IIAbs Intrinsic . 228
10.5.2.45 IIAnd Intrinsic . 228
10.5.2.46 IIBClr Intrinsic . 228
10.5.2.47 IIBits Intrinsic . 228
10.5.2.48 IIBSet Intrinsic . 228
10.5.2.49 IIDiM Intrinsic . 228
10.5.2.50 IIDInt Intrinsic . 228
10.5.2.51 IIDNnt Intrinsic 228
10.5.2.52 IIEOr Intrinsic . 229
10.5.2.53 IIFix Intrinsic . 229
10.5.2.54 IInt Intrinsic . 229
10.5.2.55 IIOr Intrinsic . 229
10.5.2.56 IIQint Intrinsic . 229
10.5.2.57 IIQNnt Intrinsic 229
10.5.2.58 IIShftC Intrinsic 229
10.5.2.59 IISign Intrinsic . 229
10.5.2.60 IMax0 Intrinsic . 229
10.5.2.61 IMax1 Intrinsic . 230
10.5.2.62 IMin0 Intrinsic . 230
10.5.2.63 IMin1 Intrinsic . 230
10.5.2.64 IMod Intrinsic . 230
10.5.2.65 INInt Intrinsic . 230
10.5.2.66 INot Intrinsic . 230
10.5.2.67 IZExt Intrinsic. 230
10.5.2.68 JIAbs Intrinsic. 230
10.5.2.69 JIAnd Intrinsic . 230
10.5.2.70 JIBClr Intrinsic . 231
10.5.2.71 JIBits Intrinsic . 231
10.5.2.72 JIBSet Intrinsic . 231
10.5.2.73 JIDiM Intrinsic . 231
10.5.2.74 JIDInt Intrinsic . 231
10.5.2.75 JIDNnt Intrinsic 231

xiii

10.5.2.76 JIEOr Intrinsic . 231
10.5.2.77 JIFix Intrinsic . 231
10.5.2.78 JInt Intrinsic . 231
10.5.2.79 JIOr Intrinsic . 232
10.5.2.80 JIQint Intrinsic . 232
10.5.2.81 JIQNnt Intrinsic 232
10.5.2.82 JIShft Intrinsic . 232
10.5.2.83 JIShftC Intrinsic 232
10.5.2.84 JISign Intrinsic . 232
10.5.2.85 JMax0 Intrinsic . 232
10.5.2.86 JMax1 Intrinsic . 232
10.5.2.87 JMin0 Intrinsic . 232
10.5.2.88 JMin1 Intrinsic . 233
10.5.2.89 JMod Intrinsic . 233
10.5.2.90 JNInt Intrinsic . 233
10.5.2.91 JNot Intrinsic . 233
10.5.2.92 JZExt Intrinsic . 233
10.5.2.93 Kill Intrinsic (function) 233
10.5.2.94 Link Intrinsic (function) 233
10.5.2.95 QAbs Intrinsic . 234
10.5.2.96 QACos Intrinsic 234
10.5.2.97 QACosD Intrinsic 234
10.5.2.98 QASin Intrinsic . 234
10.5.2.99 QASinD Intrinsic 234
10.5.2.100 QATan Intrinsic 234
10.5.2.101 QATan2 Intrinsic 234
10.5.2.102 QATan2D Intrinsic 235
10.5.2.103 QATanD Intrinsic 235
10.5.2.104 QCos Intrinsic . 235
10.5.2.105 QCosD Intrinsic 235
10.5.2.106 QCosH Intrinsic 235
10.5.2.107 QDiM Intrinsic 235
10.5.2.108 QExp Intrinsic. 235
10.5.2.109 QExt Intrinsic . 235
10.5.2.110 QExtD Intrinsic 235
10.5.2.111 QFloat Intrinsic 236
10.5.2.112 QInt Intrinsic. 236
10.5.2.113 QLog Intrinsic . 236
10.5.2.114 QLog10 Intrinsic 236
10.5.2.115 QMax1 Intrinsic 236
10.5.2.116 QMin1 Intrinsic 236
10.5.2.117 QMod Intrinsic 236
10.5.2.118 QNInt Intrinsic 236
10.5.2.119 QSin Intrinsic . 236
10.5.2.120 QSinD Intrinsic 237
10.5.2.121 QSinH Intrinsic 237
10.5.2.122 QSqRt Intrinsic 237
10.5.2.123 QTan Intrinsic . 237

xiv Using and Porting GNU Fortran

10.5.2.124 QTanD Intrinsic 237
10.5.2.125 QTanH Intrinsic 237
10.5.2.126 Rename Intrinsic (function). 237
10.5.2.127 Secnds Intrinsic 238
10.5.2.128 Signal Intrinsic (function) 238
10.5.2.129 SinD Intrinsic . 239
10.5.2.130 SnglQ Intrinsic 239
10.5.2.131 SymLnk Intrinsic (function) 239
10.5.2.132 System Intrinsic (function) 240
10.5.2.133 TanD Intrinsic . 240
10.5.2.134 Time Intrinsic (VXT) 240
10.5.2.135 UMask Intrinsic (function) 241
10.5.2.136 Unlink Intrinsic (function) 241
10.5.2.137 ZExt Intrinsic . 241

11 Other Compilers. 243
11.1 Dropping f2c Compatibility . 243
11.2 Compilers Other Than f2c . 244

12 Other Languages . 247
12.1 Tools and advice for interoperating with C and C++ 247

12.1.1 C Interfacing Tools . 247
12.1.2 Accessing Type Information in C 247
12.1.3 Generating Skeletons and Prototypes with f2c

. 247
12.1.4 C++ Considerations . 248
12.1.5 Startup Code . 248

13 Debugging and Interfacing 251
13.1 Main Program Unit (PROGRAM). 251
13.2 Procedures (SUBROUTINE and FUNCTION) 252
13.3 Functions (FUNCTION and RETURN) 253
13.4 Names . 253
13.5 Common Blocks (COMMON) . 254
13.6 Local Equivalence Areas (EQUIVALENCE) 254
13.7 Complex Variables (COMPLEX) . 255
13.8 Arrays (DIMENSION) . 255
13.9 Adjustable Arrays (DIMENSION) . 256
13.10 Alternate Entry Points (ENTRY) . 257
13.11 Alternate Returns (SUBROUTINE and RETURN) 259
13.12 Assigned Statement Labels (ASSIGN and GOTO) 259
13.13 Run-time Library Errors . 260

xv

14 Collected Fortran Wisdom 263
14.1 Advantages Over f2c . 263

14.1.1 Language Extensions . 263
14.1.2 Diagnostic Abilities . 264
14.1.3 Compiler Options . 264
14.1.4 Compiler Speed . 264
14.1.5 Program Speed . 264
14.1.6 Ease of Debugging . 265
14.1.7 Character and Hollerith Constants 266

14.2 Block Data and Libraries . 266
14.3 Loops . 267
14.4 Working Programs . 269

14.4.1 Not My Type . 269
14.4.2 Variables Assumed To Be Zero 270
14.4.3 Variables Assumed To Be Saved 270
14.4.4 Unwanted Variables . 270
14.4.5 Unused Arguments . 271
14.4.6 Surprising Interpretations of Code 271
14.4.7 Aliasing Assumed To Work 271
14.4.8 Output Assumed To Flush 273
14.4.9 Large File Unit Numbers . 274
14.4.10 Floating-point precision . 275
14.4.11 Inconsistent Calling Sequences 275

14.5 Overly Convenient Command-line Options 275
14.6 Faster Programs . 276

14.6.1 Aligned Data . 276
14.6.2 Prefer Automatic Uninitialized Variables 278
14.6.3 Avoid f2c Compatibility . 278
14.6.4 Use Submodel Options . 278

15 Known Causes of Trouble with GNU Fortran
. 281
15.1 Bugs Not In GNU Fortran . 281

15.1.1 Signal 11 and Friends . 281
15.1.2 Cannot Link Fortran Programs 282
15.1.3 Large Common Blocks . 282
15.1.4 Debugger Problems . 282
15.1.5 NeXTStep Problems . 283
15.1.6 Stack Overflow . 283
15.1.7 Nothing Happens . 284
15.1.8 Strange Behavior at Run Time 285
15.1.9 Floating-point Errors . 285

15.2 Known Bugs In GNU Fortran . 287
15.3 Missing Features . 289

15.3.1 Better Source Model . 289
15.3.2 Fortran 90 Support . 290
15.3.3 Intrinsics in PARAMETER Statements 290
15.3.4 Arbitrary Concatenation . 291

xvi Using and Porting GNU Fortran

15.3.5 SELECT CASE on CHARACTER Type 291
15.3.6 RECURSIVE Keyword . 291
15.3.7 Increasing Precision/Range 291
15.3.8 Popular Non-standard Types 291
15.3.9 Full Support for Compiler Types. 291
15.3.10 Array Bounds Expressions 292
15.3.11 POINTER Statements . 292
15.3.12 Sensible Non-standard Constructs 292
15.3.13 READONLY Keyword . 293
15.3.14 FLUSH Statement . 293
15.3.15 Expressions in FORMAT Statements 293
15.3.16 Explicit Assembler Code . 294
15.3.17 Q Edit Descriptor . 294
15.3.18 Old-style PARAMETER Statements 294
15.3.19 TYPE and ACCEPT I/O Statements 294
15.3.20 STRUCTURE, UNION, RECORD, MAP. 294
15.3.21 OPEN, CLOSE, and INQUIRE Keywords 294
15.3.22 ENCODE and DECODE . 295
15.3.23 AUTOMATIC Statement . 295
15.3.24 Suppressing Space Padding of Source Lines . . . 296
15.3.25 Fortran Preprocessor . 296
15.3.26 Bit Operations on Floating-point Data 296
15.3.27 Really Ugly Character Assignments 297
15.3.28 POSIX Standard . 297
15.3.29 Floating-point Exception Handling 297
15.3.30 Nonportable Conversions . 297
15.3.31 Large Automatic Arrays . 298
15.3.32 Support for Threads . 298
15.3.33 Enabling Debug Lines . 298
15.3.34 Better Warnings . 298
15.3.35 Gracefully Handle Sensible Bad Code 298
15.3.36 Non-standard Conversions. 299
15.3.37 Non-standard Intrinsics . 299
15.3.38 Modifying DO Variable . 299
15.3.39 Better Pedantic Compilation 299
15.3.40 Warn About Implicit Conversions 299
15.3.41 Invalid Use of Hollerith Constant 300
15.3.42 Dummy Array Without Dimensioning Dummy

. 300
15.3.43 Invalid FORMAT Specifiers 300
15.3.44 Ambiguous Dialects . 300
15.3.45 Unused Labels . 300
15.3.46 Informational Messages . 300
15.3.47 Uninitialized Variables at Run Time 301
15.3.48 Portable Unformatted Files 301
15.3.49 Better List-directed I/O. 302
15.3.50 Default to Console I/O . 302
15.3.51 Labels Visible to Debugger 302

xvii

15.4 Disappointments and Misunderstandings 302
15.4.1 Mangling of Names in Source Code 302
15.4.2 Multiple Definitions of External Names. 303
15.4.3 Limitation on Implicit Declarations 303

15.5 Certain Changes We Don’t Want to Make 303
15.5.1 Backslash in Constants. 303
15.5.2 Initializing Before Specifying 305
15.5.3 Context-Sensitive Intrinsicness 305
15.5.4 Context-Sensitive Constants 306
15.5.5 Equivalence Versus Equality 307
15.5.6 Order of Side Effects . 308

15.6 Warning Messages and Error Messages 308

16 Open Questions . 311

17 Reporting Bugs . 313
17.1 Have You Found a Bug? . 313
17.2 How to Report Bugs . 315

18 How To Get Help with GNU Fortran 317

19 Adding Options . 319

20 Projects . 321
20.1 Improve Efficiency . 321
20.2 Better Optimization . 321
20.3 Simplify Porting . 322
20.4 More Extensions . 323
20.5 Machine Model . 324
20.6 Internals Documentation. 324
20.7 Internals Improvements . 324
20.8 Better Diagnostics . 325

xviii Using and Porting GNU Fortran

21 Front End . 327
21.1 Overview of Sources . 327
21.2 Overview of Translation Process . 329

21.2.1 g77stripcard . 331
21.2.2 lex.c . 332
21.2.3 sta.c . 334
21.2.4 sti.c . 334
21.2.5 stq.c . 335
21.2.6 stb.c . 335
21.2.7 expr.c . 335
21.2.8 stc.c . 335
21.2.9 std.c . 335
21.2.10 ste.c . 335
21.2.11 Gotchas (Transforming) . 335

21.2.11.1 Multi-character Lexemes 335
21.2.11.2 Space-padding Lexemes 336
21.2.11.3 Bizarre Free-form Hollerith Constants

. 336
21.2.11.4 Hollerith Constants 337
21.2.11.5 Confusing Function Keyword 337
21.2.11.6 Weird READ . 337

21.2.12 TBD (Transforming). 338
21.3 Philosophy of Code Generation . 339
21.4 Two-pass Design . 341

21.4.1 Two-pass Code . 341
21.4.2 Why Two Passes . 341

21.5 Challenges Posed . 344
21.6 Transforming Statements . 345

21.6.1 Statements Needing Temporaries 345
21.6.2 Transforming DO WHILE . 346
21.6.3 Transforming Iterative DO 346
21.6.4 Transforming Block IF . 347
21.6.5 Transforming SELECT CASE 347

21.7 Transforming Expressions . 348
21.8 Internal Naming Conventions . 349

22 Diagnostics. 351
22.1 CMPAMBIG . 351
22.2 EXPIMP . 353
22.3 INTGLOB . 354
22.4 LEX . 355
22.5 GLOBALS . 356
22.6 LINKFAIL . 357
22.7 Y2KBAD . 357

Keyword Index . 359

Introduction 1

Introduction

This manual documents how to run, install and port g77, as well as its new features and
incompatibilities, and how to report bugs. It corresponds to the GCC-3.3.6 version of g77.

2 Using and Porting GNU Fortran

GNU GENERAL PUBLIC LICENSE 3

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

4 Using and Porting GNU Fortran

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 5

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

6 Using and Porting GNU Fortran

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 7

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

8 Using and Porting GNU Fortran

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

GNU Free Documentation License 9

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

10 Using and Porting GNU Fortran

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a publicly
available dtd, and standard-conforming simple html, PostScript or pdf designed for
human modification. Examples of transparent image formats include png, xcf and
jpg. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, sgml or xml for which the dtd and/or processing
tools are not generally available, and the machine-generated html, PostScript or pdf
produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

GNU Free Documentation License 11

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

12 Using and Porting GNU Fortran

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

GNU Free Documentation License 13

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

14 Using and Porting GNU Fortran

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

GNU Free Documentation License 15

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

16 Using and Porting GNU Fortran

Contributors to GNU Fortran 17

Contributors to GNU Fortran

In addition to James Craig Burley, who wrote the front end, many people have helped
create and improve GNU Fortran.
• The packaging and compiler portions of GNU Fortran are based largely on the GNU CC

compiler. See section “Contributors to GCC” in Using the GNU Compiler Collection
(GCC), for more information.

• The run-time library used by GNU Fortran is a repackaged version of the libf2c library
(combined from the libF77 and libI77 libraries) provided as part of f2c, available for
free from netlib sites on the Internet.

• Cygnus Support and The Free Software Foundation contributed significant money
and/or equipment to Craig’s efforts.

• The following individuals served as alpha testers prior to g77’s public release. This
work consisted of testing, researching, sometimes debugging, and occasionally providing
small amounts of code and fixes for g77, plus offering plenty of helpful advice to Craig:

Jonathan Corbet
Dr. Mark Fernyhough
Takafumi Hayashi (The University of Aizu)—takafumi@u-aizu.ac.jp

Kate Hedstrom
Michel Kern (INRIA and Rice University)—Michel.Kern@inria.fr

Dr. A. O. V. Le Blanc
Dave Love
Rick Lutowski
Toon Moene
Rick Niles
Derk Reefman
Wayne K. Schroll
Bill Thorson
Pedro A. M. Vazquez
Ian Watson

• Dave Love (d.love@dl.ac.uk) wrote the libU77 part of the run-time library.
• Scott Snyder (snyder@d0sgif.fnal.gov) provided the patch to add rudimentary sup-

port for INTEGER*1, INTEGER*2, and LOGICAL*1. This inspired Craig to add further
support, even though the resulting support would still be incomplete.

• David Ronis (ronis@onsager.chem.mcgill.ca) inspired and encouraged Craig
to rewrite the documentation in texinfo format by contributing a first pass at a
translation of the old ‘g77-0.5.16/f/DOC’ file.

• Toon Moene (toon@moene.indiv.nluug.nl) performed some analysis of generated
code as part of an overall project to improve g77 code generation to at least be as
good as f2c used in conjunction with gcc. So far, this has resulted in the three,
somewhat experimental, options added by g77 to the gcc compiler and its back end.
(These, in turn, had made their way into the egcs version of the compiler, and do not
exist in gcc version 2.8 or versions of g77 based on that version of gcc.)

18 Using and Porting GNU Fortran

• John Carr (jfc@mit.edu) wrote the alias analysis improvements.
• Thanks to Mary Cortani and the staff at Craftwork Solutions (support@craftwork.com)

for all of their support.
• Many other individuals have helped debug, test, and improve g77 over the past several

years, and undoubtedly more people will be doing so in the future. If you have done
so, and would like to see your name listed in the above list, please ask! The default is
that people wish to remain anonymous.

Funding Free Software 19

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

20 Using and Porting GNU Fortran

Chapter 1: Funding GNU Fortran 21

1 Funding GNU Fortran

James Craig Burley (craig@jcb-sc.com), the original author of g77, stopped working on
it in September 1999 (He has a web page at http://world.std.com/%7Eburley/.)

GNU Fortran is currently maintained by Toon Moene (toon@moene.indiv.nluug.nl),
with the help of countless other volunteers.

As with other GNU software, funding is important because it can pay for needed equip-
ment, personnel, and so on.

The FSF provides information on the best way to fund ongoing development of GNU
software (such as GNU Fortran) in documents such as the “GNUS Bulletin”. Email
gnu@gnu.org for information on funding the FSF.

Another important way to support work on GNU Fortran is to volunteer to help out.
Email gcc@gcc.gnu.org to volunteer for this work.
However, we strongly expect that there will never be a version 0.6 of g77. Work on

this compiler has stopped as of the release of GCC 3.1, except for bug fixing. g77 will be
succeeded by g95 - see http://g95.sourceforge.net.

See [Funding Free Software], page 19, for more information.

22 Using and Porting GNU Fortran

Chapter 2: Getting Started 23

2 Getting Started

If you don’t need help getting started reading the portions of this manual that are most
important to you, you should skip this portion of the manual.

If you are new to compilers, especially Fortran compilers, or new to how compilers are
structured under UNIX and UNIX-like systems, you’ll want to see Chapter 3 [What is GNU
Fortran?], page 25.

If you are new to GNU compilers, or have used only one GNU compiler in the past and
not had to delve into how it lets you manage various versions and configurations of gcc,
you should see Chapter 4 [G77 and GCC], page 29.

Everyone except experienced g77 users should see Chapter 5 [Invoking G77], page 31.
If you’re acquainted with previous versions of g77, you should see Chapter 6 [News

About GNU Fortran], page 55. Further, if you’ve actually used previous versions of g77,
especially if you’ve written or modified Fortran code to be compiled by previous versions of
g77, you should see Chapter 7 [Changes], page 75.

If you intend to write or otherwise compile code that is not already strictly conforming
ANSI FORTRAN 77—and this is probably everyone—you should see Chapter 8 [Language],
page 87.

If you run into trouble getting Fortran code to compile, link, run, or work properly,
you might find answers if you see Chapter 13 [Debugging and Interfacing], page 251, see
Chapter 14 [Collected Fortran Wisdom], page 263, and see Chapter 15 [Trouble], page 281.
You might also find that the problems you are encountering are bugs in g77—see Chapter 17
[Bugs], page 313, for information on reporting them, after reading the other material.

If you need further help with g77, or with freely redistributable software in general, see
Chapter 18 [Service], page 317.

If you would like to help the g77 project, see Chapter 1 [Funding GNU Fortran], page 21,
for information on helping financially, and see Chapter 20 [Projects], page 321, for informa-
tion on helping in other ways.

If you’re generally curious about the future of g77, see Chapter 20 [Projects], page 321.
If you’re curious about its past, see [Contributors], page 17, and see Chapter 1 [Funding
GNU Fortran], page 21.

To see a few of the questions maintainers of g77 have, and that you might be able to
answer, see Chapter 16 [Open Questions], page 311.

24 Using and Porting GNU Fortran

Chapter 3: What is GNU Fortran? 25

3 What is GNU Fortran?

GNU Fortran, or g77, is designed initially as a free replacement for, or alternative to,
the UNIX f77 command. (Similarly, gcc is designed as a replacement for the UNIX cc
command.)

g77 also is designed to fit in well with the other fine GNU compilers and tools.
Sometimes these design goals conflict—in such cases, resolution often is made in favor

of fitting in well with Project GNU. These cases are usually identified in the appropriate
sections of this manual.

As compilers, g77, gcc, and f77 share the following characteristics:

• They read a user’s program, stored in a file and containing instructions written in the
appropriate language (Fortran, C, and so on). This file contains source code.

• They translate the user’s program into instructions a computer can carry out more
quickly than it takes to translate the instructions in the first place. These instructions
are called machine code—code designed to be efficiently translated and processed by
a machine such as a computer. Humans usually aren’t as good writing machine code
as they are at writing Fortran or C, because it is easy to make tiny mistakes writing
machine code. When writing Fortran or C, it is easy to make big mistakes.

• They provide information in the generated machine code that can make it easier to
find bugs in the program (using a debugging tool, called a debugger, such as gdb).

• They locate and gather machine code already generated to perform actions requested
by statements in the user’s program. This machine code is organized into libraries and
is located and gathered during the link phase of the compilation process. (Linking
often is thought of as a separate step, because it can be directly invoked via the ld
command. However, the g77 and gcc commands, as with most compiler commands,
automatically perform the linking step by calling on ld directly, unless asked to not do
so by the user.)

• They attempt to diagnose cases where the user’s program contains incorrect usages of
the language. The diagnostics produced by the compiler indicate the problem and the
location in the user’s source file where the problem was first noticed. The user can use
this information to locate and fix the problem. (Sometimes an incorrect usage of the
language leads to a situation where the compiler can no longer make any sense of what
follows—while a human might be able to—and thus ends up complaining about many
“problems” it encounters that, in fact, stem from just one problem, usually the first
one reported.)

• They attempt to diagnose cases where the user’s program contains a correct usage of the
language, but instructs the computer to do something questionable. These diagnostics
often are in the form of warnings, instead of the errors that indicate incorrect usage of
the language.

How these actions are performed is generally under the control of the user. Using
command-line options, the user can specify how persnickety the compiler is to be regarding
the program (whether to diagnose questionable usage of the language), how much time to
spend making the generated machine code run faster, and so on.

g77 consists of several components:

26 Using and Porting GNU Fortran

• A modified version of the gcc command, which also might be installed as the system’s
cc command. (In many cases, cc refers to the system’s “native” C compiler, which
might be a non-GNU compiler, or an older version of gcc considered more stable or
that is used to build the operating system kernel.)

• The g77 command itself, which also might be installed as the system’s f77 command.

• The libg2c run-time library. This library contains the machine code needed to support
capabilities of the Fortran language that are not directly provided by the machine code
generated by the g77 compilation phase.

libg2c is just the unique name g77 gives to its version of libf2c to distinguish it from
any copy of libf2c installed from f2c (or versions of g77 that built libf2c under that
same name) on the system.

The maintainer of libf2c currently is dmg@bell-labs.com.

• The compiler itself, internally named f771.

Note that f771 does not generate machine code directly—it generates assembly code
that is a more readable form of machine code, leaving the conversion to actual machine
code to an assembler, usually named as.

gcc is often thought of as “the C compiler” only, but it does more than that. Based
on command-line options and the names given for files on the command line, gcc deter-
mines which actions to perform, including preprocessing, compiling (in a variety of possible
languages), assembling, and linking.

For example, the command ‘gcc foo.c’ drives the file ‘foo.c’ through the preprocessor
cpp, then the C compiler (internally named cc1), then the assembler (usually as), then the
linker (ld), producing an executable program named ‘a.out’ (on UNIX systems).

As another example, the command ‘gcc foo.cc’ would do much the same as ‘gcc foo.c’,
but instead of using the C compiler named cc1, gcc would use the C++ compiler (named
cc1plus).

In a GNU Fortran installation, gcc recognizes Fortran source files by name just like it
does C and C++ source files. It knows to use the Fortran compiler named f771, instead of
cc1 or cc1plus, to compile Fortran files.

Non-Fortran-related operation of gcc is generally unaffected by installing the GNU For-
tran version of gcc. However, without the installed version of gcc being the GNU Fortran
version, gcc will not be able to compile and link Fortran programs—and since g77 uses gcc
to do most of the actual work, neither will g77!

The g77 command is essentially just a front-end for the gcc command. Fortran users
will normally use g77 instead of gcc, because g77 knows how to specify the libraries needed
to link with Fortran programs (libg2c and lm). g77 can still compile and link programs
and source files written in other languages, just like gcc.

The command ‘g77 -v’ is a quick way to display lots of version information for the
various programs used to compile a typical preprocessed Fortran source file—this produces
much more output than ‘gcc -v’ currently does. (If it produces an error message near the
end of the output—diagnostics from the linker, usually ld—you might have an out-of-date
libf2c that improperly handles complex arithmetic.) In the output of this command,
the line beginning ‘GNU Fortran Front End’ identifies the version number of GNU Fortran;

Chapter 3: What is GNU Fortran? 27

immediately preceding that line is a line identifying the version of gcc with which that
version of g77 was built.

The libf2c library is distributed with GNU Fortran for the convenience of its users, but
is not part of GNU Fortran. It contains the procedures needed by Fortran programs while
they are running.

For example, while code generated by g77 is likely to do additions, subtractions, and
multiplications in line—in the actual compiled code—it is not likely to do trigonometric
functions this way.

Instead, operations like trigonometric functions are compiled by the f771 compiler (in-
voked by g77 when compiling Fortran code) into machine code that, when run, calls on
functions in libg2c, so libg2c must be linked with almost every useful program having
any component compiled by GNU Fortran. (As mentioned above, the g77 command takes
care of all this for you.)

The f771 program represents most of what is unique to GNU Fortran. While much
of the libg2c component comes from the libf2c component of f2c, a free Fortran-to-C
converter distributed by Bellcore (AT&T), plus libU77, provided by Dave Love, and the
g77 command is just a small front-end to gcc, f771 is a combination of two rather large
chunks of code.

One chunk is the so-called GNU Back End, or GBE, which knows how to generate fast
code for a wide variety of processors. The same GBE is used by the C, C++, and Fortran
compiler programs cc1, cc1plus, and f771, plus others. Often the GBE is referred to as
the “gcc back end” or even just “gcc”—in this manual, the term GBE is used whenever the
distinction is important.

The other chunk of f771 is the majority of what is unique about GNU Fortran—the code
that knows how to interpret Fortran programs to determine what they are intending to do,
and then communicate that knowledge to the GBE for actual compilation of those programs.
This chunk is called the Fortran Front End (FFE). The cc1 and cc1plus programs have
their own front ends, for the C and C++ languages, respectively. These fronts ends are
responsible for diagnosing incorrect usage of their respective languages by the programs the
process, and are responsible for most of the warnings about questionable constructs as well.
(The GBE handles producing some warnings, like those concerning possible references to
undefined variables.)

Because so much is shared among the compilers for various languages, much of the be-
havior and many of the user-selectable options for these compilers are similar. For example,
diagnostics (error messages and warnings) are similar in appearance; command-line options
like ‘-Wall’ have generally similar effects; and the quality of generated code (in terms of
speed and size) is roughly similar (since that work is done by the shared GBE).

28 Using and Porting GNU Fortran

Chapter 4: Compile Fortran, C, or Other Programs 29

4 Compile Fortran, C, or Other Programs

A GNU Fortran installation includes a modified version of the gcc command.
In a non-Fortran installation, gcc recognizes C, C++, and Objective-C source files.
In a GNU Fortran installation, gcc also recognizes Fortran source files and accepts

Fortran-specific command-line options, plus some command-line options that are designed
to cater to Fortran users but apply to other languages as well.

See section “Compile C; C++; Objective-C; Ada; Fortran; or Java” in Using the GNU
Compiler Collection (GCC), for information on the way different languages are handled by
the GNU CC compiler (gcc).

Also provided as part of GNU Fortran is the g77 command. The g77 command is
designed to make compiling and linking Fortran programs somewhat easier than when using
the gcc command for these tasks. It does this by analyzing the command line somewhat
and changing it appropriately before submitting it to the gcc command.

Use the ‘-v’ option with g77 to see what is going on—the first line of output is the
invocation of the gcc command.

30 Using and Porting GNU Fortran

Chapter 5: GNU Fortran Command Options 31

5 GNU Fortran Command Options

The g77 command supports all the options supported by the gcc command. See section
“GCC Command Options” in Using the GNU Compiler Collection (GCC), for information
on the non-Fortran-specific aspects of the gcc command (and, therefore, the g77 command).

All gcc and g77 options are accepted both by g77 and by gcc (as well as any other
drivers built at the same time, such as g++), since adding g77 to the gcc distribution
enables acceptance of g77 options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘-fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

5.1 Option Summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Overall Options
See Section 5.2 [Options Controlling the Kind of Output], page 32.

-fversion -fset-g77-defaults -fno-silent

Shorthand Options
See Section 5.3 [Shorthand Options], page 34.

-ff66 -fno-f66 -ff77 -fno-f77 -fno-ugly

Fortran Language Options
See Section 5.4 [Options Controlling Fortran Dialect], page 35.

-ffree-form -fno-fixed-form -ff90

-fvxt -fdollar-ok -fno-backslash

-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed

-fugly-comma -fugly-complex -fugly-init -fugly-logint

-fonetrip -ftypeless-boz

-fintrin-case-initcap -fintrin-case-upper

-fintrin-case-lower -fintrin-case-any

-fmatch-case-initcap -fmatch-case-upper

-fmatch-case-lower -fmatch-case-any

-fsource-case-upper -fsource-case-lower

-fsource-case-preserve

-fsymbol-case-initcap -fsymbol-case-upper

-fsymbol-case-lower -fsymbol-case-any

-fcase-strict-upper -fcase-strict-lower

-fcase-initcap -fcase-upper -fcase-lower -fcase-preserve

-ff2c-intrinsics-delete -ff2c-intrinsics-hide

-ff2c-intrinsics-disable -ff2c-intrinsics-enable

-fbadu77-intrinsics-delete -fbadu77-intrinsics-hide

-fbadu77-intrinsics-disable -fbadu77-intrinsics-enable

-ff90-intrinsics-delete -ff90-intrinsics-hide

-ff90-intrinsics-disable -ff90-intrinsics-enable

-fgnu-intrinsics-delete -fgnu-intrinsics-hide

-fgnu-intrinsics-disable -fgnu-intrinsics-enable

-fmil-intrinsics-delete -fmil-intrinsics-hide

-fmil-intrinsics-disable -fmil-intrinsics-enable

-funix-intrinsics-delete -funix-intrinsics-hide

32 Using and Porting GNU Fortran

-funix-intrinsics-disable -funix-intrinsics-enable

-fvxt-intrinsics-delete -fvxt-intrinsics-hide

-fvxt-intrinsics-disable -fvxt-intrinsics-enable

-ffixed-line-length-n -ffixed-line-length-none

Warning Options
See Section 5.5 [Options to Request or Suppress Warnings], page 40.

-fsyntax-only -pedantic -pedantic-errors -fpedantic

-w -Wno-globals -Wimplicit -Wunused -Wuninitialized

-Wall -Wsurprising

-Werror -W

Debugging Options
See Section 5.6 [Options for Debugging Your Program or GCC], page 44.

-g

Optimization Options
See Section 5.7 [Options that Control Optimization], page 44.

-malign-double

-ffloat-store -fforce-mem -fforce-addr -fno-inline

-ffast-math -fstrength-reduce -frerun-cse-after-loop

-funsafe-math-optimizations -ffinite-math-only -fno-trapping-math

-fexpensive-optimizations -fdelayed-branch

-fschedule-insns -fschedule-insn2 -fcaller-saves

-funroll-loops -funroll-all-loops

-fno-move-all-movables -fno-reduce-all-givs

-fno-rerun-loop-opt

Directory Options
See Section 5.9 [Options for Directory Search], page 47.

-Idir -I-

Code Generation Options
See Section 5.10 [Options for Code Generation Conventions], page 48.

-fno-automatic -finit-local-zero -fno-f2c

-ff2c-library -fno-underscoring -fno-ident

-fpcc-struct-return -freg-struct-return

-fshort-double -fno-common -fpack-struct

-fzeros -fno-second-underscore

-femulate-complex

-falias-check -fargument-alias

-fargument-noalias -fno-argument-noalias-global

-fno-globals -fflatten-arrays

-fbounds-check -ffortran-bounds-check

5.2 Options Controlling the Kind of Output

Compilation can involve as many as four stages: preprocessing, code generation (often what
is really meant by the term “compilation”), assembly, and linking, always in that order. The
first three stages apply to an individual source file, and end by producing an object file;
linking combines all the object files (those newly compiled, and those specified as input)
into an executable file.

For any given input file, the file name suffix determines what kind of program is contained
in the file—that is, the language in which the program is written is generally indicated by the
suffix. Suffixes specific to GNU Fortran are listed below. See section “Options Controlling

Chapter 5: GNU Fortran Command Options 33

the Kind of Output” in Using the GNU Compiler Collection (GCC), for information on
suffixes recognized by GNU CC.

file.f

file.for

file.FOR Fortran source code that should not be preprocessed.
Such source code cannot contain any preprocessor directives, such as #include,
#define, #if, and so on.
You can force ‘.f’ files to be preprocessed by cpp by using ‘-x f77-cpp-input’.
See Section 22.4 [LEX], page 355.

file.F

file.fpp

file.FPP Fortran source code that must be preprocessed (by the C preprocessor cpp,
which is part of GNU CC).
Note that preprocessing is not extended to the contents of files included by the
INCLUDE directive—the #include preprocessor directive must be used instead.

file.r Ratfor source code, which must be preprocessed by the ratfor
command, which is available separately (as it is not yet part of the
GNU Fortran distribution). A public domain version in C is at
http://sepwww.stanford.edu/sep/prof/ratfor.shar.2.

UNIX users typically use the ‘file.f’ and ‘file.F’ nomenclature. Users of other op-
erating systems, especially those that cannot distinguish upper-case letters from lower-case
letters in their file names, typically use the ‘file.for’ and ‘file.fpp’ nomenclature.

Use of the preprocessor cpp allows use of C-like constructs such as #define and
#include, but can lead to unexpected, even mistaken, results due to Fortran’s source file
format. It is recommended that use of the C preprocessor be limited to #include and, in
conjunction with #define, only #if and related directives, thus avoiding in-line macro
expansion entirely. This recommendation applies especially when using the traditional
fixed source form. With free source form, fewer unexpected transformations are likely to
happen, but use of constructs such as Hollerith and character constants can nevertheless
present problems, especially when these are continued across multiple source lines. These
problems result, primarily, from differences between the way such constants are interpreted
by the C preprocessor and by a Fortran compiler.

Another example of a problem that results from using the C preprocessor is that a Fortran
comment line that happens to contain any characters “interesting” to the C preprocessor,
such as a backslash at the end of the line, is not recognized by the preprocessor as a
comment line, so instead of being passed through “raw”, the line is edited according to the
rules for the preprocessor. For example, the backslash at the end of the line is removed,
along with the subsequent newline, resulting in the next line being effectively commented
out—unfortunate if that line is a non-comment line of important code!

Note: The ‘-traditional’ and ‘-undef’ flags are supplied to cpp by default, to help
avoid unpleasant surprises. See section “Options Controlling the Preprocessor” in Using the
GNU Compiler Collection (GCC). This means that ANSI C preprocessor features (such as

34 Using and Porting GNU Fortran

the ‘#’ operator) aren’t available, and only variables in the C reserved namespace (generally,
names with a leading underscore) are liable to substitution by C predefines. Thus, if you
want to do system-specific tests, use, for example, ‘#ifdef __linux__’ rather than ‘#ifdef
linux’. Use the ‘-v’ option to see exactly how the preprocessor is invoked.

Unfortunately, the ‘-traditional’ flag will not avoid an error from anything that cpp
sees as an unterminated C comment, such as:

C Some Fortran compilers accept /* as starting

C an inline comment.

See Section 9.2 [Trailing Comment], page 198.
The following options that affect overall processing are recognized by the g77 and gcc

commands in a GNU Fortran installation:

-fversion
Ensure that the g77 version of the compiler phase is reported, if run, and, start-
ing in egcs version 1.1, that internal consistency checks in the ‘f771’ program
are run.
This option is supplied automatically when ‘-v’ or ‘--verbose’ is specified as a
command-line option for g77 or gcc and when the resulting commands compile
Fortran source files.
In GCC 3.1, this is changed back to the behavior gcc displays for ‘.c’ files.

-fset-g77-defaults
Version info: This option was obsolete as of egcs version 1.1. The effect is
instead achieved by the lang_init_options routine in ‘gcc/gcc/f/com.c’.
Set up whatever gcc options are to apply to Fortran compilations, and avoid
running internal consistency checks that might take some time.
This option is supplied automatically when compiling Fortran code via the g77
or gcc command. The description of this option is provided so that users seeing
it in the output of, say, ‘g77 -v’ understand why it is there.
Also, developers who run f771 directly might want to specify it by hand to get
the same defaults as they would running f771 via g77 or gcc However, such
developers should, after linking a new f771 executable, invoke it without this
option once, e.g. via ./f771 -quiet < /dev/null, to ensure that they have not
introduced any internal inconsistencies (such as in the table of intrinsics) before
proceeding—g77 will crash with a diagnostic if it detects an inconsistency.

-fno-silent
Print (to stderr) the names of the program units as they are compiled, in a
form similar to that used by popular UNIX f77 implementations and f2c

See section “Options Controlling the Kind of Output” in Using the GNU Compiler
Collection (GCC), for information on more options that control the overall operation of the
gcc command (and, by extension, the g77 command).

5.3 Shorthand Options

The following options serve as “shorthand” for other options accepted by the compiler:

Chapter 5: GNU Fortran Command Options 35

-fugly Note: This option is no longer supported. The information, below, is provided
to aid in the conversion of old scripts.

Specify that certain “ugly” constructs are to be quietly accepted. Same as:
-fugly-args -fugly-assign -fugly-assumed

-fugly-comma -fugly-complex -fugly-init

-fugly-logint

These constructs are considered inappropriate to use in new or well-maintained
portable Fortran code, but widely used in old code. See Section 9.9 [Disten-
sions], page 205, for more information.

-fno-ugly
Specify that all “ugly” constructs are to be noisily rejected. Same as:

-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed

-fno-ugly-comma -fno-ugly-complex -fno-ugly-init

-fno-ugly-logint

See Section 9.9 [Distensions], page 205, for more information.

-ff66 Specify that the program is written in idiomatic FORTRAN 66. Same as
‘-fonetrip -fugly-assumed’.

The ‘-fno-f66’ option is the inverse of ‘-ff66’. As such, it is the same as
‘-fno-onetrip -fno-ugly-assumed’.

The meaning of this option is likely to be refined as future versions of g77
provide more compatibility with other existing and obsolete Fortran implemen-
tations.

-ff77 Specify that the program is written in idiomatic UNIX FORTRAN 77
and/or the dialect accepted by the f2c product. Same as ‘-fbackslash
-fno-typeless-boz’.

The meaning of this option is likely to be refined as future versions of g77
provide more compatibility with other existing and obsolete Fortran implemen-
tations.

-fno-f77 The ‘-fno-f77’ option is not the inverse of ‘-ff77’. It specifies that the program
is not written in idiomatic UNIX FORTRAN 77 or f2c but in a more widely
portable dialect. ‘-fno-f77’ is the same as ‘-fno-backslash’.

The meaning of this option is likely to be refined as future versions of g77
provide more compatibility with other existing and obsolete Fortran implemen-
tations.

5.4 Options Controlling Fortran Dialect

The following options control the dialect of Fortran that the compiler accepts:

-ffree-form
-fno-fixed-form

Specify that the source file is written in free form (introduced in Fortran 90)
instead of the more-traditional fixed form.

36 Using and Porting GNU Fortran

-ff90 Allow certain Fortran-90 constructs.
This option controls whether certain Fortran 90 constructs are recognized.
(Other Fortran 90 constructs might or might not be recognized depending on
other options such as ‘-fvxt’, ‘-ff90-intrinsics-enable’, and the current
level of support for Fortran 90.)
See Section 9.7 [Fortran 90], page 204, for more information.

-fvxt Specify the treatment of certain constructs that have different meanings de-
pending on whether the code is written in GNU Fortran (based on FORTRAN
77 and akin to Fortran 90) or VXT Fortran (more like VAX FORTRAN).
The default is ‘-fno-vxt’. ‘-fvxt’ specifies that the VXT Fortran interpreta-
tions for those constructs are to be chosen.
See Section 9.6 [VXT Fortran], page 202, for more information.

-fdollar-ok
Allow ‘$’ as a valid character in a symbol name.

-fno-backslash
Specify that ‘\’ is not to be specially interpreted in character and Hollerith
constants a la C and many UNIX Fortran compilers.
For example, with ‘-fbackslash’ in effect, ‘A\nB’ specifies three characters,
with the second one being newline. With ‘-fno-backslash’, it specifies four
characters, ‘A’, ‘\’, ‘n’, and ‘B’.
Note that g77 implements a fairly general form of backslash processing that is
incompatible with the narrower forms supported by some other compilers. For
example, ‘’A\003B’’ is a three-character string in g77 whereas other compilers
that support backslash might not support the three-octal-digit form, and thus
treat that string as longer than three characters.
See Section 15.5.1 [Backslash in Constants], page 303, for information on why
‘-fbackslash’ is the default instead of ‘-fno-backslash’.

-fno-ugly-args
Disallow passing Hollerith and typeless constants as actual arguments (for ex-
ample, ‘CALL FOO(4HABCD)’).
See Section 9.9.1 [Ugly Implicit Argument Conversion], page 206, for more
information.

-fugly-assign
Use the same storage for a given variable regardless of whether it is used to hold
an assigned-statement label (as in ‘ASSIGN 10 TO I’) or used to hold numeric
data (as in ‘I = 3’).
See Section 9.9.7 [Ugly Assigned Labels], page 209, for more information.

-fugly-assumed
Assume any dummy array with a final dimension specified as ‘1’ is really an
assumed-size array, as if ‘*’ had been specified for the final dimension instead
of ‘1’.
For example, ‘DIMENSION X(1)’ is treated as if it had read ‘DIMENSION X(*)’.
See Section 9.9.2 [Ugly Assumed-Size Arrays], page 206, for more information.

Chapter 5: GNU Fortran Command Options 37

-fugly-comma
In an external-procedure invocation, treat a trailing comma in the argument
list as specification of a trailing null argument, and treat an empty argument
list as specification of a single null argument.
For example, ‘CALL FOO(,)’ is treated as ‘CALL FOO(%VAL(0), %VAL(0))’. That
is, two null arguments are specified by the procedure call when ‘-fugly-comma’
is in force. And ‘F = FUNC()’ is treated as ‘F = FUNC(%VAL(0))’.
The default behavior, ‘-fno-ugly-comma’, is to ignore a single trailing comma
in an argument list. So, by default, ‘CALL FOO(X,)’ is treated exactly the same
as ‘CALL FOO(X)’.
See Section 9.9.4 [Ugly Null Arguments], page 207, for more information.

-fugly-complex
Do not complain about ‘REAL(expr)’ or ‘AIMAG(expr)’ when expr is a
COMPLEX type other than COMPLEX(KIND=1)—usually this is used to permit
COMPLEX(KIND=2) (DOUBLE COMPLEX) operands.
The ‘-ff90’ option controls the interpretation of this construct.
See Section 9.9.3 [Ugly Complex Part Extraction], page 207, for more informa-
tion.

-fno-ugly-init
Disallow use of Hollerith and typeless constants as initial values (in PARAMETER
and DATA statements), and use of character constants to initialize numeric types
and vice versa.
For example, ‘DATA I/’F’/, CHRVAR/65/, J/4HABCD/’ is disallowed by
‘-fno-ugly-init’.
See Section 9.9.5 [Ugly Conversion of Initializers], page 208, for more informa-
tion.

-fugly-logint
Treat INTEGER and LOGICAL variables and expressions as potential stand-ins for
each other.
For example, automatic conversion between INTEGER and LOGICAL is enabled,
for many contexts, via this option.
See Section 9.9.6 [Ugly Integer Conversions], page 208, for more information.

-fonetrip
Executable iterative DO loops are to be executed at least once each time they
are reached.
ANSI FORTRAN 77 and more recent versions of the Fortran standard specify
that the body of an iterative DO loop is not executed if the number of iterations
calculated from the parameters of the loop is less than 1. (For example, ‘DO 10
I = 1, 0’.) Such a loop is called a zero-trip loop.
Prior to ANSI FORTRAN 77, many compilers implemented DO loops such that
the body of a loop would be executed at least once, even if the iteration count
was zero. Fortran code written assuming this behavior is said to require one-
trip loops. For example, some code written to the FORTRAN 66 standard

38 Using and Porting GNU Fortran

expects this behavior from its DO loops, although that standard did not specify
this behavior.

The ‘-fonetrip’ option specifies that the source file(s) being compiled require
one-trip loops.

This option affects only those loops specified by the (iterative) DO statement
and by implied-DO lists in I/O statements. Loops specified by implied-DO lists
in DATA and specification (non-executable) statements are not affected.

-ftypeless-boz
Specifies that prefix-radix non-decimal constants, such as ‘Z’ABCD’’, are type-
less instead of INTEGER(KIND=1).

You can test for yourself whether a particular compiler treats the prefix form
as INTEGER(KIND=1) or typeless by running the following program:

EQUIVALENCE (I, R)

R = Z’ABCD1234’

J = Z’ABCD1234’

IF (J .EQ. I) PRINT *, ’Prefix form is TYPELESS’

IF (J .NE. I) PRINT *, ’Prefix form is INTEGER’

END

Reports indicate that many compilers process this form as INTEGER(KIND=1),
though a few as typeless, and at least one based on a command-line option
specifying some kind of compatibility.

-fintrin-case-initcap
-fintrin-case-upper
-fintrin-case-lower
-fintrin-case-any

Specify expected case for intrinsic names. ‘-fintrin-case-lower’ is the de-
fault.

-fmatch-case-initcap
-fmatch-case-upper
-fmatch-case-lower
-fmatch-case-any

Specify expected case for keywords. ‘-fmatch-case-lower’ is the default.

-fsource-case-upper
-fsource-case-lower
-fsource-case-preserve

Specify whether source text other than character and Hollerith constants
is to be translated to uppercase, to lowercase, or preserved as is.
‘-fsource-case-lower’ is the default.

-fsymbol-case-initcap
-fsymbol-case-upper
-fsymbol-case-lower
-fsymbol-case-any

Specify valid cases for user-defined symbol names. ‘-fsymbol-case-any’ is the
default.

Chapter 5: GNU Fortran Command Options 39

-fcase-strict-upper
Same as ‘-fintrin-case-upper -fmatch-case-upper -fsource-case-preserve
-fsymbol-case-upper’. (Requires all pertinent source to be in uppercase.)

-fcase-strict-lower
Same as ‘-fintrin-case-lower -fmatch-case-lower -fsource-case-preserve
-fsymbol-case-lower’. (Requires all pertinent source to be in lowercase.)

-fcase-initcap
Same as ‘-fintrin-case-initcap -fmatch-case-initcap -fsource-case-preserve
-fsymbol-case-initcap’. (Requires all pertinent source to be in initial
capitals, as in ‘Print *,SqRt(Value)’.)

-fcase-upper
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-upper
-fsymbol-case-any’. (Maps all pertinent source to uppercase.)

-fcase-lower
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-lower
-fsymbol-case-any’. (Maps all pertinent source to lowercase.)

-fcase-preserve
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-preserve
-fsymbol-case-any’. (Preserves all case in user-defined symbols, while
allowing any-case matching of intrinsics and keywords. For example, ‘call
Foo(i,I)’ would pass two different variables named ‘i’ and ‘I’ to a procedure
named ‘Foo’.)

-fbadu77-intrinsics-delete
-fbadu77-intrinsics-hide
-fbadu77-intrinsics-disable
-fbadu77-intrinsics-enable

Specify status of UNIX intrinsics having inappropriate forms.
‘-fbadu77-intrinsics-enable’ is the default. See Section 10.5.1
[Intrinsic Groups], page 217.

-ff2c-intrinsics-delete
-ff2c-intrinsics-hide
-ff2c-intrinsics-disable
-ff2c-intrinsics-enable

Specify status of f2c-specific intrinsics. ‘-ff2c-intrinsics-enable’ is the de-
fault. See Section 10.5.1 [Intrinsic Groups], page 217.

-ff90-intrinsics-delete
-ff90-intrinsics-hide
-ff90-intrinsics-disable
-ff90-intrinsics-enable

Specify status of F90-specific intrinsics. ‘-ff90-intrinsics-enable’ is the
default. See Section 10.5.1 [Intrinsic Groups], page 217.

40 Using and Porting GNU Fortran

-fgnu-intrinsics-delete
-fgnu-intrinsics-hide
-fgnu-intrinsics-disable
-fgnu-intrinsics-enable

Specify status of Digital’s COMPLEX-related intrinsics. ‘-fgnu-intrinsics-enable’
is the default. See Section 10.5.1 [Intrinsic Groups], page 217.

-fmil-intrinsics-delete
-fmil-intrinsics-hide
-fmil-intrinsics-disable
-fmil-intrinsics-enable

Specify status of MIL-STD-1753-specific intrinsics. ‘-fmil-intrinsics-enable’
is the default. See Section 10.5.1 [Intrinsic Groups], page 217.

-funix-intrinsics-delete
-funix-intrinsics-hide
-funix-intrinsics-disable
-funix-intrinsics-enable

Specify status of UNIX intrinsics. ‘-funix-intrinsics-enable’ is the default.
See Section 10.5.1 [Intrinsic Groups], page 217.

-fvxt-intrinsics-delete
-fvxt-intrinsics-hide
-fvxt-intrinsics-disable
-fvxt-intrinsics-enable

Specify status of VXT intrinsics. ‘-fvxt-intrinsics-enable’ is the default.
See Section 10.5.1 [Intrinsic Groups], page 217.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponds to “extended-source” options in some popular com-
pilers). n may be ‘none’, meaning that the entire line is meaningful and
that continued character constants never have implicit spaces appended to
them to fill out the line. ‘-ffixed-line-length-0’ means the same thing
as ‘-ffixed-line-length-none’.

See Section 9.1 [Source Form], page 197, for more information.

5.5 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there might have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,

Chapter 5: GNU Fortran Command Options 41

‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of warnings produced by GNU Fortran:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue warnings for uses of extensions to ANSI FORTRAN 77. ‘-pedantic’ also
applies to C-language constructs where they occur in GNU Fortran source files,
such as use of ‘\e’ in a character constant within a directive like ‘#include’.
Valid ANSI FORTRAN 77 programs should compile properly with or without
this option. However, without this option, certain GNU extensions and tradi-
tional Fortran features are supported as well. With this option, many of them
are rejected.
Some users try to use ‘-pedantic’ to check programs for strict ANSI confor-
mance. They soon find that it does not do quite what they want—it finds some
non-ANSI practices, but not all. However, improvements to g77 in this area
are welcome.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-fpedantic
Like ‘-pedantic’, but applies only to Fortran constructs.

-w Inhibit all warning messages.

-Wno-globals
Inhibit warnings about use of a name as both a global name (a subroutine,
function, or block data program unit, or a common block) and implicitly as the
name of an intrinsic in a source file.
Also inhibit warnings about inconsistent invocations and/or definitions of global
procedures (function and subroutines). Such inconsistencies include different
numbers of arguments and different types of arguments.

-Wimplicit
Warn whenever a variable, array, or function is implicitly declared. Has an
effect similar to using the IMPLICIT NONE statement in every program unit.
(Some Fortran compilers provide this feature by an option named ‘-u’ or
‘/WARNINGS=DECLARATIONS’.)

-Wunused Warn whenever a variable is unused aside from its declaration.

-Wuninitialized
Warn whenever an automatic variable is used without first being initialized.
These warnings are possible only in optimizing compilation, because they re-
quire data-flow information that is computed only when optimizing. If you
don’t specify ‘-O’, you simply won’t get these warnings.
These warnings occur only for variables that are candidates for register allo-
cation. Therefore, they do not occur for a variable whose address is taken, or

42 Using and Porting GNU Fortran

whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for arrays,
even when they are in registers.
Note that there might be no warning about a variable that is used only to
compute a value that itself is never used, because such computations may be
deleted by data-flow analysis before the warnings are printed.
These warnings are made optional because GNU Fortran is not smart enough
to see all the reasons why the code might be correct despite appearing to have
an error. Here is one example of how this can happen:

SUBROUTINE DISPAT(J)
IF (J.EQ.1) I=1
IF (J.EQ.2) I=4
IF (J.EQ.3) I=5
CALL FOO(I)
END

If the value of J is always 1, 2 or 3, then I is always initialized, but GNU
Fortran doesn’t know this. Here is another common case:

SUBROUTINE MAYBE(FLAG)
LOGICAL FLAG
IF (FLAG) VALUE = 9.4
...
IF (FLAG) PRINT *, VALUE
END

This has no bug because VALUE is used only if it is set.

-Wall The ‘-Wunused’ and ‘-Wuninitialized’ options combined. These are all the
options which pertain to usage that we recommend avoiding and that we believe
is easy to avoid. (As more warnings are added to g77 some might be added to
the list enabled by ‘-Wall’.)

The remaining ‘-W...’ options are not implied by ‘-Wall’ because they warn about
constructions that we consider reasonable to use, on occasion, in clean programs.

-Wsurprising
Warn about “suspicious” constructs that are interpreted by the compiler in a
way that might well be surprising to someone reading the code. These dif-
ferences can result in subtle, compiler-dependent (even machine-dependent)
behavioral differences. The constructs warned about include:
• Expressions having two arithmetic operators in a row, such as ‘X*-Y’.

Such a construct is nonstandard, and can produce unexpected results in
more complicated situations such as ‘X**-Y*Z’. g77 along with many
other compilers, interprets this example differently than many program-
mers, and a few other compilers. Specifically, g77 interprets ‘X**-Y*Z’
as ‘(X**(-Y))*Z’, while others might think it should be interpreted as
‘X**(-(Y*Z))’.
A revealing example is the constant expression ‘2**-2*1.’, which g77 eval-
uates to .25, while others might evaluate it to 0., the difference resulting
from the way precedence affects type promotion.

Chapter 5: GNU Fortran Command Options 43

(The ‘-fpedantic’ option also warns about expressions having two arith-
metic operators in a row.)

• Expressions with a unary minus followed by an operand and then a binary
operator other than plus or minus. For example, ‘-2**2’ produces a warn-
ing, because the precedence is ‘-(2**2)’, yielding -4, not ‘(-2)**2’, which
yields 4, and which might represent what a programmer expects.
An example of an expression producing different results in a surprising way
is ‘-I*S’, where I holds the value ‘-2147483648’ and S holds ‘0.5’. On
many systems, negating I results in the same value, not a positive number,
because it is already the lower bound of what an INTEGER(KIND=1) variable
can hold. So, the expression evaluates to a positive number, while the
“expected” interpretation, ‘(-I)*S’, would evaluate to a negative number.
Even cases such as ‘-I*J’ produce warnings, even though, in most config-
urations and situations, there is no computational difference between the
results of the two interpretations—the purpose of this warning is to warn
about differing interpretations and encourage a better style of coding, not
to identify only those places where bugs might exist in the user’s code.

• DO loops with DO variables that are not of integral type—that is, using REAL
variables as loop control variables. Although such loops can be written to
work in the “obvious” way, the way g77 is required by the Fortran standard
to interpret such code is likely to be quite different from the way many
programmers expect. (This is true of all DO loops, but the differences are
pronounced for non-integral loop control variables.)
See Section 14.3 [Loops], page 267, for more information.

-Werror Make all warnings into errors.

-W Turns on “extra warnings” and, if optimization is specified via ‘-O’, the
‘-Wuninitialized’ option. (This might change in future versions of g77
“Extra warnings” are issued for:
• Unused parameters to a procedure (when ‘-Wunused’ also is specified).
• Overflows involving floating-point constants (not available for certain con-

figurations).

See section “Options to Request or Suppress Warnings” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by g77 gcc
and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran:

-Wcomment
-Wformat

-Wparentheses
-Wswitch

-Wswitch-default
-Wswitch-enum
-Wtraditional
-Wshadow

44 Using and Porting GNU Fortran

-Wid-clash-len
-Wlarger-than-len
-Wconversion
-Waggregate-return
-Wredundant-decls

These options all could have some relevant meaning for GNU Fortran programs,
but are not yet supported.

5.6 Options for Debugging Your Program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program
or g77

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.
A sample debugging session looks like this (note the use of the breakpoint):

$ cat gdb.f

PROGRAM PROG

DIMENSION A(10)

DATA A /1.,2.,3.,4.,5.,6.,7.,8.,9.,10./

A(5) = 4.

PRINT*,A

END

$ g77 -g -O gdb.f

$ gdb a.out

...

(gdb) break MAIN__

Breakpoint 1 at 0x8048e96: file gdb.f, line 4.

(gdb) run

Starting program: /home/toon/g77-bugs/./a.out

Breakpoint 1, MAIN__ () at gdb.f:4

4 A(5) = 4.

Current language: auto; currently fortran

(gdb) print a(5)

$1 = 5

(gdb) step

5 PRINT*,A

(gdb) print a(5)

$2 = 4

...

One could also add the setting of the breakpoint and the first run command to
the file ‘.gdbinit’ in the current directory, to simplify the debugging session.

See section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

5.7 Options That Control Optimization

Most Fortran users will want to use no optimization when developing and testing programs,
and use ‘-O’ or ‘-O2’ when compiling programs for late-cycle testing and for production use.

Chapter 5: GNU Fortran Command Options 45

However, note that certain diagnostics—such as for uninitialized variables—depend on the
flow analysis done by ‘-O’, i.e. you must use ‘-O’ or ‘-O2’ to get such diagnostics.

The following flags have particular applicability when compiling Fortran programs:

-malign-double
(Intel x86 architecture only.)
Noticeably improves performance of g77 programs making heavy use of
REAL(KIND=2) (DOUBLE PRECISION) data on some systems. In particular,
systems using Pentium, Pentium Pro, 586, and 686 implementations of
the i386 architecture execute programs faster when REAL(KIND=2) (DOUBLE
PRECISION) data are aligned on 64-bit boundaries in memory.
This option can, at least, make benchmark results more consistent across various
system configurations, versions of the program, and data sets.
Note: The warning in the gcc documentation about this option does not apply,
generally speaking, to Fortran code compiled by g77

See Section 14.6.1 [Aligned Data], page 277, for more information on alignment
issues.
Also also note: The negative form of ‘-malign-double’ is
‘-mno-align-double’, not ‘-benign-double’.

-ffloat-store
Might help a Fortran program that depends on exact IEEE conformance on
some machines, but might slow down a program that doesn’t.
This option is effective when the floating-point unit is set to work in IEEE 854
‘extended precision’—as it typically is on x86 and m68k GNU systems—rather
than IEEE 754 double precision. ‘-ffloat-store’ tries to remove the extra
precision by spilling data from floating-point registers into memory and this
typically involves a big performance hit. However, it doesn’t affect intermediate
results, so that it is only partially effective. ‘Excess precision’ is avoided in code
like:

a = b + c

d = a * e

but not in code like:
d = (b + c) * e

For another, potentially better, way of controlling the precision, see
Section 14.4.10 [Floating-point precision], page 275.

-fforce-mem
-fforce-addr

Might improve optimization of loops.

-fno-inline
Don’t compile statement functions inline. Might reduce the size of a program
unit—which might be at expense of some speed (though it should compile
faster). Note that if you are not optimizing, no functions can be expanded
inline.

-ffast-math
Might allow some programs designed to not be too dependent
on IEEE behavior for floating-point to run faster, or die trying.

46 Using and Porting GNU Fortran

Sets ‘-funsafe-math-optimizations’, ‘-ffinite-math-only’, and
‘-fno-trapping-math’.

-funsafe-math-optimizations
Allow optimizations that may be give incorrect results for certain IEEE inputs.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.
This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications.
The default is ‘-fno-finite-math-only’.

-fno-trapping-math
Allow the compiler to assume that floating-point arithmetic will not generate
traps on any inputs. This is useful, for example, when running a program using
IEEE "non-stop" floating-point arithmetic.

-fstrength-reduce
Might make some loops run faster.

-frerun-cse-after-loop
-fexpensive-optimizations
-fdelayed-branch
-fschedule-insns
-fschedule-insns2
-fcaller-saves

Might improve performance on some code.

-funroll-loops
Typically improves performance on code using iterative DO loops by unrolling
them and is probably generally appropriate for Fortran, though it is not turned
on at any optimization level. Note that outer loop unrolling isn’t done specif-
ically; decisions about whether to unroll a loop are made on the basis of its
instruction count.
Also, no ‘loop discovery’1 is done, so only loops written with DO benefit from
loop optimizations, including—but not limited to—unrolling. Loops written
with IF and GOTO are not currently recognized as such. This option unrolls
only iterative DO loops, not DO WHILE loops.

-funroll-all-loops
Probably improves performance on code using DO WHILE loops by unrolling them
in addition to iterative DO loops. In the absence of DO WHILE, this option is
equivalent to ‘-funroll-loops’ but possibly slower.

1 loop discovery refers to the process by which a compiler, or indeed any reader of a program, determines
which portions of the program are more likely to be executed repeatedly as it is being run. Such discovery
typically is done early when compiling using optimization techniques, so the “discovered” loops get more
attention—and more run-time resources, such as registers—from the compiler. It is easy to “discover”
loops that are constructed out of looping constructs in the language (such as Fortran’s DO). For some
programs, “discovering” loops constructed out of lower-level constructs (such as IF and GOTO) can lead
to generation of more optimal code than otherwise.

Chapter 5: GNU Fortran Command Options 47

-fno-move-all-movables
-fno-reduce-all-givs
-fno-rerun-loop-opt

In general, the optimizations enabled with these options will lead to faster code
being generated by GNU Fortran; hence they are enabled by default when
issuing the g77 command.
‘-fmove-all-movables’ and ‘-freduce-all-givs’ will enable loop optimiza-
tion to move all loop-invariant index computations in nested loops over multi-
rank array dummy arguments out of these loops.
‘-frerun-loop-opt’ will move offset calculations resulting from the fact that
Fortran arrays by default have a lower bound of 1 out of the loops.
These three options are intended to be removed someday, once loop optimization
is sufficiently advanced to perform all those transformations without help from
these options.

See section “Options That Control Optimization” in Using the GNU Compiler Collection
(GCC), for more information on options to optimize the generated machine code.

5.8 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

See section “Options Controlling the Preprocessor” in Using the GNU Compiler Collec-
tion (GCC), for information on C preprocessor options.

Some of these options also affect how g77 processes the INCLUDE directive. Since this
directive is processed even when preprocessing is not requested, it is not described in this
section. See Section 5.9 [Options for Directory Search], page 47, for information on how
g77 processes the INCLUDE directive.

However, the INCLUDE directive does not apply preprocessing to the contents of the
included file itself.

Therefore, any file that contains preprocessor directives (such as #include, #define, and
#if) must be included via the #include directive, not via the INCLUDE directive. Therefore,
any file containing preprocessor directives, if included, is necessarily included by a file that
itself contains preprocessor directives.

5.9 Options for Directory Search

These options affect how the cpp preprocessor searches for files specified via the #include
directive. Therefore, when compiling Fortran programs, they are meaningful when the
preprocessor is used.

Some of these options also affect how g77 searches for files specified via the INCLUDE
directive, although files included by that directive are not, themselves, preprocessed. These
options are:

-I-

48 Using and Porting GNU Fortran

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).
Note that ‘-Idir ’ must be specified without any spaces between ‘-I’ and the
directory name—that is, ‘-Ifoo/bar’ is valid, but ‘-I foo/bar’ is rejected by
the g77 compiler (though the preprocessor supports the latter form). Also note
that the general behavior of ‘-I’ and INCLUDE is pretty much the same as of ‘-I’
with #include in the cpp preprocessor, with regard to looking for ‘header.gcc’
files and other such things.
See section “Options for Directory Search” in Using the GNU Compiler Collec-
tion (GCC), for information on the ‘-I’ option.

5.10 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fno-automatic
Treat each program unit as if the SAVE statement was specified for every local
variable and array referenced in it. Does not affect common blocks. (Some
Fortran compilers provide this option under the name ‘-static’.)

-finit-local-zero
Specify that variables and arrays that are local to a program unit (not in a
common block and not passed as an argument) are to be initialized to binary
zeros.
Since there is a run-time penalty for initialization of variables that are not given
the SAVE attribute, it might be a good idea to also use ‘-fno-automatic’ with
‘-finit-local-zero’.

-fno-f2c Do not generate code designed to be compatible with code generated by f2c
use the GNU calling conventions instead.
The f2c calling conventions require functions that return type REAL(KIND=1)
to actually return the C type double, and functions that return type COMPLEX
to return the values via an extra argument in the calling sequence that points
to where to store the return value. Under the GNU calling conventions, such
functions simply return their results as they would in GNU C—REAL(KIND=1)
functions return the C type float, and COMPLEX functions return the GNU C
type complex (or its struct equivalent).
This does not affect the generation of code that interfaces with the libg2c
library.
However, because the libg2c library uses f2c calling conventions, g77 rejects
attempts to pass intrinsics implemented by routines in this library as actual
arguments when ‘-fno-f2c’ is used, to avoid bugs when they are actually called
by code expecting the GNU calling conventions to work.

Chapter 5: GNU Fortran Command Options 49

For example, ‘INTRINSIC ABS;CALL FOO(ABS)’ is rejected when ‘-fno-f2c’ is
in force. (Future versions of the g77 run-time library might offer routines that
provide GNU-callable versions of the routines that implement the f2c intrinsics
that may be passed as actual arguments, so that valid programs need not be
rejected when ‘-fno-f2c’ is used.)

Caution: If ‘-fno-f2c’ is used when compiling any source file used in a program,
it must be used when compiling all Fortran source files used in that program.

-ff2c-library
Specify that use of libg2c (or the original libf2c) is required. This is the
default for the current version of g77

Currently it is not valid to specify ‘-fno-f2c-library’. This option is provided
so users can specify it in shell scripts that build programs and libraries that
require the libf2c library, even when being compiled by future versions of g77
that might otherwise default to generating code for an incompatible library.

-fno-underscoring
Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.

With ‘-funderscoring’ in effect, g77 appends two underscores to names with
underscores and one underscore to external names with no underscores. (g77
also appends two underscores to internal names with underscores to avoid nam-
ing collisions with external names. The ‘-fno-second-underscore’ option dis-
ables appending of the second underscore in all cases.)

This is done to ensure compatibility with code produced by many UNIX Fortran
compilers, including f2c which perform the same transformations.

Use of ‘-fno-underscoring’ is not recommended unless you are experimenting
with issues such as integration of (GNU) Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).

For example, with ‘-funderscoring’, and assuming other defaults like
‘-fcase-lower’ and that ‘j()’ and ‘max_count()’ are external functions while
‘my_var’ and ‘lvar’ are local variables, a statement like

I = J() + MAX_COUNT (MY_VAR, LVAR)

is implemented as something akin to:
i = j_() + max_count__(&my_var__, &lvar);

With ‘-fno-underscoring’, the same statement is implemented as:
i = j() + max_count(&my_var, &lvar);

Use of ‘-fno-underscoring’ allows direct specification of user-defined names
while debugging and when interfacing g77 code with other languages.

Note that just because the names match does not mean that the interface
implemented by g77 for an external name matches the interface implemented
by some other language for that same name. That is, getting code produced
by g77 to link to code produced by some other compiler using this or any
other method can be only a small part of the overall solution—getting the code
generated by both compilers to agree on issues other than naming can require

50 Using and Porting GNU Fortran

significant effort, and, unlike naming disagreements, linkers normally cannot
detect disagreements in these other areas.

Also, note that with ‘-fno-underscoring’, the lack of appended underscores in-
troduces the very real possibility that a user-defined external name will conflict
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.

In future versions of g77 we hope to improve naming and linking issues so that
debugging always involves using the names as they appear in the source, even
if the names as seen by the linker are mangled to prevent accidental linking
between procedures with incompatible interfaces.

-fno-second-underscore
Do not append a second underscore to names of entities specified in the Fortran
source file.

This option has no effect if ‘-fno-underscoring’ is in effect.

Otherwise, with this option, an external name such as ‘MAX_COUNT’ is imple-
mented as a reference to the link-time external symbol ‘max_count_’, instead
of ‘max_count__’.

-fno-ident
Ignore the ‘#ident’ directive.

-fzeros Treat initial values of zero as if they were any other value.

As of version 0.5.18, g77 normally treats DATA and other statements that are
used to specify initial values of zero for variables and arrays as if no values were
actually specified, in the sense that no diagnostics regarding multiple initializa-
tions are produced.

This is done to speed up compiling of programs that initialize large arrays to
zeros.

Use ‘-fzeros’ to revert to the simpler, slower behavior that can catch multiple
initializations by keeping track of all initializations, zero or otherwise.

Caution: Future versions of g77 might disregard this option (and its nega-
tive form, the default) or interpret it somewhat differently. The interpretation
changes will affect only non-standard programs; standard-conforming programs
should not be affected.

-femulate-complex
Implement COMPLEX arithmetic via emulation, instead of using the facilities of
the gcc back end that provide direct support of complex arithmetic.

(gcc had some bugs in its back-end support for complex arithmetic, due pri-
marily to the support not being completed as of version 2.8.1 and egcs 1.1.2.)

Use ‘-femulate-complex’ if you suspect code-generation bugs, or experience
compiler crashes, that might result from g77 using the COMPLEX support in the
gcc back end. If using that option fixes the bugs or crashes you are seeing, that
indicates a likely g77 bugs (though, all compiler crashes are considered bugs),

Chapter 5: GNU Fortran Command Options 51

so, please report it. (Note that the known bugs, now believed fixed, produced
compiler crashes rather than causing the generation of incorrect code.)

Use of this option should not affect how Fortran code compiled by g77 works
in terms of its interfaces to other code, e.g. that compiled by f2c

As of GCC version 3.0, this option is not necessary anymore.

Caution: Future versions of g77 might ignore both forms of this option.

-falias-check
-fargument-alias
-fargument-noalias
-fno-argument-noalias-global

Version info: These options are not supported by versions of g77 based on gcc
version 2.8.

These options specify to what degree aliasing (overlap) is permitted between
arguments (passed as pointers) and COMMON (external, or public) storage.

The default for Fortran code, as mandated by the FORTRAN 77 and Fortran
90 standards, is ‘-fargument-noalias-global’. The default for code written
in the C language family is ‘-fargument-alias’.

Note that, on some systems, compiling with ‘-fforce-addr’ in effect can pro-
duce more optimal code when the default aliasing options are in effect (and
when optimization is enabled).

See Section 14.4.7 [Aliasing Assumed To Work], page 271, for detailed informa-
tion on the implications of compiling Fortran code that depends on the ability
to alias dummy arguments.

-fno-globals
Disable diagnostics about inter-procedural analysis problems, such as disagree-
ments about the type of a function or a procedure’s argument, that might cause
a compiler crash when attempting to inline a reference to a procedure within a
program unit. (The diagnostics themselves are still produced, but as warnings,
unless ‘-Wno-globals’ is specified, in which case no relevant diagnostics are
produced.)

Further, this option disables such inlining, to avoid compiler crashes resulting
from incorrect code that would otherwise be diagnosed.

As such, this option might be quite useful when compiling existing, “working”
code that happens to have a few bugs that do not generally show themselves,
but which g77 diagnoses.

Use of this option therefore has the effect of instructing g77 to behave more
like it did up through version 0.5.19.1, when it paid little or no attention to
disagreements between program units about a procedure’s type and argument
information, and when it performed no inlining of procedures (except statement
functions).

Without this option, g77 defaults to performing the potentially inlining pro-
cedures as it started doing in version 0.5.20, but as of version 0.5.21, it also
diagnoses disagreements that might cause such inlining to crash the compiler

52 Using and Porting GNU Fortran

as (fatal) errors, and warns about similar disagreements that are currently be-
lieved to not likely to result in the compiler later crashing or producing incorrect
code.

-fflatten-arrays
Use back end’s C-like constructs (pointer plus offset) instead of its ARRAY_REF
construct to handle all array references.
Note: This option is not supported. It is intended for use only by g77 develop-
ers, to evaluate code-generation issues. It might be removed at any time.

-fbounds-check
-ffortran-bounds-check

Enable generation of run-time checks for array subscripts and substring start
and end points against the (locally) declared minimum and maximum values.
The current implementation uses the libf2c library routine s_rnge to print
the diagnostic.
However, whereas f2c generates a single check per reference for a
multi-dimensional array, of the computed offset against the valid offset range
(0 through the size of the array), g77 generates a single check per subscript
expression. This catches some cases of potential bugs that f2c does not, such
as references to below the beginning of an assumed-size array.
g77 also generates checks for CHARACTER substring references, something f2c
currently does not do.
Use the new ‘-ffortran-bounds-check’ option to specify bounds-checking for
only the Fortran code you are compiling, not necessarily for code written in
other languages.
Note: To provide more detailed information on the offending subscript, g77
provides the libg2c run-time library routine s_rnge with somewhat differently-
formatted information. Here’s a sample diagnostic:

Subscript out of range on file line 4, procedure rnge.f/bf.

Attempt to access the -6-th element of variable b[subscript-2-of-2].

Aborted

The above message indicates that the offending source line is line 4 of the file
‘rnge.f’, within the program unit (or statement function) named ‘bf’. The
offended array is named ‘b’. The offended array dimension is the second for a
two-dimensional array, and the offending, computed subscript expression was
‘-6’.
For a CHARACTER substring reference, the second line has this appearance:

Attempt to access the 11-th element of variable a[start-substring].

This indicates that the offended CHARACTER variable or array is named ‘a’, the
offended substring position is the starting (leftmost) position, and the offending
substring expression is ‘11’.
(Though the verbage of s_rnge is not ideal for the purpose of the g77 compiler,
the above information should provide adequate diagnostic abilities to it users.)

See section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by g77 gcc
and other GNU compilers.

Chapter 5: GNU Fortran Command Options 53

Some of these do not work when compiling programs written in Fortran:

-fpcc-struct-return
-freg-struct-return

You should not use these except strictly the same way as you used them to
build the version of libg2c with which you will be linking all code compiled by
g77 with the same option.

-fshort-double
This probably either has no effect on Fortran programs, or makes them act
loopy.

-fno-common
Do not use this when compiling Fortran programs, or there will be Trouble.

-fpack-struct
This probably will break any calls to the libg2c library, at the very least, even
if it is built with the same option.

5.11 Environment Variables Affecting GNU Fortran

GNU Fortran currently does not make use of any environment variables to control its
operation above and beyond those that affect the operation of gcc.

See section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

54 Using and Porting GNU Fortran

Chapter 6: News About GNU Fortran 55

6 News About GNU Fortran

Changes made to recent versions of GNU Fortran are listed below, with the most recent
version first.

The changes are generally listed in order:
1. Code-generation and run-time-library bug-fixes
2. Compiler and run-time-library crashes involving valid code that have been fixed
3. New features
4. Fixes and enhancements to existing features
5. New diagnostics
6. Internal improvements
7. Miscellany

This order is not strict—for example, some items involve a combination of these elements.
Note that two variants of g77 are tracked below. The egcs variant is described vis-a-vis

previous versions of egcs and/or an official FSF version, as appropriate. Note that all such
variants are obsolete as of July 1999 - the information is retained here only for its historical
value.

Therefore, egcs versions sometimes have multiple listings to help clarify how they differ
from other versions, though this can make getting a complete picture of what a particular
egcs version contains somewhat more difficult.

For information on bugs in the GCC-3.3.6 version of g77, see Section 15.2 [Known Bugs
In GNU Fortran], page 287.

An online, “live” version of this document (derived directly from the mainline, develop-
ment version of g77 within gcc) is available at http://gcc.gnu.org/onlinedocs/g77/News.html.

The following information was last updated on 2003-05-18:

In GCC 3.3 versus GCC 3.2:

• Problem Reports fixed (in chronological order of submission):

1832 -list directed i/o overflow hangs, -fbounds-check doesn’t detect

3924 g77 generates code which is rejected by GAS if COFF debugging info is
requested

6286 Broken links on web pages

6367 (libf2c) multiple repeat counts confuse namelist read into array

6491 Logical operations error on logicals when using -fugly-logint

6742 Generation of C++ Prototype for FORTRAN and extern "C"

7113 Failure of g77.f-torture/execute/f90-intrinsic-bit.f -Os on irix6.5

7236 (libf2c) OPEN(...,RECL=nnn,...) without ACCESS=’DIRECT’ should as-
sume a direct access file

56 Using and Porting GNU Fortran

7278 g77 "bug"; the executable misbehave (use of options -O2 -fno-automatic
gave wrong results)

7384 (libf2c) DATE AND TIME milliseconds field inactive on Windows

7388 Incorrect output with 0-based array of characters

8587 Double complex zero ** double precision number -> NaN instead of zero

9038 -ffixed-line-length-none -x f77-cpp-input gives: Warning: unknown register
name line-length-none

9263 ICE caused by invalid PARAMETER in implied DO loop

10197 Direct access files not unformatted by default

10726 Documentation for function IDATE Intrinsic (UNIX) is wrong [fixed in
3.3.1].

• Richard Henderson (rth@redhat.com) analyzed and improved the handling of (no-
)aliasing information for dummy arguments and improved the optimization of induction
variables in unrolled loops.

In GCC 3.2 versus GCC 3.1:

• Problem Reports fixed (in chronological order of submission):

7681 ICE in compensate edge, at reg-stack.c:2591

8308 gcc-3.x does not compile files with suffix .r (RATFOR) [Fixed in 3.2.1]

9258 [3.2/3.3/3.4 regression] ICE in compensate edge, at reg-stack.c:2589

In GCC 3.1 (formerly known as g77-0.5.27) versus GCC 3.0:

• Problem Reports fixed (in chronological order of submission):

947 Data statement initialization with subscript of kind INTEGER*2

3743 Reference to intrinsic ‘ISHFT’ invalid

3807 Function BESJN(integer,double) problems

3957 g77 -pipe -xf77-cpp-input sends output to stdout

4279 g77 -h" gives bogus output

4730 ICE on valid input using CALL EXIT(%VAL(...))

4752 g77 -v -c -xf77-version /dev/null -xnone causes ice

4885 BACKSPACE example that doesn’t work as of gcc/g77-3.0.x

5122 g77 rejects accepted use of INTEGER*2 as type of DATA statement loop
index

5397 ICE on compiling source with 540 000 000 REAL array

5473 ICE on BESJN(integer*8,real)

Chapter 6: News About GNU Fortran 57

5837 bug in loop unrolling

6106 sparc-sun-solaris2.7 gcc-3.1 extra g77 testsuite failures w/-m64

6138 Incorrect acces of integer*1 variables on PA

6304 Failure of LAPACK test dtest on irix6.5 with -mabi=64 -O2
• g77 now has its man page generated from the texinfo documentation, to guarantee that

it remains up to date.
• g77 used to reject the following program on 32-bit targets:

PROGRAM PROG

DIMENSION A(140 000 000)

END

with the message:
prog.f: In program ‘prog’:

prog.f:2:

DIMENSION A(140 000 000)

^

Array ‘a’ at (^) is too large to handle

because 140 000 000 REALs is larger than the largest bit-extent that can be expressed
in 32 bits. However, bit-sizes never play a role after offsets have been converted to
byte addresses. Therefore this check has been removed, and the limit is now 2 Gbyte
of memory (around 530 000 000 REALs). Note: On GNU/Linux systems one has to
compile and link programs that occupy more than 1 Gbyte statically, i.e. g77 -static
....

• Based on work done by Juergen Pfeifer (juergen.pfeifer@gmx.net) libf2c is now a
shared library. One can still link in all objects with the program by specifying the
‘-static’ option.

• Robert Anderson (rwa@alumni.princeton.edu) thought up a two line change that
enables g77 to compile such code as:

SUBROUTINE SUB(A, N)

DIMENSION N(2)

DIMENSION A(N(1),N(2))

A(1,1) = 1.

END

Note the use of array elements in the bounds of the adjustable array A.
• George Helffrich (george@geo.titech.ac.jp) implemented a change in substring in-

dex checking (when specifying ‘-fbounds-check’) that permits the use of zero length
substrings of the form string(1:0).

• Based on code developed by Pedro Vazquez (vazquez@penelope.iqm.unicamp.br),
the libf2c library is now able to read and write files larger than 2 Gbyte on 32-bit
target machines, if the operating system supports this.

In 0.5.26, GCC 3.0 versus GCC 2.95:

• When a REWIND was issued after a WRITE statement on an unformatted file, the
implicit truncation was performed by copying the truncated file to /tmp and copying
the result back. This has been fixed by using the ftruncate OS function. Thanks go
to the GAMESS developers for bringing this to our attention.

58 Using and Porting GNU Fortran

• Using options ‘-g’, ‘-ggdb’ or ‘-gdwarf[-2]’ (where appropriate for your target) now
also enables debugging information for COMMON BLOCK and EQUIVALENCE items
to be emitted. Thanks go to Andrew Vaught (andy@xena.eas.asu.edu) and George
Helffrich (george@geology.bristol.ac.uk) for fixing this longstanding problem.

• It is not necessary anymore to use the option ‘-femulate-complex’ to compile Fortran
code using COMPLEX arithmetic, even on 64-bit machines (like the Alpha). This will
improve code generation.

• INTRINSIC arithmetic functions are now treated as routines that do not depend on
anything but their argument(s). This enables further instruction scheduling, because
it is known that they cannot read or modify arbitrary locations.

• Upgrade to libf2c as of 2000-12-05.

This fixes a bug where a namelist containing initialization of LOGICAL items and a
variable starting with T or F would be read incorrectly.

• The TtyNam intrinsics now set Name to all spaces (at run time) if the system has no
ttyname implementation available.

• Upgrade to libf2c as of 1999-06-28.

This fixes a bug whereby input to a NAMELIST read involving a repeat count, such as
‘K(5)=10*3’, was not properly handled by libf2c. The first item was written to ‘K(5)’,
but the remaining nine were written elsewhere (still within the array), not necessarily
starting at ‘K(6)’.

In 0.5.25, GCC 2.95 (EGCS 1.2) versus EGCS 1.1.2:

• g77 no longer generates bad code for assignments, or other conversions, of REAL
or COMPLEX constant expressions to type INTEGER(KIND=2) (often referred to as
INTEGER*8).

For example, ‘INTEGER*8 J; J = 4E10’ now works as documented.

• g77 no longer truncates INTEGER(KIND=2) (usually INTEGER*8) subscript
expressions when evaluating array references on systems with pointers widers than
INTEGER(KIND=1) (such as Alphas).

• g77 no longer generates bad code for an assignment to a COMPLEX variable or array
that partially overlaps one or more of the sources of the same assignment (a very rare
construction). It now assigns through a temporary, in cases where such partial overlap
is deemed possible.

• libg2c (libf2c) no longer loses track of the file being worked on during a BACKSPACE
operation.

• libg2c (libf2c) fixes a bug whereby input to a NAMELIST read involving a repeat
count, such as ‘K(5)=10*3’, was not properly handled by libf2c. The first item was
written to ‘K(5)’, but the remaining nine were written elsewhere (still within the array),
not necessarily starting at ‘K(6)’.

• Automatic arrays now seem to be working on HP-UX systems.

• The Date intrinsic now returns the correct result on big-endian systems.

Chapter 6: News About GNU Fortran 59

• Fix g77 so it no longer crashes when compiling I/O statements using keywords that
define INTEGER values, such as ‘IOSTAT=j ’, where j is other than default INTEGER (such
as INTEGER*2). Instead, it issues a diagnostic.

• Fix g77 so it properly handles ‘DATA A/rpt*val/’, where rpt is not default INTEGER,
such as INTEGER*2, instead of producing a spurious diagnostic. Also fix ‘DATA
(A(I),I=1,N)’, where ‘N’ is not default INTEGER to work instead of crashing g77.

• The ‘-ax’ option is now obeyed when compiling Fortran programs. (It is passed to the
‘f771’ driver.)

• The new ‘-fbounds-check’ option causes g77 to compile run-time bounds checks of
array subscripts, as well as of substring start and end points.

• libg2c now supports building as multilibbed library, which provides better support for
systems that require options such as ‘-mieee’ to work properly.

• Source file names with the suffixes ‘.FOR’ and ‘.FPP’ now are recognized by g77 as if
they ended in ‘.for’ and ‘.fpp’, respectively.

• The order of arguments to the subroutine forms of the CTime, DTime, ETime, and
TtyNam intrinsics has been swapped. The argument serving as the returned value for
the corresponding function forms now is the second argument, making these consistent
with the other subroutine forms of libU77 intrinsics.

• g77 now warns about a reference to an intrinsic that has an interface that is not
Year 2000 (Y2K) compliant. Also, libg2c has been changed to increase the likelihood
of catching references to the implementations of these intrinsics using the EXTERNAL
mechanism (which would avoid the new warnings).
See Section 10.2.2 [Year 2000 (Y2K) Problems], page 212, for more information.

• g77 now warns about a reference to a function when the corresponding subsequent
function program unit disagrees with the reference concerning the type of the function.

• ‘-fno-emulate-complex’ is now the default option. This should result in improved
performance of code that uses the COMPLEX data type.

• The ‘-malign-double’ option now reliably aligns all double-precision variables and
arrays on Intel x86 targets.

• Even without the ‘-malign-double’ option, g77 reliably aligns local double-precision
variables that are not in EQUIVALENCE areas and not SAVE’d.

• g77 now open-codes (“inlines”) division of COMPLEX operands instead of generating a
run-time call to the libf2c routines c_div or z_div, unless the ‘-Os’ option is specified.

• g77 no longer generates code to maintain errno, a C-language concept, when perform-
ing operations such as the SqRt intrinsic.

• g77 developers can temporarily use the ‘-fflatten-arrays’ option to compare how the
compiler handles code generation using C-like constructs as compared to the Fortran-
like method constructs normally used.

• A substantial portion of the g77 front end’s code-generation component was rewritten.
It now generates code using facilities more robustly supported by the gcc back end.
One effect of this rewrite is that some codes no longer produce a spurious “label lab
used before containing binding contour” message.

• Support for the ‘-fugly’ option has been removed.

60 Using and Porting GNU Fortran

• Improve documentation and indexing, including information on Year 2000 (Y2K) com-
pliance, and providing more information on internals of the front end.

• Upgrade to libf2c as of 1999-05-10.

In 0.5.24 versus 0.5.23:

There is no g77 version 0.5.24 at this time, or planned. 0.5.24 is the version number
designated for bug fixes and, perhaps, some new features added, to 0.5.23. Version 0.5.23
requires gcc 2.8.1, as 0.5.24 was planned to require.

Due to EGCS becoming GCC (which is now an acronym for “GNU Compiler Collection”),
and EGCS 1.2 becoming officially designated GCC 2.95, there seems to be no need for an
actual 0.5.24 release.

To reduce the confusion already resulting from use of 0.5.24 to designate g77 versions
within EGCS versions 1.0 and 1.1, as well as in versions of g77 documentation and notices
during that period, “mainline” g77 version numbering resumes at 0.5.25 with GCC 2.95 (EGCS
1.2), skipping over 0.5.24 as a placeholder version number.

To repeat, there is no g77 0.5.24, but there is now a 0.5.25. Please remain calm and
return to your keypunch units.

In EGCS 1.1.2 versus EGCS 1.1.1:

• Fix the IDate intrinsic (VXT) (in libg2c) so the returned year is in the documented,
non-Y2K-compliant range of 0-99, instead of being returned as 100 in the year 2000.
See Section 10.5.2.43 [IDate Intrinsic (VXT)], page 227, for more information.

• Fix the Date_and_Time intrinsic (in libg2c) to return the milliseconds value properly
in Values(8).

• Fix the LStat intrinsic (in libg2c) to return device-ID information properly in SAr-
ray(7).

• Improve documentation.

In EGCS 1.1.1 versus EGCS 1.1:

• Fix libg2c so it performs an implicit ENDFILE operation (as appropriate) whenever a
REWIND is done.
(This bug was introduced in 0.5.23 and egcs 1.1 in g77’s version of libf2c.)

• Fix libg2c so it no longer crashes with a spurious diagnostic upon doing any I/O
following a direct formatted write.
(This bug was introduced in 0.5.23 and egcs 1.1 in g77’s version of libf2c.)

• Fix g77 so it no longer crashes compiling references to the Rand intrinsic on some
systems.

• Fix g77 portion of installation process so it works better on some systems (those with
shells requiring ‘else true’ clauses on if constructs for the completion code to be set
properly).

Chapter 6: News About GNU Fortran 61

In EGCS 1.1 versus EGCS 1.0.3:

• Fix bugs in the libU77 intrinsic HostNm that wrote one byte beyond the end of its
CHARACTER argument, and in the libU77 intrinsics GMTime and LTime that overwrote
their arguments.

• Assumed arrays with negative bounds (such as ‘REAL A(-1:*)’) no longer elicit spurious
diagnostics from g77, even on systems with pointers having different sizes than integers.

This bug is not known to have existed in any recent version of gcc. It was introduced
in an early release of egcs.

• Valid combinations of EXTERNAL, passing that external as a dummy argument without
explicitly giving it a type, and, in a subsequent program unit, referencing that external
as an external function with a different type no longer crash g77.

• CASE DEFAULT no longer crashes g77.

• The ‘-Wunused’ option no longer issues a spurious warning about the “master” proce-
dure generated by g77 for procedures containing ENTRY statements.

• Support ‘FORMAT(I<expr>)’ when expr is a compile-time constant INTEGER expression.

• Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,
in gdb.

• Allow any REAL argument to intrinsics Second and CPU_Time.

• Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so
that the TMPDIR environment variable, if present, is used.

• g77’s version of libf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.

This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the libf2c environment, even when libf2c
(now libg2c) is a shared library.

• g77 no longer installs the ‘f77’ command and ‘f77.1’ man page in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f77-install-ok’ file exists in the source or build
directory. See the installation documentation for more information.

• g77 no longer installs the ‘libf2c.a’ library and ‘f2c.h’ include file in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f2c-install-ok’ or ‘f2c-exists-ok’ files exist in
the source or build directory. See the installation documentation for more information.

• The ‘libf2c.a’ library produced by g77 has been renamed to ‘libg2c.a’. It is in-
stalled only in the gcc “private” directory hierarchy, ‘gcc-lib’. This allows system
administrators and users to choose which version of the libf2c library from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

• The ‘f2c.h’ include (header) file produced by g77 has been renamed to ‘g2c.h’. It
is installed only in the gcc “private” directory hierarchy, ‘gcc-lib’. This allows sys-
tem administrators and users to choose which version of the include file from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

62 Using and Porting GNU Fortran

• The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

• During the configuration and build process, g77 creates subdirectories it needs only
as it needs them. Other cleaning up of the configuration and build process has been
performed as well.

• install-info now used to update the directory of Info documentation to contain an
entry for g77 (during installation).

• Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about
use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

• Improve compilation of FORMAT expressions so that a null byte is appended to the last
operand if it is a constant. This provides a cleaner run-time diagnostic as provided by
libf2c for statements like ‘PRINT ’(I1’, 42’.

• Improve documentation and indexing.
• The upgrade to libf2c as of 1998-06-18 should fix a variety of problems, including

those involving some uses of the T format specifier, and perhaps some build (porting)
problems as well.

In EGCS 1.1 versus g77 0.5.23:

• Fix a code-generation bug that afflicted Intel x86 targets when ‘-O2’ was specified
compiling, for example, an old version of the DNRM2 routine.
The x87 coprocessor stack was being mismanaged in cases involving assigned GOTO and
ASSIGN.

• g77 no longer produces incorrect code and initial values for EQUIVALENCE and COMMON
aggregates that, due to “unnatural” ordering of members vis-a-vis their types, require
initial padding.

• Fix g77 crash compiling code containing the construct ‘CMPLX(0.)’ or similar.
• g77 no longer crashes when compiling code containing specification statements such as

‘INTEGER(KIND=7) PTR’.
• g77 no longer crashes when compiling code such as ‘J = SIGNAL(1, 2)’.
• g77 now treats ‘%LOC(expr)’ and ‘LOC(expr)’ as “ordinary” expressions when they

are used as arguments in procedure calls. This change applies only to global (filewide)
analysis, making it consistent with how g77 actually generates code for these cases.
Previously, g77 treated these expressions as denoting special “pointer” arguments for
the purposes of filewide analysis.

• Fix g77 crash (or apparently infinite run-time) when compiling certain complicated
expressions involving COMPLEX arithmetic (especially multiplication).

• Align static double-precision variables and arrays on Intel x86 targets regardless of
whether ‘-malign-double’ is specified.
Generally, this affects only local variables and arrays having the SAVE attribute or given
initial values via DATA.

Chapter 6: News About GNU Fortran 63

• The g77 driver now ensures that ‘-lg2c’ is specified in the link phase prior to any
occurrence of ‘-lm’. This prevents accidentally linking to a routine in the SunOS4
‘-lm’ library when the generated code wants to link to the one in libf2c (libg2c).

• g77 emits more debugging information when ‘-g’ is used.
This new information allows, for example, which __g77_length_a to be used in gdb to
determine the type of the phantom length argument supplied with CHARACTER variables.
This information pertains to internally-generated type, variable, and other information,
not to the longstanding deficiencies vis-a-vis COMMON and EQUIVALENCE.

• The F90 Date_and_Time intrinsic now is supported.
• The F90 System_Clock intrinsic allows the optional arguments (except for the Count

argument) to be omitted.
• Upgrade to libf2c as of 1998-06-18.
• Improve documentation and indexing.

In 0.5.23 versus 0.5.22:

• This release contains several regressions against version 0.5.22 of g77, due to using the
“vanilla” gcc back end instead of patching it to fix a few bugs and improve performance
in a few cases.
Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:
− Support for __restrict__ keyword, the options ‘-fargument-alias’,

‘-fargument-noalias’, and ‘-fargument-noalias-global’, and the
corresponding alias-analysis code.
(egcs has the alias-analysis code, but not the __restrict__ keyword. egcs g77
users benefit from the alias-analysis code despite the lack of the __restrict__
keyword, which is a C-language construct.)

− Support for the GNU compiler options ‘-fmove-all-movables’,
‘-freduce-all-givs’, and ‘-frerun-loop-opt’.
(egcs supports these options. g77 users of egcs benefit from them even if they
are not explicitly specified, because the defaults are optimized for g77 users.)

− Support for the ‘-W’ option warning about integer division by zero.
− The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data

as well as statically-allocate data.

Note that the ‘gcc/f/gbe/’ subdirectory has been removed from this distribution as a
result of g77 no longer including patches for the gcc back end.

• Fix bugs in the libU77 intrinsic HostNm that wrote one byte beyond the end of its
CHARACTER argument, and in the libU77 intrinsics GMTime and LTime that overwrote
their arguments.

• Support gcc version 2.8, and remove support for prior versions of gcc.
• Remove support for the ‘--driver’ option, as g77 now does all the driving, just like

gcc.

64 Using and Porting GNU Fortran

• CASE DEFAULT no longer crashes g77.

• Valid combinations of EXTERNAL, passing that external as a dummy argument without
explicitly giving it a type, and, in a subsequent program unit, referencing that external
as an external function with a different type no longer crash g77.

• g77 no longer installs the ‘f77’ command and ‘f77.1’ man page in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f77-install-ok’ file exists in the source or build
directory. See the installation documentation for more information.

• g77 no longer installs the ‘libf2c.a’ library and ‘f2c.h’ include file in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f2c-install-ok’ or ‘f2c-exists-ok’ files exist in
the source or build directory. See the installation documentation for more information.

• The ‘libf2c.a’ library produced by g77 has been renamed to ‘libg2c.a’. It is in-
stalled only in the gcc “private” directory hierarchy, ‘gcc-lib’. This allows system
administrators and users to choose which version of the libf2c library from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

• The ‘f2c.h’ include (header) file produced by g77 has been renamed to ‘g2c.h’. It
is installed only in the gcc “private” directory hierarchy, ‘gcc-lib’. This allows sys-
tem administrators and users to choose which version of the include file from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

• The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

• The ‘-Wunused’ option no longer issues a spurious warning about the “master” proce-
dure generated by g77 for procedures containing ENTRY statements.

• g77’s version of libf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.

This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the libf2c environment, even when libf2c
(now libg2c) is a shared library.

• During the configuration and build process, g77 creates subdirectories it needs only as
it needs them, thus avoiding unnecessary creation of, for example, ‘stage1/f/runtime’
when doing a non-bootstrap build. Other cleaning up of the configuration and build
process has been performed as well.

• install-info now used to update the directory of Info documentation to contain an
entry for g77 (during installation).

• Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about
use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

• Improve documentation and indexing.

Chapter 6: News About GNU Fortran 65

• Upgrade to libf2c as of 1998-04-20.
This should fix a variety of problems, including those involving some uses of the T
format specifier, and perhaps some build (porting) problems as well.

In 0.5.22 versus 0.5.21:

• Fix code generation for iterative DO loops that have one or more references to the
iteration variable, or to aliases of it, in their control expressions. For example, ‘DO 10
J=2,J’ now is compiled correctly.

• Fix a code-generation bug that afflicted Intel x86 targets when ‘-O2’ was specified
compiling, for example, an old version of the DNRM2 routine.
The x87 coprocessor stack was being mismanaged in cases involving assigned GOTO and
ASSIGN.

• Fix DTime intrinsic so as not to truncate results to integer values (on some systems).
• Fix Signal intrinsic so it offers portable support for 64-bit systems (such as Digital

Alphas running GNU/Linux).
• Fix run-time crash involving NAMELIST on 64-bit machines such as Alphas.
• Fix g77 version of libf2c so it no longer produces a spurious ‘I/O recursion’ diagnos-

tic at run time when an I/O operation (such as ‘READ *,I’) is interrupted in a manner
that causes the program to be terminated via the f_exit routine (such as via C-c).

• Fix g77 crash triggered by CASE statement with an omitted lower or upper bound.
• Fix g77 crash compiling references to CPU_Time intrinsic.
• Fix g77 crash (or apparently infinite run-time) when compiling certain complicated

expressions involving COMPLEX arithmetic (especially multiplication).
• Fix g77 crash on statements such as ‘PRINT *, (REAL(Z(I)),I=1,2)’, where ‘Z’ is

DOUBLE COMPLEX.
• Fix a g++ crash.
• Support ‘FORMAT(I<expr>)’ when expr is a compile-time constant INTEGER expression.
• Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,

in gdb.
• Fix a profiling-related bug in gcc back end for Intel x86 architecture.
• Allow any REAL argument to intrinsics Second and CPU_Time.
• Allow any numeric argument to intrinsics Int2 and Int8.
• Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so

that the TMPDIR environment variable, if present, is used.
• Rename the gcc keyword restrict to __restrict__, to avoid rejecting valid, existing,

C programs. Support for restrict is now more like support for complex.
• Fix ‘-fpedantic’ to not reject procedure invocations such as ‘I=J()’ and ‘CALL FOO()’.
• Fix ‘-fugly-comma’ to affect invocations of only external procedures. Restore rejection

of gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)’.
• Fix compiler so it accepts ‘-fgnu-intrinsics-*’ and ‘-fbadu77-intrinsics-*’ op-

tions.

66 Using and Porting GNU Fortran

• Improve diagnostic messages from libf2c so it is more likely that the printing of the
active format string is limited to the string, with no trailing garbage being printed.
(Unlike f2c, g77 did not append a null byte to its compiled form of every format string
specified via a FORMAT statement. However, f2c would exhibit the problem anyway
for a statement like ‘PRINT ’(I)garbage’, 1’ by printing ‘(I)garbage’ as the format
string.)

• Improve compilation of FORMAT expressions so that a null byte is appended to the last
operand if it is a constant. This provides a cleaner run-time diagnostic as provided by
libf2c for statements like ‘PRINT ’(I1’, 42’.

• Fix various crashes involving code with diagnosed errors.
• Fix cross-compilation bug when configuring libf2c.
• Improve diagnostics.
• Improve documentation and indexing.
• Upgrade to libf2c as of 1997-09-23. This fixes a formatted-I/O bug that afflicted

64-bit systems with 32-bit integers (such as Digital Alpha running GNU/Linux).

In EGCS 1.0.2 versus EGCS 1.0.1:

• Fix g77 crash triggered by CASE statement with an omitted lower or upper bound.
• Fix g77 crash on statements such as ‘PRINT *, (REAL(Z(I)),I=1,2)’, where ‘Z’ is

DOUBLE COMPLEX.
• Fix ‘-fPIC’ (such as compiling for ELF targets) on the Intel x86 architecture target so

invalid assembler code is no longer produced.
• Fix ‘-fpedantic’ to not reject procedure invocations such as ‘I=J()’ and ‘CALL FOO()’.
• Fix ‘-fugly-comma’ to affect invocations of only external procedures. Restore rejection

of gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)’.
• Fix compiler so it accepts ‘-fgnu-intrinsics-*’ and ‘-fbadu77-intrinsics-*’ op-

tions.

In EGCS 1.0.1 versus EGCS 1.0:

• Fix run-time crash involving NAMELIST on 64-bit machines such as Alphas.

In EGCS 1.0 versus g77 0.5.21:

• Version 1.0 of egcs contains several regressions against version 0.5.21 of g77, due to
using the “vanilla” gcc back end instead of patching it to fix a few bugs and improve
performance in a few cases.
Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:
− Support for the C-language restrict keyword.
− Support for the ‘-W’ option warning about integer division by zero.

Chapter 6: News About GNU Fortran 67

− The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data
as well as statically-allocate data.

Note that the ‘gcc/f/gbe/’ subdirectory has been removed from this distribution as a
result of g77 being fully integrated with the egcs variant of the gcc back end.

• Fix code generation for iterative DO loops that have one or more references to the
iteration variable, or to aliases of it, in their control expressions. For example, ‘DO 10
J=2,J’ now is compiled correctly.

• Fix DTime intrinsic so as not to truncate results to integer values (on some systems).

• Some Fortran code, miscompiled by g77 built on gcc version 2.8.1 on m68k-next-
nextstep3 configurations when using the ‘-O2’ option, is now compiled correctly. It is
believed that a C function known to miscompile on that configuration when using the
‘-O2 -funroll-loops’ options also is now compiled correctly.

• Remove support for non-egcs versions of gcc.

• Remove support for the ‘--driver’ option, as g77 now does all the driving, just like
gcc.

• Allow any numeric argument to intrinsics Int2 and Int8.

• Improve diagnostic messages from libf2c so it is more likely that the printing of the
active format string is limited to the string, with no trailing garbage being printed.

(Unlike f2c, g77 did not append a null byte to its compiled form of every format string
specified via a FORMAT statement. However, f2c would exhibit the problem anyway
for a statement like ‘PRINT ’(I)garbage’, 1’ by printing ‘(I)garbage’ as the format
string.)

• Upgrade to libf2c as of 1997-09-23. This fixes a formatted-I/O bug that afflicted
64-bit systems with 32-bit integers (such as Digital Alpha running GNU/Linux).

In 0.5.21:

• Fix a code-generation bug introduced by 0.5.20 caused by loop unrolling (by specifying
‘-funroll-loops’ or similar). This bug afflicted all code compiled by version 2.7.2.2.f.2
of gcc (C, C++, Fortran, and so on).

• Fix a code-generation bug manifested when combining local EQUIVALENCE with a DATA
statement that follows the first executable statement (or is treated as an executable-
context statement as a result of using the ‘-fpedantic’ option).

• Fix a compiler crash that occurred when an integer division by a constant zero is
detected. Instead, when the ‘-W’ option is specified, the gcc back end issues a warning
about such a case. This bug afflicted all code compiled by version 2.7.2.2.f.2 of gcc (C,
C++, Fortran, and so on).

• Fix a compiler crash that occurred in some cases of procedure inlining. (Such cases
became more frequent in 0.5.20.)

• Fix a compiler crash resulting from using DATA or similar to initialize a COMPLEX variable
or array to zero.

• Fix compiler crashes involving use of AND, OR, or XOR intrinsics.

68 Using and Porting GNU Fortran

• Fix compiler bug triggered when using a COMMON or EQUIVALENCE variable as the target
of an ASSIGN or assigned-GOTO statement.

• Fix compiler crashes due to using the name of a some non-standard intrinsics (such as
FTell or FPutC) as such and as the name of a procedure or common block. Such dual
use of a name in a program is allowed by the standard.

• Place automatic arrays on the stack, even if SAVE or the ‘-fno-automatic’ option is
in effect. This avoids a compiler crash in some cases.

• The ‘-malign-double’ option now reliably aligns DOUBLE PRECISION optimally on Pen-
tium and Pentium Pro architectures (586 and 686 in gcc).

• New option ‘-Wno-globals’ disables warnings about “suspicious” use of a name both
as a global name and as the implicit name of an intrinsic, and warnings about dis-
agreements over the number or natures of arguments passed to global procedures, or
the natures of the procedures themselves.
The default is to issue such warnings, which are new as of this version of g77.

• New option ‘-fno-globals’ disables diagnostics about potentially fatal disagreements
analysis problems, such as disagreements over the number or natures of arguments
passed to global procedures, or the natures of those procedures themselves.
The default is to issue such diagnostics and flag the compilation as unsuccessful. With
this option, the diagnostics are issued as warnings, or, if ‘-Wno-globals’ is specified,
are not issued at all.
This option also disables inlining of global procedures, to avoid compiler crashes re-
sulting from coding errors that these diagnostics normally would identify.

• Diagnose cases where a reference to a procedure disagrees with the type of that pro-
cedure, or where disagreements about the number or nature of arguments exist. This
avoids a compiler crash.

• Fix parsing bug whereby g77 rejected a second initialization specification immediately
following the first’s closing ‘/’ without an intervening comma in a DATA statement, and
the second specification was an implied-DO list.

• Improve performance of the gcc back end so certain complicated expressions involving
COMPLEX arithmetic (especially multiplication) don’t appear to take forever to compile.

• Fix a couple of profiling-related bugs in gcc back end.
• Integrate GNU Ada’s (GNAT’s) changes to the back end, which consist almost entirely

of bug fixes. These fixes are circa version 3.10p of GNAT.
• Include some other gcc fixes that seem useful in g77’s version of gcc.

(See ‘gcc/ChangeLog’ for details—compare it to that file in the vanilla
gcc-2.7.2.3.tar.gz distribution.)

• Fix libU77 routines that accept file and other names to strip trailing blanks from them,
for consistency with other implementations. Blanks may be forcibly appended to such
names by appending a single null character (‘CHAR(0)’) to the significant trailing blanks.

• Fix CHMOD intrinsic to work with file names that have embedded blanks, commas, and
so on.

• Fix SIGNAL intrinsic so it accepts an optional third Status argument.
• Fix IDATE() intrinsic subroutine (VXT form) so it accepts arguments in the correct

order. Documentation fixed accordingly, and for GMTIME() and LTIME() as well.

Chapter 6: News About GNU Fortran 69

• Make many changes to libU77 intrinsics to support existing code more directly.
Such changes include allowing both subroutine and function forms of many routines,
changing MCLOCK() and TIME() to return INTEGER(KIND=1) values, introducing
MCLOCK8() and TIME8() to return INTEGER(KIND=2) values, and placing functions
that are intended to perform side effects in a new intrinsic group, badu77.

• Improve libU77 so it is more portable.
• Add options ‘-fbadu77-intrinsics-delete’, ‘-fbadu77-intrinsics-hide’, and so

on.
• Fix crashes involving diagnosed or invalid code.
• g77 and gcc now do a somewhat better job detecting and diagnosing arrays that are

too large to handle before these cause diagnostics during the assembler or linker phase,
a compiler crash, or generation of incorrect code.

• Make some fixes to alias analysis code.
• Add support for restrict keyword in gcc front end.
• Support gcc version 2.7.2.3 (modified by g77 into version 2.7.2.3.f.1), and remove

support for prior versions of gcc.
• Incorporate GNAT’s patches to the gcc back end into g77’s, so GNAT users do not

need to apply GNAT’s patches to build both GNAT and g77 from the same source
tree.

• Modify make rules and related code so that generation of Info documentation doesn’t
require compilation using gcc. Now, any ANSI C compiler should be adequate to
produce the g77 documentation (in particular, the tables of intrinsics) from scratch.

• Add INT2 and INT8 intrinsics.
• Add CPU_TIME intrinsic.
• Add ALARM intrinsic.
• CTIME intrinsic now accepts any INTEGER argument, not just INTEGER(KIND=2).
• Warn when explicit type declaration disagrees with the type of an intrinsic invocation.
• Support ‘*f771’ entry in gcc ‘specs’ file.
• Fix typo in make rule g77-cross, used only for cross-compiling.
• Fix libf2c build procedure to re-archive library if previous attempt to archive was

interrupted.
• Change gcc to unroll loops only during the last invocation (of as many as two invoca-

tions) of loop optimization.
• Improve handling of ‘-fno-f2c’ so that code that attempts to pass an intrinsic as an

actual argument, such as ‘CALL FOO(ABS)’, is rejected due to the fact that the run-
time-library routine is, effectively, compiled with ‘-ff2c’ in effect.

• Fix g77 driver to recognize ‘-fsyntax-only’ as an option that inhibits linking, just
like ‘-c’ or ‘-S’, and to recognize and properly handle the ‘-nostdlib’, ‘-M’, ‘-MM’,
‘-nodefaultlibs’, and ‘-Xlinker’ options.

• Upgrade to libf2c as of 1997-08-16.
• Modify libf2c to consistently and clearly diagnose recursive I/O (at run time).

70 Using and Porting GNU Fortran

• g77 driver now prints version information (such as produced by g77 -v) to stderr
instead of stdout.

• The ‘.r’ suffix now designates a Ratfor source file, to be preprocessed via the ratfor
command, available separately.

• Fix some aspects of how gcc determines what kind of system is being configured and
what kinds are supported. For example, GNU Linux/Alpha ELF systems now are
directly supported.

• Improve diagnostics.
• Improve documentation and indexing.
• Include all pertinent files for libf2c that come from netlib.bell-labs.com; give any

such files that aren’t quite accurate in g77’s version of libf2c the suffix ‘.netlib’.
• Reserve INTEGER(KIND=0) for future use.

In 0.5.20:

• The ‘-fno-typeless-boz’ option is now the default.
This option specifies that non-decimal-radix constants using the prefixed-radix form
(such as ‘Z’1234’’) are to be interpreted as INTEGER(KIND=1) constants. Specify
‘-ftypeless-boz’ to cause such constants to be interpreted as typeless.
(Version 0.5.19 introduced ‘-fno-typeless-boz’ and its inverse.)
See Section 5.4 [Options Controlling Fortran Dialect], page 35, for information on the
‘-ftypeless-boz’ option.

• Options ‘-ff90-intrinsics-enable’ and ‘-fvxt-intrinsics-enable’ now are the
defaults.
Some programs might use names that clash with intrinsic names defined (and now
enabled) by these options or by the new libU77 intrinsics. Users of such programs might
need to compile them differently (using, for example, ‘-ff90-intrinsics-disable’)
or, better yet, insert appropriate EXTERNAL statements specifying that these names are
not intended to be names of intrinsics.

• The ALWAYS_FLUSH macro is no longer defined when building libf2c, which should
result in improved I/O performance, especially over NFS.
Note: If you have code that depends on the behavior of libf2c when built with
ALWAYS_FLUSH defined, you will have to modify libf2c accordingly before building it
from this and future versions of g77.
See Section 14.4.8 [Output Assumed To Flush], page 273, for more information.

• Dave Love’s implementation of libU77 has been added to the version of libf2c dis-
tributed with and built as part of g77. g77 now knows about the routines in this library
as intrinsics.

• New option ‘-fvxt’ specifies that the source file is written in VXT Fortran, instead of
GNU Fortran.
See Section 9.6 [VXT Fortran], page 202, for more information on the constructs rec-
ognized when the ‘-fvxt’ option is specified.

Chapter 6: News About GNU Fortran 71

• The ‘-fvxt-not-f90’ option has been deleted, along with its inverse, ‘-ff90-not-vxt’.
If you used one of these deleted options, you should re-read the pertinent documentation
to determine which options, if any, are appropriate for compiling your code with this
version of g77.
See Chapter 9 [Other Dialects], page 197, for more information.

• The ‘-fugly’ option now issues a warning, as it likely will be removed in a future
version.
(Enabling all the ‘-fugly-*’ options is unlikely to be feasible, or sensible, in the future,
so users should learn to specify only those ‘-fugly-*’ options they really need for a
particular source file.)

• The ‘-fugly-assumed’ option, introduced in version 0.5.19, has been changed to better
accommodate old and new code.
See Section 9.9.2 [Ugly Assumed-Size Arrays], page 206, for more information.

• Make a number of fixes to the g77 front end and the gcc back end to better support
Alpha (AXP) machines. This includes providing at least one bug-fix to the gcc back
end for Alphas.

• Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() con-
struct now return values of INTEGER(KIND=0) type, as defined by the GNU Fortran
language.
This type is wide enough (holds the same number of bits) as the character-pointer type
on the machine.
On most machines, this won’t make a difference, whereas, on Alphas and other systems
with 64-bit pointers, the INTEGER(KIND=0) type is equivalent to INTEGER(KIND=2)
(often referred to as INTEGER*8) instead of the more common INTEGER(KIND=1) (often
referred to as INTEGER*4).

• Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support
in the gcc back end. New option ‘-fno-emulate-complex’ causes g77 to revert the
0.5.19 behavior.

• Fix bug whereby ‘REAL A(1)’, for example, caused a compiler crash if ‘-fugly-assumed’
was in effect and A was a local (automatic) array. That case is no longer affected by
the new handling of ‘-fugly-assumed’.

• Fix g77 command driver so that ‘g77 -o foo.f’ no longer deletes ‘foo.f’ before issuing
other diagnostics, and so the ‘-x’ option is properly handled.

• Enable inlining of subroutines and functions by the gcc back end. This works as it
does for gcc itself—program units may be inlined for invocations that follow them in
the same program unit, as long as the appropriate compile-time options are specified.

• Dummy arguments are no longer assumed to potentially alias (overlap) other dummy
arguments or COMMON areas when any of these are defined (assigned to) by Fortran code.
This can result in faster and/or smaller programs when compiling with optimization
enabled, though on some systems this effect is observed only when ‘-fforce-addr’ also
is specified.
New options ‘-falias-check’, ‘-fargument-alias’, ‘-fargument-noalias’, and
‘-fno-argument-noalias-global’ control the way g77 handles potential aliasing.

72 Using and Porting GNU Fortran

See Section 14.4.7 [Aliasing Assumed To Work], page 271, for detailed information on
why the new defaults might result in some programs no longer working the way they
did when compiled by previous versions of g77.

• The CONJG() and DCONJG() intrinsics now are compiled in-line.
• The bug-fix for 0.5.19.1 has been re-done. The g77 compiler has been changed back to

assume libf2c has no aliasing problems in its implementations of the COMPLEX (and
DOUBLE COMPLEX) intrinsics. The libf2c has been changed to have no such problems.
As a result, 0.5.20 is expected to offer improved performance over 0.5.19.1, perhaps as
good as 0.5.19 in most or all cases, due to this change alone.
Note: This change requires version 0.5.20 of libf2c, at least, when linking code pro-
duced by any versions of g77 other than 0.5.19.1. Use ‘g77 -v’ to determine the version
numbers of the libF77, libI77, and libU77 components of the libf2c library. (If these
version numbers are not printed—in particular, if the linker complains about unresolved
references to names like ‘g77__fvers__’—that strongly suggests your installation has
an obsolete version of libf2c.)

• New option ‘-fugly-assign’ specifies that the same memory locations are to be used to
hold the values assigned by both statements ‘I = 3’ and ‘ASSIGN 10 TO I’, for example.
(Normally, g77 uses a separate memory location to hold assigned statement labels.)
See Section 9.9.7 [Ugly Assigned Labels], page 209, for more information.

• FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.
• Produce diagnostic for unsupported SELECT CASE on CHARACTER type, instead of crash-

ing, at compile time.
• Fix crashes involving diagnosed or invalid code.
• Change approach to building libf2c archive (‘libf2c.a’) so that members are added

to it only when truly necessary, so the user that installs an already-built g77 doesn’t
need to have write access to the build tree (whereas the user doing the build might not
have access to install new software on the system).

• Support gcc version 2.7.2.2 (modified by g77 into version 2.7.2.2.f.2), and remove
support for prior versions of gcc.

• Upgrade to libf2c as of 1997-02-08, and fix up some of the build procedures.
• Improve general build procedures for g77, fixing minor bugs (such as deletion of any

file named ‘f771’ in the parent directory of gcc/).
• Enable full support of INTEGER(KIND=2) (often referred to as INTEGER*8) available in

libf2c and ‘f2c.h’ so that f2c users may make full use of its features via the g77
version of ‘f2c.h’ and the INTEGER(KIND=2) support routines in the g77 version of
libf2c.

• Improve g77 driver and libf2c so that ‘g77 -v’ yields version information on the
library.

• The SNGL and FLOAT intrinsics now are specific intrinsics, instead of synonyms for the
generic intrinsic REAL.

• New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and
SHORT.

• A new group of intrinsics, gnu, has been added to contain the new REALPART, IMAGPART,
and COMPLEX intrinsics. An old group, dcp, has been removed.

Chapter 6: News About GNU Fortran 73

• Complain about industry-wide ambiguous references ‘REAL(expr)’ and ‘AIMAG(expr)’,
where expr is DOUBLE COMPLEX (or any complex type other than COMPLEX), unless
‘-ff90’ option specifies Fortran 90 interpretation or new ‘-fugly-complex’ option,
in conjunction with ‘-fnot-f90’, specifies f2c interpretation.

• Make improvements to diagnostics.
• Speed up compiler a bit.
• Improvements to documentation and indexing, including a new chapter containing

information on one, later more, diagnostics that users are directed to pull up automat-
ically via a message in the diagnostic itself.
(Hence the menu item M for the node Diagnostics in the top-level menu of the Info
documentation.)

In previous versions:

Information on previous versions is archived in ‘gcc/gcc/f/news.texi’ following the
test of the DOC-OLDNEWS macro.

74 Using and Porting GNU Fortran

Chapter 7: User-visible Changes 75

7 User-visible Changes

This chapter describes changes to g77 that are visible to the programmers who actually write
and maintain Fortran code they compile with g77. Information on changes to installation
procedures, changes to the documentation, and bug fixes is not provided here, unless it is
likely to affect how users use g77. See Chapter 6 [News About GNU Fortran], page 55, for
information on such changes to g77.

Note that two variants of g77 are tracked below. The egcs variant is described vis-a-vis
previous versions of egcs and/or an official FSF version, as appropriate. Note that all such
variants are obsolete as of July 1999 - the information is retained here only for its historical
value.

Therefore, egcs versions sometimes have multiple listings to help clarify how they differ
from other versions, though this can make getting a complete picture of what a particular
egcs version contains somewhat more difficult.

For information on bugs in the GCC-3.3.6 version of g77, see Section 15.2 [Known Bugs
In GNU Fortran], page 287.

The following information was last updated on 2003-05-18:

In GCC 3.3 versus GCC 3.2:

• Problem Reports fixed (in chronological order of submission):

1832 -list directed i/o overflow hangs, -fbounds-check doesn’t detect

3924 g77 generates code which is rejected by GAS if COFF debugging info is
requested

6286 Broken links on web pages

6367 (libf2c) multiple repeat counts confuse namelist read into array

6491 Logical operations error on logicals when using -fugly-logint

6742 Generation of C++ Prototype for FORTRAN and extern "C"

7113 Failure of g77.f-torture/execute/f90-intrinsic-bit.f -Os on irix6.5

7236 (libf2c) OPEN(...,RECL=nnn,...) without ACCESS=’DIRECT’ should as-
sume a direct access file

7278 g77 "bug"; the executable misbehave (use of options -O2 -fno-automatic
gave wrong results)

7384 (libf2c) DATE AND TIME milliseconds field inactive on Windows

7388 Incorrect output with 0-based array of characters

8587 Double complex zero ** double precision number -> NaN instead of zero

9038 -ffixed-line-length-none -x f77-cpp-input gives: Warning: unknown register
name line-length-none

9263 ICE caused by invalid PARAMETER in implied DO loop

76 Using and Porting GNU Fortran

10197 Direct access files not unformatted by default

10726 Documentation for function IDATE Intrinsic (UNIX) is wrong [fixed in
3.3.1].

• Richard Henderson (rth@redhat.com) analyzed and improved the handling of (no-
)aliasing information for dummy arguments and improved the optimization of induction
variables in unrolled loops.

In GCC 3.2 versus GCC 3.1:

• Problem Reports fixed (in chronological order of submission):

7681 ICE in compensate edge, at reg-stack.c:2591

8308 gcc-3.x does not compile files with suffix .r (RATFOR) [Fixed in 3.2.1]

9258 [3.2/3.3/3.4 regression] ICE in compensate edge, at reg-stack.c:2589

In GCC 3.1 (formerly known as g77-0.5.27) versus GCC 3.0:

• Problem Reports fixed (in chronological order of submission):

947 Data statement initialization with subscript of kind INTEGER*2

3743 Reference to intrinsic ‘ISHFT’ invalid

3807 Function BESJN(integer,double) problems

3957 g77 -pipe -xf77-cpp-input sends output to stdout

4279 g77 -h" gives bogus output

4730 ICE on valid input using CALL EXIT(%VAL(...))

4752 g77 -v -c -xf77-version /dev/null -xnone causes ice

4885 BACKSPACE example that doesn’t work as of gcc/g77-3.0.x

5122 g77 rejects accepted use of INTEGER*2 as type of DATA statement loop
index

5397 ICE on compiling source with 540 000 000 REAL array

5473 ICE on BESJN(integer*8,real)

5837 bug in loop unrolling

6106 sparc-sun-solaris2.7 gcc-3.1 extra g77 testsuite failures w/-m64

6138 Incorrect acces of integer*1 variables on PA

6304 Failure of LAPACK test dtest on irix6.5 with -mabi=64 -O2
• g77 now has its man page generated from the texinfo documentation, to guarantee that

it remains up to date.
• g77 used to reject the following program on 32-bit targets:

Chapter 7: User-visible Changes 77

PROGRAM PROG

DIMENSION A(140 000 000)

END

with the message:
prog.f: In program ‘prog’:

prog.f:2:

DIMENSION A(140 000 000)

^

Array ‘a’ at (^) is too large to handle

because 140 000 000 REALs is larger than the largest bit-extent that can be expressed
in 32 bits. However, bit-sizes never play a role after offsets have been converted to
byte addresses. Therefore this check has been removed, and the limit is now 2 Gbyte
of memory (around 530 000 000 REALs). Note: On GNU/Linux systems one has to
compile and link programs that occupy more than 1 Gbyte statically, i.e. g77 -static
....

• Based on work done by Juergen Pfeifer (juergen.pfeifer@gmx.net) libf2c is now a
shared library. One can still link in all objects with the program by specifying the
‘-static’ option.

• Robert Anderson (rwa@alumni.princeton.edu) thought up a two line change that
enables g77 to compile such code as:

SUBROUTINE SUB(A, N)

DIMENSION N(2)

DIMENSION A(N(1),N(2))

A(1,1) = 1.

END

Note the use of array elements in the bounds of the adjustable array A.

• George Helffrich (george@geo.titech.ac.jp) implemented a change in substring in-
dex checking (when specifying ‘-fbounds-check’) that permits the use of zero length
substrings of the form string(1:0).

• Based on code developed by Pedro Vazquez (vazquez@penelope.iqm.unicamp.br),
the libf2c library is now able to read and write files larger than 2 Gbyte on 32-bit
target machines, if the operating system supports this.

In 0.5.26, GCC 3.0 versus GCC 2.95:

• When a REWIND was issued after a WRITE statement on an unformatted file, the
implicit truncation was performed by copying the truncated file to /tmp and copying
the result back. This has been fixed by using the ftruncate OS function. Thanks go
to the GAMESS developers for bringing this to our attention.

• Using options ‘-g’, ‘-ggdb’ or ‘-gdwarf[-2]’ (where appropriate for your target) now
also enables debugging information for COMMON BLOCK and EQUIVALENCE items
to be emitted. Thanks go to Andrew Vaught (andy@xena.eas.asu.edu) and George
Helffrich (george@geology.bristol.ac.uk) for fixing this longstanding problem.

• It is not necessary anymore to use the option ‘-femulate-complex’ to compile Fortran
code using COMPLEX arithmetic, even on 64-bit machines (like the Alpha). This will
improve code generation.

78 Using and Porting GNU Fortran

• INTRINSIC arithmetic functions are now treated as routines that do not depend on
anything but their argument(s). This enables further instruction scheduling, because
it is known that they cannot read or modify arbitrary locations.

In 0.5.25, GCC 2.95 (EGCS 1.2) versus EGCS 1.1.2:

• The new ‘-fbounds-check’ option causes g77 to compile run-time bounds checks of
array subscripts, as well as of substring start and end points.

• libg2c now supports building as multilibbed library, which provides better support for
systems that require options such as ‘-mieee’ to work properly.

• Source file names with the suffixes ‘.FOR’ and ‘.FPP’ now are recognized by g77 as if
they ended in ‘.for’ and ‘.fpp’, respectively.

• The order of arguments to the subroutine forms of the CTime, DTime, ETime, and
TtyNam intrinsics has been swapped. The argument serving as the returned value for
the corresponding function forms now is the second argument, making these consistent
with the other subroutine forms of libU77 intrinsics.

• g77 now warns about a reference to an intrinsic that has an interface that is not
Year 2000 (Y2K) compliant. Also, libg2c has been changed to increase the likelihood
of catching references to the implementations of these intrinsics using the EXTERNAL
mechanism (which would avoid the new warnings).
See Section 10.2.2 [Year 2000 (Y2K) Problems], page 212, for more information.

• ‘-fno-emulate-complex’ is now the default option. This should result in improved
performance of code that uses the COMPLEX data type.

• The ‘-malign-double’ option now reliably aligns all double-precision variables and
arrays on Intel x86 targets.

• g77 no longer generates code to maintain errno, a C-language concept, when perform-
ing operations such as the SqRt intrinsic.

• Support for the ‘-fugly’ option has been removed.

In 0.5.24 versus 0.5.23:

There is no g77 version 0.5.24 at this time, or planned. 0.5.24 is the version number
designated for bug fixes and, perhaps, some new features added, to 0.5.23. Version 0.5.23
requires gcc 2.8.1, as 0.5.24 was planned to require.

Due to EGCS becoming GCC (which is now an acronym for “GNU Compiler Collection”),
and EGCS 1.2 becoming officially designated GCC 2.95, there seems to be no need for an
actual 0.5.24 release.

To reduce the confusion already resulting from use of 0.5.24 to designate g77 versions
within EGCS versions 1.0 and 1.1, as well as in versions of g77 documentation and notices
during that period, “mainline” g77 version numbering resumes at 0.5.25 with GCC 2.95 (EGCS
1.2), skipping over 0.5.24 as a placeholder version number.

To repeat, there is no g77 0.5.24, but there is now a 0.5.25. Please remain calm and
return to your keypunch units.

Chapter 7: User-visible Changes 79

In EGCS 1.1.2 versus EGCS 1.1.1:

In EGCS 1.1.1 versus EGCS 1.1:

In EGCS 1.1 versus EGCS 1.0.3:

• Support ‘FORMAT(I<expr>)’ when expr is a compile-time constant INTEGER expression.

• Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,
in gdb.

• Allow any REAL argument to intrinsics Second and CPU_Time.

• Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so
that the TMPDIR environment variable, if present, is used.

• g77’s version of libf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.

This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the libf2c environment, even when libf2c
(now libg2c) is a shared library.

• The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

• Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about
use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

In EGCS 1.1 versus g77 0.5.23:

• g77 now treats ‘%LOC(expr)’ and ‘LOC(expr)’ as “ordinary” expressions when they
are used as arguments in procedure calls. This change applies only to global (filewide)
analysis, making it consistent with how g77 actually generates code for these cases.

Previously, g77 treated these expressions as denoting special “pointer” arguments for
the purposes of filewide analysis.

• Align static double-precision variables and arrays on Intel x86 targets regardless of
whether ‘-malign-double’ is specified.

Generally, this affects only local variables and arrays having the SAVE attribute or given
initial values via DATA.

• The g77 driver now ensures that ‘-lg2c’ is specified in the link phase prior to any
occurrence of ‘-lm’. This prevents accidentally linking to a routine in the SunOS4
‘-lm’ library when the generated code wants to link to the one in libf2c (libg2c).

80 Using and Porting GNU Fortran

• g77 emits more debugging information when ‘-g’ is used.
This new information allows, for example, which __g77_length_a to be used in gdb to
determine the type of the phantom length argument supplied with CHARACTER variables.
This information pertains to internally-generated type, variable, and other information,
not to the longstanding deficiencies vis-a-vis COMMON and EQUIVALENCE.

• The F90 Date_and_Time intrinsic now is supported.
• The F90 System_Clock intrinsic allows the optional arguments (except for the Count

argument) to be omitted.

In 0.5.23 versus 0.5.22:

• This release contains several regressions against version 0.5.22 of g77, due to using the
“vanilla” gcc back end instead of patching it to fix a few bugs and improve performance
in a few cases.
Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:
− Support for __restrict__ keyword, the options ‘-fargument-alias’,

‘-fargument-noalias’, and ‘-fargument-noalias-global’, and the
corresponding alias-analysis code.
(egcs has the alias-analysis code, but not the __restrict__ keyword. egcs g77
users benefit from the alias-analysis code despite the lack of the __restrict__
keyword, which is a C-language construct.)

− Support for the GNU compiler options ‘-fmove-all-movables’,
‘-freduce-all-givs’, and ‘-frerun-loop-opt’.
(egcs supports these options. g77 users of egcs benefit from them even if they
are not explicitly specified, because the defaults are optimized for g77 users.)

− Support for the ‘-W’ option warning about integer division by zero.
− The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data

as well as statically-allocate data.
• Support gcc version 2.8, and remove support for prior versions of gcc.
• Remove support for the ‘--driver’ option, as g77 now does all the driving, just like

gcc.
• The g77 command now expects the run-time library to be named libg2c.a instead of

libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

• g77’s version of libf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.
This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the libf2c environment, even when libf2c
(now libg2c) is a shared library.

• Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about

Chapter 7: User-visible Changes 81

use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

In 0.5.22 versus 0.5.21:

• Fix Signal intrinsic so it offers portable support for 64-bit systems (such as Digital
Alphas running GNU/Linux).

• Support ‘FORMAT(I<expr>)’ when expr is a compile-time constant INTEGER expression.
• Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,

in gdb.
• Allow any REAL argument to intrinsics Second and CPU_Time.
• Allow any numeric argument to intrinsics Int2 and Int8.
• Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so

that the TMPDIR environment variable, if present, is used.
• Rename the gcc keyword restrict to __restrict__, to avoid rejecting valid, existing,

C programs. Support for restrict is now more like support for complex.
• Fix ‘-fugly-comma’ to affect invocations of only external procedures. Restore rejection

of gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)’.
• Fix compiler so it accepts ‘-fgnu-intrinsics-*’ and ‘-fbadu77-intrinsics-*’ op-

tions.

In EGCS 1.0.2 versus EGCS 1.0.1:

• Fix compiler so it accepts ‘-fgnu-intrinsics-*’ and ‘-fbadu77-intrinsics-*’ op-
tions.

In EGCS 1.0.1 versus EGCS 1.0:

In EGCS 1.0 versus g77 0.5.21:

• Version 1.0 of egcs contains several regressions against version 0.5.21 of g77, due to
using the “vanilla” gcc back end instead of patching it to fix a few bugs and improve
performance in a few cases.
Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:
− Support for the C-language restrict keyword.
− Support for the ‘-W’ option warning about integer division by zero.
− The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data

as well as statically-allocate data.

• Remove support for the ‘--driver’ option, as g77 now does all the driving, just like
gcc.

• Allow any numeric argument to intrinsics Int2 and Int8.

82 Using and Porting GNU Fortran

In 0.5.21:

• When the ‘-W’ option is specified, gcc, g77, and other GNU compilers that incorporate
the gcc back end as modified by g77, issue a warning about integer division by constant
zero.

• New option ‘-Wno-globals’ disables warnings about “suspicious” use of a name both
as a global name and as the implicit name of an intrinsic, and warnings about dis-
agreements over the number or natures of arguments passed to global procedures, or
the natures of the procedures themselves.
The default is to issue such warnings, which are new as of this version of g77.

• New option ‘-fno-globals’ disables diagnostics about potentially fatal disagreements
analysis problems, such as disagreements over the number or natures of arguments
passed to global procedures, or the natures of those procedures themselves.
The default is to issue such diagnostics and flag the compilation as unsuccessful. With
this option, the diagnostics are issued as warnings, or, if ‘-Wno-globals’ is specified,
are not issued at all.
This option also disables inlining of global procedures, to avoid compiler crashes re-
sulting from coding errors that these diagnostics normally would identify.

• Fix libU77 routines that accept file and other names to strip trailing blanks from them,
for consistency with other implementations. Blanks may be forcibly appended to such
names by appending a single null character (‘CHAR(0)’) to the significant trailing blanks.

• Fix CHMOD intrinsic to work with file names that have embedded blanks, commas, and
so on.

• Fix SIGNAL intrinsic so it accepts an optional third Status argument.
• Make many changes to libU77 intrinsics to support existing code more directly.

Such changes include allowing both subroutine and function forms of many routines,
changing MCLOCK() and TIME() to return INTEGER(KIND=1) values, introducing
MCLOCK8() and TIME8() to return INTEGER(KIND=2) values, and placing functions
that are intended to perform side effects in a new intrinsic group, badu77.

• Add options ‘-fbadu77-intrinsics-delete’, ‘-fbadu77-intrinsics-hide’, and so
on.

• Add INT2 and INT8 intrinsics.
• Add CPU_TIME intrinsic.
• Add ALARM intrinsic.
• CTIME intrinsic now accepts any INTEGER argument, not just INTEGER(KIND=2).
• g77 driver now prints version information (such as produced by g77 -v) to stderr

instead of stdout.
• The ‘.r’ suffix now designates a Ratfor source file, to be preprocessed via the ratfor

command, available separately.

In 0.5.20:

• The ‘-fno-typeless-boz’ option is now the default.

Chapter 7: User-visible Changes 83

This option specifies that non-decimal-radix constants using the prefixed-radix form
(such as ‘Z’1234’’) are to be interpreted as INTEGER(KIND=1) constants. Specify
‘-ftypeless-boz’ to cause such constants to be interpreted as typeless.

(Version 0.5.19 introduced ‘-fno-typeless-boz’ and its inverse.)

See Section 5.4 [Options Controlling Fortran Dialect], page 35, for information on the
‘-ftypeless-boz’ option.

• Options ‘-ff90-intrinsics-enable’ and ‘-fvxt-intrinsics-enable’ now are the
defaults.

Some programs might use names that clash with intrinsic names defined (and now
enabled) by these options or by the new libU77 intrinsics. Users of such programs might
need to compile them differently (using, for example, ‘-ff90-intrinsics-disable’)
or, better yet, insert appropriate EXTERNAL statements specifying that these names are
not intended to be names of intrinsics.

• The ALWAYS_FLUSH macro is no longer defined when building libf2c, which should
result in improved I/O performance, especially over NFS.

Note: If you have code that depends on the behavior of libf2c when built with
ALWAYS_FLUSH defined, you will have to modify libf2c accordingly before building it
from this and future versions of g77.

See Section 14.4.8 [Output Assumed To Flush], page 273, for more information.

• Dave Love’s implementation of libU77 has been added to the version of libf2c dis-
tributed with and built as part of g77. g77 now knows about the routines in this library
as intrinsics.

• New option ‘-fvxt’ specifies that the source file is written in VXT Fortran, instead of
GNU Fortran.

See Section 9.6 [VXT Fortran], page 202, for more information on the constructs rec-
ognized when the ‘-fvxt’ option is specified.

• The ‘-fvxt-not-f90’ option has been deleted, along with its inverse, ‘-ff90-not-vxt’.

If you used one of these deleted options, you should re-read the pertinent documentation
to determine which options, if any, are appropriate for compiling your code with this
version of g77.

See Chapter 9 [Other Dialects], page 197, for more information.

• The ‘-fugly’ option now issues a warning, as it likely will be removed in a future
version.

(Enabling all the ‘-fugly-*’ options is unlikely to be feasible, or sensible, in the future,
so users should learn to specify only those ‘-fugly-*’ options they really need for a
particular source file.)

• The ‘-fugly-assumed’ option, introduced in version 0.5.19, has been changed to better
accommodate old and new code.

See Section 9.9.2 [Ugly Assumed-Size Arrays], page 206, for more information.

• Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() con-
struct now return values of INTEGER(KIND=0) type, as defined by the GNU Fortran
language.

84 Using and Porting GNU Fortran

This type is wide enough (holds the same number of bits) as the character-pointer type
on the machine.

On most machines, this won’t make a difference, whereas, on Alphas and other systems
with 64-bit pointers, the INTEGER(KIND=0) type is equivalent to INTEGER(KIND=2)
(often referred to as INTEGER*8) instead of the more common INTEGER(KIND=1) (often
referred to as INTEGER*4).

• Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support
in the gcc back end. New option ‘-fno-emulate-complex’ causes g77 to revert the
0.5.19 behavior.

• Dummy arguments are no longer assumed to potentially alias (overlap) other dummy
arguments or COMMON areas when any of these are defined (assigned to) by Fortran code.

This can result in faster and/or smaller programs when compiling with optimization
enabled, though on some systems this effect is observed only when ‘-fforce-addr’ also
is specified.

New options ‘-falias-check’, ‘-fargument-alias’, ‘-fargument-noalias’, and
‘-fno-argument-noalias-global’ control the way g77 handles potential aliasing.

See Section 14.4.7 [Aliasing Assumed To Work], page 271, for detailed information on
why the new defaults might result in some programs no longer working the way they
did when compiled by previous versions of g77.

• New option ‘-fugly-assign’ specifies that the same memory locations are to be used to
hold the values assigned by both statements ‘I = 3’ and ‘ASSIGN 10 TO I’, for example.
(Normally, g77 uses a separate memory location to hold assigned statement labels.)

See Section 9.9.7 [Ugly Assigned Labels], page 209, for more information.

• FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.

• Enable full support of INTEGER(KIND=2) (often referred to as INTEGER*8) available in
libf2c and ‘f2c.h’ so that f2c users may make full use of its features via the g77
version of ‘f2c.h’ and the INTEGER(KIND=2) support routines in the g77 version of
libf2c.

• Improve g77 driver and libf2c so that ‘g77 -v’ yields version information on the
library.

• The SNGL and FLOAT intrinsics now are specific intrinsics, instead of synonyms for the
generic intrinsic REAL.

• New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and
SHORT.

• A new group of intrinsics, gnu, has been added to contain the new REALPART, IMAGPART,
and COMPLEX intrinsics. An old group, dcp, has been removed.

• Complain about industry-wide ambiguous references ‘REAL(expr)’ and ‘AIMAG(expr)’,
where expr is DOUBLE COMPLEX (or any complex type other than COMPLEX), unless
‘-ff90’ option specifies Fortran 90 interpretation or new ‘-fugly-complex’ option,
in conjunction with ‘-fnot-f90’, specifies f2c interpretation.

Chapter 7: User-visible Changes 85

In previous versions:

Information on previous versions is archived in ‘gcc/gcc/f/news.texi’ following the
test of the DOC-OLDNEWS macro.

86 Using and Porting GNU Fortran

Chapter 8: The GNU Fortran Language 87

8 The GNU Fortran Language

GNU Fortran supports a variety of extensions to, and dialects of, the Fortran language.
Its primary base is the ANSI FORTRAN 77 standard, currently available on the net-
work at http://www.fortran.com/fortran/F77_std/rjcnf0001.html or as monolithic
text at http://www.fortran.com/fortran/F77_std/f77_std.html. It offers some exten-
sions that are popular among users of UNIX f77 and f2c compilers, some that are popular
among users of other compilers (such as Digital products), some that are popular among
users of the newer Fortran 90 standard, and some that are introduced by GNU Fortran.

(If you need a text on Fortran, a few freely available electronic references have point-
ers from http://www.fortran.com/F/books.html. There is a ‘cooperative net project’,
User Notes on Fortran Programming at ftp://vms.huji.ac.il/fortran/ and mirrors
elsewhere; some of this material might not apply specifically to g77.)

Part of what defines a particular implementation of a Fortran system, such as g77, is
the particular characteristics of how it supports types, constants, and so on. Much of this
is left up to the implementation by the various Fortran standards and accepted practice in
the industry.

The GNU Fortran language is described below. Much of the material is organized along
the same lines as the ANSI FORTRAN 77 standard itself.

See Chapter 9 [Other Dialects], page 197, for information on features g77 supports that
are not part of the GNU Fortran language.

Note: This portion of the documentation definitely needs a lot of work!

8.1 Direction of Language Development

The purpose of the following description of the GNU Fortran language is to promote wide
portability of GNU Fortran programs.

GNU Fortran is an evolving language, due to the fact that g77 itself is in beta test. Some
current features of the language might later be redefined as dialects of Fortran supported
by g77 when better ways to express these features are added to g77, for example. Such
features would still be supported by g77, but would be available only when one or more
command-line options were used.

The GNU Fortran language is distinct from the GNU Fortran compilation system (g77).
For example, g77 supports various dialects of Fortran—in a sense, these are languages

other than GNU Fortran—though its primary purpose is to support the GNU Fortran
language, which also is described in its documentation and by its implementation.

On the other hand, non-GNU compilers might offer support for the GNU Fortran lan-
guage, and are encouraged to do so.

Currently, the GNU Fortran language is a fairly fuzzy object. It represents something
of a cross between what g77 accepts when compiling using the prevailing defaults and what
this document describes as being part of the language.

Future versions of g77 are expected to clarify the definition of the language in the docu-
mentation. Often, this will mean adding new features to the language, in the form of both
new documentation and new support in g77. However, it might occasionally mean removing

88 Using and Porting GNU Fortran

a feature from the language itself to “dialect” status. In such a case, the documentation
would be adjusted to reflect the change, and g77 itself would likely be changed to require
one or more command-line options to continue supporting the feature.

The development of the GNU Fortran language is intended to strike a balance between:
• Serving as a mostly-upwards-compatible language from the de facto UNIX Fortran

dialect as supported by f77.
• Offering new, well-designed language features. Attributes of such features include not

making existing code any harder to read (for those who might be unaware that the new
features are not in use) and not making state-of-the-art compilers take longer to issue
diagnostics, among others.

• Supporting existing, well-written code without gratuitously rejecting non-standard con-
structs, regardless of the origin of the code (its dialect).

• Offering default behavior and command-line options to reduce and, where reasonable,
eliminate the need for programmers to make any modifications to code that already
works in existing production environments.

• Diagnosing constructs that have different meanings in different systems, languages,
and dialects, while offering clear, less ambiguous ways to express each of the different
meanings so programmers can change their code appropriately.

One of the biggest practical challenges for the developers of the GNU Fortran language
is meeting the sometimes contradictory demands of the above items.

For example, a feature might be widely used in one popular environment, but the exact
same code that utilizes that feature might not work as expected—perhaps it might mean
something entirely different—in another popular environment.

Traditionally, Fortran compilers—even portable ones—have solved this problem by sim-
ply offering the appropriate feature to users of the respective systems. This approach treats
users of various Fortran systems and dialects as remote “islands”, or camps, of program-
mers, and assume that these camps rarely come into contact with each other (or, especially,
with each other’s code).

Project GNU takes a radically different approach to software and language design, in
that it assumes that users of GNU software do not necessarily care what kind of underlying
system they are using, regardless of whether they are using software (at the user-interface
level) or writing it (for example, writing Fortran or C code).

As such, GNU users rarely need consider just what kind of underlying hardware (or, in
many cases, operating system) they are using at any particular time. They can use and write
software designed for a general-purpose, widely portable, heterogeneous environment—the
GNU environment.

In line with this philosophy, GNU Fortran must evolve into a product that is widely
ported and portable not only in the sense that it can be successfully built, installed, and
run by users, but in the larger sense that its users can use it in the same way, and expect
largely the same behaviors from it, regardless of the kind of system they are using at any
particular time.

This approach constrains the solutions g77 can use to resolve conflicts between various
camps of Fortran users. If these two camps disagree about what a particular construct
should mean, g77 cannot simply be changed to treat that particular construct as having

Chapter 8: The GNU Fortran Language 89

one meaning without comment (such as a warning), lest the users expecting it to have the
other meaning are unpleasantly surprised that their code misbehaves when executed.

The use of the ASCII backslash character in character constants is an excellent (and still
somewhat unresolved) example of this kind of controversy. See Section 15.5.1 [Backslash in
Constants], page 303. Other examples are likely to arise in the future, as g77 developers
strive to improve its ability to accept an ever-wider variety of existing Fortran code without
requiring significant modifications to said code.

Development of GNU Fortran is further constrained by the desire to avoid requiring
programmers to change their code. This is important because it allows programmers, ad-
ministrators, and others to more faithfully evaluate and validate g77 (as an overall product
and as new versions are distributed) without having to support multiple versions of their
programs so that they continue to work the same way on their existing systems (non-GNU
perhaps, but possibly also earlier versions of g77).

8.2 ANSI FORTRAN 77 Standard Support

GNU Fortran supports ANSI FORTRAN 77 with the following caveats. In summary, the
only ANSI FORTRAN 77 features g77 doesn’t support are those that are probably rarely
used in actual code, some of which are explicitly disallowed by the Fortran 90 standard.

8.2.1 No Passing External Assumed-length

g77 disallows passing of an external procedure as an actual argument if the procedure’s
type is declared CHARACTER*(*). For example:

CHARACTER*(*) CFUNC
EXTERNAL CFUNC
CALL FOO(CFUNC)
END

It isn’t clear whether the standard considers this conforming.

8.2.2 No Passing Dummy Assumed-length

g77 disallows passing of a dummy procedure as an actual argument if the procedure’s type
is declared CHARACTER*(*).

SUBROUTINE BAR(CFUNC)
CHARACTER*(*) CFUNC
EXTERNAL CFUNC
CALL FOO(CFUNC)
END

It isn’t clear whether the standard considers this conforming.

90 Using and Porting GNU Fortran

8.2.3 No Pathological Implied-DO

The DO variable for an implied-DO construct in a DATA statement may not be used as the
DO variable for an outer implied-DO construct. For example, this fragment is disallowed by
g77:

DATA ((A(I, I), I= 1, 10), I= 1, 10) /.../

This also is disallowed by Fortran 90, as it offers no additional capabilities and would have
a variety of possible meanings.

Note that it is very unlikely that any production Fortran code tries to use this unsup-
ported construct.

8.2.4 No Useless Implied-DO

An array element initializer in an implied-DO construct in a DATA statement must contain
at least one reference to the DO variables of each outer implied-DO construct. For example,
this fragment is disallowed by g77:

DATA (A, I= 1, 1) /1./

This also is disallowed by Fortran 90, as FORTRAN 77’s more permissive requirements
offer no additional capabilities. However, g77 doesn’t necessarily diagnose all cases where
this requirement is not met.

Note that it is very unlikely that any production Fortran code tries to use this unsup-
ported construct.

8.3 Conformance

(The following information augments or overrides the information in Section 1.4 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 1 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

The definition of the GNU Fortran language is akin to that of the ANSI FORTRAN
77 language in that it does not generally require conforming implementations to diagnose
cases where programs do not conform to the language.

However, g77 as a compiler is being developed in a way that is intended to enable it to
diagnose such cases in an easy-to-understand manner.

A program that conforms to the GNU Fortran language should, when compiled, linked,
and executed using a properly installed g77 system, perform as described by the GNU
Fortran language definition. Reasons for different behavior include, among others:
• Use of resources (memory—heap, stack, and so on; disk space; CPU time; etc.) exceeds

those of the system.
• Range and/or precision of calculations required by the program exceeds that of the

system.
• Excessive reliance on behaviors that are system-dependent (non-portable Fortran code).
• Bugs in the program.
• Bug in g77.

Chapter 8: The GNU Fortran Language 91

• Bugs in the system.

Despite these “loopholes”, the availability of a clear specification of the language of
programs submitted to g77, as this document is intended to provide, is considered an
important aspect of providing a robust, clean, predictable Fortran implementation.

The definition of the GNU Fortran language, while having no special legal status, can
therefore be viewed as a sort of contract, or agreement. This agreement says, in essence, “if
you write a program in this language, and run it in an environment (such as a g77 system)
that supports this language, the program should behave in a largely predictable way”.

8.4 Notation Used in This Chapter

(The following information augments or overrides the information in Section 1.5 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 1 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

In this chapter, “must” denotes a requirement, “may” denotes permission, and “must
not” and “may not” denote prohibition. Terms such as “might”, “should”, and “can”
generally add little or nothing in the way of weight to the GNU Fortran language itself, but
are used to explain or illustrate the language.

For example:
“The FROBNITZ statement must precede all executable
statements in a program unit, and may not specify any dummy
arguments. It may specify local or common variables and arrays.
Its use should be limited to portions of the program designed to
be non-portable and system-specific, because it might cause the
containing program unit to behave quite differently on different
systems.”

Insofar as the GNU Fortran language is specified, the requirements and permissions
denoted by the above sample statement are limited to the placement of the statement and
the kinds of things it may specify. The rest of the statement—the content regarding non-
portable portions of the program and the differing behavior of program units containing
the FROBNITZ statement—does not pertain the GNU Fortran language itself. That content
offers advice and warnings about the FROBNITZ statement.

Remember: The GNU Fortran language definition specifies both what constitutes a valid
GNU Fortran program and how, given such a program, a valid GNU Fortran implementation
is to interpret that program.

It is not incumbent upon a valid GNU Fortran implementation to behave in any par-
ticular way, any consistent way, or any predictable way when it is asked to interpret input
that is not a valid GNU Fortran program.

Such input is said to have undefined behavior when interpreted by a valid GNU Fortran
implementation, though an implementation may choose to specify behaviors for some cases
of inputs that are not valid GNU Fortran programs.

Other notation used herein is that of the GNU texinfo format, which is used to generate
printed hardcopy, on-line hypertext (Info), and on-line HTML versions, all from a single
source document. This notation is used as follows:

92 Using and Porting GNU Fortran

• Keywords defined by the GNU Fortran language are shown in uppercase, as in: COMMON,
INTEGER, and BLOCK DATA.

Note that, in practice, many Fortran programs are written in lowercase—uppercase is
used in this manual as a means to readily distinguish keywords and sample Fortran-
related text from the prose in this document.

• Portions of actual sample program, input, or output text look like this: ‘Actual
program text’.

Generally, uppercase is used for all Fortran-specific and Fortran-related text, though
this does not always include literal text within Fortran code.

For example: ‘PRINT *, ’My name is Bob’’.

• A metasyntactic variable—that is, a name used in this document to serve as a place-
holder for whatever text is used by the user or programmer—appears as shown in the
following example:

“The INTEGER ivar statement specifies that ivar is a variable or array of type
INTEGER.”

In the above example, any valid text may be substituted for the metasyntactic variable
ivar to make the statement apply to a specific instance, as long as the same text is
substituted for both occurrences of ivar.

• Ellipses (“. . . ”) are used to indicate further text that is either unimportant or expanded
upon further, elsewhere.

• Names of data types are in the style of Fortran 90, in most cases.

See Section 8.7.1.3 [Kind Notation], page 100, for information on the relationship be-
tween Fortran 90 nomenclature (such as INTEGER(KIND=1)) and the more traditional,
less portably concise nomenclature (such as INTEGER*4).

8.5 Fortran Terms and Concepts

(The following information augments or overrides the information in Chapter 2 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 2 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.5.1 Syntactic Items

(Corresponds to Section 2.2 of ANSI X3.9-1978 FORTRAN 77.)

In GNU Fortran, a symbolic name is at least one character long, and has no arbitrary
upper limit on length. However, names of entities requiring external linkage (such as exter-
nal functions, external subroutines, and COMMON areas) might be restricted to some arbitrary
length by the system. Such a restriction is no more constrained than that of one through
six characters.

Underscores (‘_’) are accepted in symbol names after the first character (which must be
a letter).

Chapter 8: The GNU Fortran Language 93

8.5.2 Statements, Comments, and Lines

(Corresponds to Section 2.3 of ANSI X3.9-1978 FORTRAN 77.)

Use of an exclamation point (‘!’) to begin a trailing comment (a comment that extends
to the end of the same source line) is permitted under the following conditions:

• The exclamation point does not appear in column 6. Otherwise, it is treated as an
indicator of a continuation line.

• The exclamation point appears outside a character or Hollerith constant. Otherwise,
the exclamation point is considered part of the constant.

• The exclamation point appears to the left of any other possible trailing comment. That
is, a trailing comment may contain exclamation points in their commentary text.

Use of a semicolon (‘;’) as a statement separator is permitted under the following con-
ditions:

• The semicolon appears outside a character or Hollerith constant. Otherwise, the semi-
colon is considered part of the constant.

• The semicolon appears to the left of a trailing comment. Otherwise, the semicolon is
considered part of that comment.

• Neither a logical IF statement nor a non-construct WHERE statement (a Fortran 90
feature) may be followed (in the same, possibly continued, line) by a semicolon used
as a statement separator.

This restriction avoids the confusion that can result when reading a line such as:
IF (VALIDP) CALL FOO; CALL BAR

Some readers might think the ‘CALL BAR’ is executed only if ‘VALIDP’ is .TRUE., while
others might assume its execution is unconditional.

(At present, g77 does not diagnose code that violates this restriction.)

8.5.3 Scope of Symbolic Names and Statement Labels

(Corresponds to Section 2.9 of ANSI X3.9-1978 FORTRAN 77.)

Included in the list of entities that have a scope of a program unit are construct names (a
Fortran 90 feature). See Section 8.10.3 [Construct Names], page 106, for more information.

8.6 Characters, Lines, and Execution Sequence

(The following information augments or overrides the information in Chapter 3 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 3 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.6.1 GNU Fortran Character Set

(Corresponds to Section 3.1 of ANSI X3.9-1978 FORTRAN 77.)

94 Using and Porting GNU Fortran

Letters include uppercase letters (the twenty-six characters of the English alphabet) and
lowercase letters (their lowercase equivalent). Generally, lowercase letters may be used in
place of uppercase letters, though in character and Hollerith constants, they are distinct.

Special characters include:

• Semicolon (‘;’)
• Exclamation point (‘!’)
• Double quote (‘"’)
• Backslash (‘\’)
• Question mark (‘?’)
• Hash mark (‘#’)
• Ampersand (‘&’)
• Percent sign (‘%’)
• Underscore (‘_’)
• Open angle (‘<’)
• Close angle (‘>’)
• The FORTRAN 77 special characters (〈SPC〉, ‘=’, ‘+’, ‘-’, ‘*’, ‘/’, ‘(’, ‘)’, ‘,’, ‘.’, ‘$’, ‘’’,

and ‘:’)

Note that this document refers to 〈SPC〉 as space, while X3.9-1978 FORTRAN 77 refers
to it as blank.

8.6.2 Lines

(Corresponds to Section 3.2 of ANSI X3.9-1978 FORTRAN 77.)

The way a Fortran compiler views source files depends entirely on the implementation
choices made for the compiler, since those choices are explicitly left to the implementation
by the published Fortran standards.

The GNU Fortran language mandates a view applicable to UNIX-like text files—files that
are made up of an arbitrary number of lines, each with an arbitrary number of characters
(sometimes called stream-based files).

This view does not apply to types of files that are specified as having a particular number
of characters on every single line (sometimes referred to as record-based files).

Because a “line in a program unit is a sequence of 72 characters”, to quote X3.9-1978, the
GNU Fortran language specifies that a stream-based text file is translated to GNU Fortran
lines as follows:

• A newline in the file is the character that represents the end of a line of text to the un-
derlying system. For example, on ASCII-based systems, a newline is the 〈NL〉 character,
which has ASCII value 10 (decimal).

• Each newline in the file serves to end the line of text that precedes it (and that does
not contain a newline).

• The end-of-file marker (EOF) also serves to end the line of text that precedes it (and
that does not contain a newline).

Chapter 8: The GNU Fortran Language 95

• Any line of text that is shorter than 72 characters is padded to that length with spaces
(called “blanks” in the standard).

• Any line of text that is longer than 72 characters is truncated to that length, but the
truncated remainder must consist entirely of spaces.

• Characters other than newline and the GNU Fortran character set are invalid.

For the purposes of the remainder of this description of the GNU Fortran language, the
translation described above has already taken place, unless otherwise specified.

The result of the above translation is that the source file appears, in terms of the re-
mainder of this description of the GNU Fortran language, as if it had an arbitrary number
of 72-character lines, each character being among the GNU Fortran character set.

For example, if the source file itself has two newlines in a row, the second newline
becomes, after the above translation, a single line containing 72 spaces.

8.6.3 Continuation Line

(Corresponds to Section 3.2.3 of ANSI X3.9-1978 FORTRAN 77.)

A continuation line is any line that both

• Contains a continuation character, and
• Contains only spaces in columns 1 through 5

A continuation character is any character of the GNU Fortran character set other than
space (〈SPC〉) or zero (‘0’) in column 6, or a digit (‘0’ through ‘9’) in column 7 through 72
of a line that has only spaces to the left of that digit.

The continuation character is ignored as far as the content of the statement is concerned.

The GNU Fortran language places no limit on the number of continuation lines in a
statement. In practice, the limit depends on a variety of factors, such as available memory,
statement content, and so on, but no GNU Fortran system may impose an arbitrary limit.

8.6.4 Statements

(Corresponds to Section 3.3 of ANSI X3.9-1978 FORTRAN 77.)

Statements may be written using an arbitrary number of continuation lines.

Statements may be separated using the semicolon (‘;’), except that the logical IF and
non-construct WHERE statements may not be separated from subsequent statements using
only a semicolon as statement separator.

The END PROGRAM, END SUBROUTINE, END FUNCTION, and END BLOCK DATA statements
are alternatives to the END statement. These alternatives may be written as normal
statements—they are not subject to the restrictions of the END statement.

However, no statement other than END may have an initial line that appears to be an
END statement—even END PROGRAM, for example, must not be written as:

END
&PROGRAM

96 Using and Porting GNU Fortran

8.6.5 Statement Labels

(Corresponds to Section 3.4 of ANSI X3.9-1978 FORTRAN 77.)
A statement separated from its predecessor via a semicolon may be labeled as follows:
• The semicolon is followed by the label for the statement, which in turn follows the

label.
• The label must be no more than five digits in length.
• The first digit of the label for the statement is not the first non-space character on a

line. Otherwise, that character is treated as a continuation character.

A statement may have only one label defined for it.

8.6.6 Order of Statements and Lines

(Corresponds to Section 3.5 of ANSI X3.9-1978 FORTRAN 77.)
Generally, DATA statements may precede executable statements. However, specification

statements pertaining to any entities initialized by a DATA statement must precede that DATA
statement. For example, after ‘DATA I/1/’, ‘INTEGER I’ is not permitted, but ‘INTEGER J’
is permitted.

The last line of a program unit may be an END statement, or may be:
• An END PROGRAM statement, if the program unit is a main program.
• An END SUBROUTINE statement, if the program unit is a subroutine.
• An END FUNCTION statement, if the program unit is a function.
• An END BLOCK DATA statement, if the program unit is a block data.

8.6.7 Including Source Text

Additional source text may be included in the processing of the source file via the INCLUDE
directive:

INCLUDE filename

The source text to be included is identified by filename, which is a literal GNU Fortran char-
acter constant. The meaning and interpretation of filename depends on the implementation,
but typically is a filename.

(g77 treats it as a filename that it searches for in the current directory and/or directories
specified via the ‘-I’ command-line option.)

The effect of the INCLUDE directive is as if the included text directly replaced the directive
in the source file prior to interpretation of the program. Included text may itself use
INCLUDE. The depth of nested INCLUDE references depends on the implementation, but
typically is a positive integer.

This virtual replacement treats the statements and INCLUDE directives in the included
text as syntactically distinct from those in the including text.

Therefore, the first non-comment line of the included text must not be a continuation
line. The included text must therefore have, after the non-comment lines, either an initial
line (statement), an INCLUDE directive, or nothing (the end of the included text).

Chapter 8: The GNU Fortran Language 97

Similarly, the including text may end the INCLUDE directive with a semicolon or the
end of the line, but it cannot follow an INCLUDE directive at the end of its line with a
continuation line. Thus, the last statement in an included text may not be continued.

Any statements between two INCLUDE directives on the same line are treated as if they
appeared in between the respective included texts. For example:

INCLUDE ’A’; PRINT *, ’B’; INCLUDE ’C’; END PROGRAM

If the text included by ‘INCLUDE ’A’’ constitutes a ‘PRINT *, ’A’’ statement and the text
included by ‘INCLUDE ’C’’ constitutes a ‘PRINT *, ’C’’ statement, then the output of the
above sample program would be

A
B
C

(with suitable allowances for how an implementation defines its handling of output).

Included text must not include itself directly or indirectly, regardless of whether the
filename used to reference the text is the same.

Note that INCLUDE is not a statement. As such, it is neither a non-executable or ex-
ecutable statement. However, if the text it includes constitutes one or more executable
statements, then the placement of INCLUDE is subject to effectively the same restrictions as
those on executable statements.

An INCLUDE directive may be continued across multiple lines as if it were a statement.
This permits long names to be used for filename.

8.6.8 Cpp-style directives

cpp output-style # directives (see section “C Preprocessor Output” in The C Preprocessor)
are recognized by the compiler even when the preprocessor isn’t run on the input (as it is
when compiling ‘.F’ files). (Note the distinction between these cpp # output directives and
#line input directives.)

8.7 Data Types and Constants

(The following information augments or overrides the information in Chapter 4 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 4 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

To more concisely express the appropriate types for entities, this document uses the
more concise Fortran 90 nomenclature such as INTEGER(KIND=1) instead of the more tradi-
tional, but less portably concise, byte-size-based nomenclature such as INTEGER*4, wherever
reasonable.

When referring to generic types—in contexts where the specific precision and range of
a type are not important—this document uses the generic type names INTEGER, LOGICAL,
REAL, COMPLEX, and CHARACTER.

In some cases, the context requires specification of a particular type. This document
uses the ‘KIND=’ notation to accomplish this throughout, sometimes supplying the more

98 Using and Porting GNU Fortran

traditional notation for clarification, though the traditional notation might not work the
same way on all GNU Fortran implementations.

Use of ‘KIND=’ makes this document more concise because g77 is able to define values
for ‘KIND=’ that have the same meanings on all systems, due to the way the Fortran 90
standard specifies these values are to be used.

(In particular, that standard permits an implementation to arbitrarily assign nonnegative
values. There are four distinct sets of assignments: one to the CHARACTER type; one to the
INTEGER type; one to the LOGICAL type; and the fourth to both the REAL and COMPLEX types.
Implementations are free to assign these values in any order, leave gaps in the ordering of
assignments, and assign more than one value to a representation.)

This makes ‘KIND=’ values superior to the values used in non-standard statements such
as ‘INTEGER*4’, because the meanings of the values in those statements vary from machine
to machine, compiler to compiler, even operating system to operating system.

However, use of ‘KIND=’ is not generally recommended when writing portable code (un-
less, for example, the code is going to be compiled only via g77, which is a widely ported
compiler). GNU Fortran does not yet have adequate language constructs to permit use of
‘KIND=’ in a fashion that would make the code portable to Fortran 90 implementations; and,
this construct is known to not be accepted by many popular FORTRAN 77 implementa-
tions, so it cannot be used in code that is to be ported to those.

The distinction here is that this document is able to use specific values for ‘KIND=’ to
concisely document the types of various operations and operands.

A Fortran program should use the FORTRAN 77 designations for the appropriate GNU
Fortran types—such as INTEGER for INTEGER(KIND=1), REAL for REAL(KIND=1), and DOUBLE
COMPLEX for COMPLEX(KIND=2)—and, where no such designations exist, make use of appro-
priate techniques (preprocessor macros, parameters, and so on) to specify the types in a
fashion that may be easily adjusted to suit each particular implementation to which the
program is ported. (These types generally won’t need to be adjusted for ports of g77.)

Further details regarding GNU Fortran data types and constants are provided below.

8.7.1 Data Types

(Corresponds to Section 4.1 of ANSI X3.9-1978 FORTRAN 77.)

GNU Fortran supports these types:

1. Integer (generic type INTEGER)

2. Real (generic type REAL)

3. Double precision

4. Complex (generic type COMPLEX)

5. Logical (generic type LOGICAL)

6. Character (generic type CHARACTER)

7. Double Complex

(The types numbered 1 through 6 above are standard FORTRAN 77 types.)

Chapter 8: The GNU Fortran Language 99

The generic types shown above are referred to in this document using only their generic
type names. Such references usually indicate that any specific type (kind) of that generic
type is valid.

For example, a context described in this document as accepting the COMPLEX type also
is likely to accept the DOUBLE COMPLEX type.

The GNU Fortran language supports three ways to specify a specific kind of a generic
type.

8.7.1.1 Double Notation

The GNU Fortran language supports two uses of the keyword DOUBLE to specify a specific
kind of type:
• DOUBLE PRECISION, equivalent to REAL(KIND=2)

• DOUBLE COMPLEX, equivalent to COMPLEX(KIND=2)

Use one of the above forms where a type name is valid.
While use of this notation is popular, it doesn’t scale well in a language or dialect rich

in intrinsic types, as is the case for the GNU Fortran language (especially planned future
versions of it).

After all, one rarely sees type names such as ‘DOUBLE INTEGER’, ‘QUADRUPLE REAL’, or
‘QUARTER INTEGER’. Instead, INTEGER*8, REAL*16, and INTEGER*1 often are substituted for
these, respectively, even though they do not always have the same meanings on all systems.
(And, the fact that ‘DOUBLE REAL’ does not exist as such is an inconsistency.)

Therefore, this document uses “double notation” only on occasion for the benefit of those
readers who are accustomed to it.

8.7.1.2 Star Notation

The following notation specifies the storage size for a type:
generic-type*n

generic-type must be a generic type—one of INTEGER, REAL, COMPLEX, LOGICAL, or
CHARACTER. n must be one or more digits comprising a decimal integer number greater
than zero.

Use the above form where a type name is valid.
The ‘*n ’ notation specifies that the amount of storage occupied by variables and array

elements of that type is n times the storage occupied by a CHARACTER*1 variable.
This notation might indicate a different degree of precision and/or range for such vari-

ables and array elements, and the functions that return values of types using this notation.
It does not limit the precision or range of values of that type in any particular way—use
explicit code to do that.

Further, the GNU Fortran language requires no particular values for n to be supported by
an implementation via the ‘*n ’ notation. g77 supports INTEGER*1 (as INTEGER(KIND=3))
on all systems, for example, but not all implementations are required to do so, and g77 is
known to not support REAL*1 on most (or all) systems.

100 Using and Porting GNU Fortran

As a result, except for generic-type of CHARACTER, uses of this notation should be limited
to isolated portions of a program that are intended to handle system-specific tasks and are
expected to be non-portable.

(Standard FORTRAN 77 supports the ‘*n ’ notation for only CHARACTER, where it sig-
nifies not only the amount of storage occupied, but the number of characters in entities of
that type. However, almost all Fortran compilers have supported this notation for generic
types, though with a variety of meanings for n.)

Specifications of types using the ‘*n ’ notation always are interpreted as specifications
of the appropriate types described in this document using the ‘KIND=n ’ notation, described
below.

While use of this notation is popular, it doesn’t serve well in the context of a widely
portable dialect of Fortran, such as the GNU Fortran language.

For example, even on one particular machine, two or more popular Fortran compilers
might well disagree on the size of a type declared INTEGER*2 or REAL*16. Certainly there is
known to be disagreement over such things among Fortran compilers on different systems.

Further, this notation offers no elegant way to specify sizes that are not even multiples
of the “byte size” typically designated by INTEGER*1. Use of “absurd” values (such as
INTEGER*1000) would certainly be possible, but would perhaps be stretching the original
intent of this notation beyond the breaking point in terms of widespread readability of
documentation and code making use of it.

Therefore, this document uses “star notation” only on occasion for the benefit of those
readers who are accustomed to it.

8.7.1.3 Kind Notation

The following notation specifies the kind-type selector of a type:
generic-type(KIND=n)

Use the above form where a type name is valid.
generic-type must be a generic type—one of INTEGER, REAL, COMPLEX, LOGICAL, or

CHARACTER. n must be an integer initialization expression that is a positive, nonzero value.
Programmers are discouraged from writing these values directly into their code. Future

versions of the GNU Fortran language will offer facilities that will make the writing of code
portable to g77 and Fortran 90 implementations simpler.

However, writing code that ports to existing FORTRAN 77 implementations depends
on avoiding the ‘KIND=’ construct.

The ‘KIND=’ construct is thus useful in the context of GNU Fortran for two reasons:
• It provides a means to specify a type in a fashion that is portable across all GNU Fortran

implementations (though not other FORTRAN 77 and Fortran 90 implementations).
• It provides a sort of Rosetta stone for this document to use to concisely describe the

types of various operations and operands.

The values of n in the GNU Fortran language are assigned using a scheme that:
• Attempts to maximize the ability of readers of this document to quickly familiarize

themselves with assignments for popular types

Chapter 8: The GNU Fortran Language 101

• Provides a unique value for each specific desired meaning
• Provides a means to automatically assign new values so they have a “natural” rela-

tionship to existing values, if appropriate, or, if no such relationship exists, will not
interfere with future values assigned on the basis of such relationships

• Avoids using values that are similar to values used in the existing, popular ‘*n ’ notation,
to prevent readers from expecting that these implied correspondences work on all GNU
Fortran implementations

The assignment system accomplishes this by assigning to each “fundamental meaning”
of a specific type a unique prime number. Combinations of fundamental meanings—for
example, a type that is two times the size of some other type—are assigned values of n that
are the products of the values for those fundamental meanings.

A prime value of n is never given more than one fundamental meaning, to avoid situations
where some code or system cannot reasonably provide those meanings in the form of a single
type.

The values of n assigned so far are:

KIND=0 This value is reserved for future use.
The planned future use is for this value to designate, explicitly, context-sensitive
kind-type selection. For example, the expression ‘1D0 * 0.1_0’ would be equiv-
alent to ‘1D0 * 0.1D0’.

KIND=1 This corresponds to the default types for REAL, INTEGER, LOGICAL, COMPLEX,
and CHARACTER, as appropriate.
These are the “default” types described in the Fortran 90 standard, though
that standard does not assign any particular ‘KIND=’ value to these types.
(Typically, these are REAL*4, INTEGER*4, LOGICAL*4, and COMPLEX*8.)

KIND=2 This corresponds to types that occupy twice as much storage as the
default types. REAL(KIND=2) is DOUBLE PRECISION (typically REAL*8),
COMPLEX(KIND=2) is DOUBLE COMPLEX (typically COMPLEX*16),
These are the “double precision” types described in the Fortran 90 standard,
though that standard does not assign any particular ‘KIND=’ value to these
types.
n of 4 thus corresponds to types that occupy four times as much storage as the
default types, n of 8 to types that occupy eight times as much storage, and so
on.
The INTEGER(KIND=2) and LOGICAL(KIND=2) types are not necessarily sup-
ported by every GNU Fortran implementation.

KIND=3 This corresponds to types that occupy as much storage as the default CHARACTER
type, which is the same effective type as CHARACTER(KIND=1) (making that type
effectively the same as CHARACTER(KIND=3)).
(Typically, these are INTEGER*1 and LOGICAL*1.)
n of 6 thus corresponds to types that occupy twice as much storage as the n=3
types, n of 12 to types that occupy four times as much storage, and so on.
These are not necessarily supported by every GNU Fortran implementation.

102 Using and Porting GNU Fortran

KIND=5 This corresponds to types that occupy half the storage as the default (n=1)
types.
(Typically, these are INTEGER*2 and LOGICAL*2.)
n of 25 thus corresponds to types that occupy one-quarter as much storage as
the default types.
These are not necessarily supported by every GNU Fortran implementation.

KIND=7 This is valid only as INTEGER(KIND=7) and denotes the INTEGER type that has
the smallest storage size that holds a pointer on the system.
A pointer representable by this type is capable of uniquely addressing a
CHARACTER*1 variable, array, array element, or substring.
(Typically this is equivalent to INTEGER*4 or, on 64-bit systems, INTEGER*8.
In a compatible C implementation, it typically would be the same size and
semantics of the C type void *.)

Note that these are proposed correspondences and might change in future versions of
g77—avoid writing code depending on them while g77, and therefore the GNU Fortran
language it defines, is in beta testing.

Values not specified in the above list are reserved to future versions of the GNU Fortran
language.

Implementation-dependent meanings will be assigned new, unique prime numbers so as
to not interfere with other implementation-dependent meanings, and offer the possibility of
increasing the portability of code depending on such types by offering support for them in
other GNU Fortran implementations.

Other meanings that might be given unique values are:
• Types that make use of only half their storage size for representing precision and range.

For example, some compilers offer options that cause INTEGER types to occupy the
amount of storage that would be needed for INTEGER(KIND=2) types, but the range
remains that of INTEGER(KIND=1).

• The IEEE single floating-point type.
• Types with a specific bit pattern (endianness), such as the little-endian form of

INTEGER(KIND=1). These could permit, conceptually, use of portable code and
implementations on data files written by existing systems.

Future prime numbers should be given meanings in as incremental a fashion as possible,
to allow for flexibility and expressiveness in combining types.

For example, instead of defining a prime number for little-endian IEEE doubles, one
prime number might be assigned the meaning “little-endian”, another the meaning “IEEE
double”, and the value of n for a little-endian IEEE double would thus naturally be the
product of those two respective assigned values. (It could even be reasonable to have
IEEE values result from the products of prime values denoting exponent and fraction sizes
and meanings, hidden bit usage, availability and representations of special values such as
subnormals, infinities, and Not-A-Numbers (NaNs), and so on.)

This assignment mechanism, while not inherently required for future versions of the
GNU Fortran language, is worth using because it could ease management of the “space” of
supported types much easier in the long run.

Chapter 8: The GNU Fortran Language 103

The above approach suggests a mechanism for specifying inheritance of intrinsic (built-
in) types for an entire, widely portable product line. It is certainly reasonable that, unlike
programmers of other languages offering inheritance mechanisms that employ verbose names
for classes and subclasses, along with graphical browsers to elucidate the relationships,
Fortran programmers would employ a mechanism that works by multiplying prime numbers
together and finding the prime factors of such products.

Most of the advantages for the above scheme have been explained above. One disadvan-
tage is that it could lead to the defining, by the GNU Fortran language, of some fairly large
prime numbers. This could lead to the GNU Fortran language being declared “munitions”
by the United States Department of Defense.

8.7.2 Constants

(Corresponds to Section 4.2 of ANSI X3.9-1978 FORTRAN 77.)
A typeless constant has one of the following forms:

’binary-digits’B

’octal-digits’O

’hexadecimal-digits’Z

’hexadecimal-digits’X

binary-digits, octal-digits, and hexadecimal-digits are nonempty strings of characters in the
set ‘01’, ‘01234567’, and ‘0123456789ABCDEFabcdef’, respectively. (The value for ‘A’ (and
‘a’) is 10, for ‘B’ and ‘b’ is 11, and so on.)

A prefix-radix constant, such as ‘Z’ABCD’’, can optionally be treated as typeless.
See Section 5.4 [Options Controlling Fortran Dialect], page 35, for information on the
‘-ftypeless-boz’ option.

Typeless constants have values that depend on the context in which they are used.
All other constants, called typed constants, are interpreted—converted to internal form—

according to their inherent type. Thus, context is never a determining factor for the type,
and hence the interpretation, of a typed constant. (All constants in the ANSI FORTRAN
77 language are typed constants.)

For example, ‘1’ is always type INTEGER(KIND=1) in GNU Fortran (called default IN-
TEGER in Fortran 90), ‘9.435784839284958’ is always type REAL(KIND=1) (even if the
additional precision specified is lost, and even when used in a REAL(KIND=2) context), ‘1E0’
is always type REAL(KIND=2), and ‘1D0’ is always type REAL(KIND=2).

8.7.3 Integer Type

(Corresponds to Section 4.3 of ANSI X3.9-1978 FORTRAN 77.)
An integer constant also may have one of the following forms:

B’binary-digits’

O’octal-digits’

Z’hexadecimal-digits’

X’hexadecimal-digits’

binary-digits, octal-digits, and hexadecimal-digits are nonempty strings of characters in the
set ‘01’, ‘01234567’, and ‘0123456789ABCDEFabcdef’, respectively. (The value for ‘A’ (and
‘a’) is 10, for ‘B’ and ‘b’ is 11, and so on.)

104 Using and Porting GNU Fortran

8.7.4 Character Type

(Corresponds to Section 4.8 of ANSI X3.9-1978 FORTRAN 77.)

A character constant may be delimited by a pair of double quotes (‘"’) instead of apos-
trophes. In this case, an apostrophe within the constant represents a single apostrophe,
while a double quote is represented in the source text of the constant by two consecutive
double quotes with no intervening spaces.

A character constant may be empty (have a length of zero).

A character constant may include a substring specification, The value of such a constant
is the value of the substring—for example, the value of ‘’hello’(3:5)’ is the same as the
value of ‘’llo’’.

8.8 Expressions

(The following information augments or overrides the information in Chapter 6 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 6 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.8.1 The %LOC() Construct

%LOC(arg)

The %LOC() construct is an expression that yields the value of the location of its ar-
gument, arg, in memory. The size of the type of the expression depends on the system—
typically, it is equivalent to either INTEGER(KIND=1) or INTEGER(KIND=2), though it is
actually type INTEGER(KIND=7).

The argument to %LOC() must be suitable as the left-hand side of an assignment state-
ment. That is, it may not be a general expression involving operators such as addition,
subtraction, and so on, nor may it be a constant.

Use of %LOC() is recommended only for code that is accessing facilities outside of GNU
Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions that deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %LOC() returning a pointer that can be safely used to define (change)
the argument. While this might work in some circumstances, it is hard to predict whether it
will continue to work when a program (that works using this unsafe behavior) is recompiled
using different command-line options or a different version of g77.

Generally, %LOC() is safe when used as an argument to a procedure that makes use of
the value of the corresponding dummy argument only during its activation, and only when
such use is restricted to referencing (reading) the value of the argument to %LOC().

Implementation Note: Currently, g77 passes arguments (those not passed using a con-
struct such as %VAL()) by reference or descriptor, depending on the type of the actual

Chapter 8: The GNU Fortran Language 105

argument. Thus, given ‘INTEGER I’, ‘CALL FOO(I)’ would seem to mean the same thing as
‘CALL FOO(%VAL(%LOC(I)))’, and in fact might compile to identical code.

However, ‘CALL FOO(%VAL(%LOC(I)))’ emphatically means “pass, by value, the address
of ‘I’ in memory”. While ‘CALL FOO(I)’ might use that same approach in a particular
version of g77, another version or compiler might choose a different implementation, such
as copy-in/copy-out, to effect the desired behavior—and which will therefore not necessarily
compile to the same code as would ‘CALL FOO(%VAL(%LOC(I)))’ using the same version or
compiler.

See Chapter 13 [Debugging and Interfacing], page 251, for detailed information on how
this particular version of g77 implements various constructs.

8.9 Specification Statements

(The following information augments or overrides the information in Chapter 8 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 8 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.9.1 NAMELIST Statement

The NAMELIST statement, and related I/O constructs, are supported by the GNU Fortran
language in essentially the same way as they are by f2c.

This follows Fortran 90 with the restriction that on NAMELIST input, subscripts must
have the form

subscript [: subscript [: stride]]

i.e.
&xx x(1:3,8:10:2)=1,2,3,4,5,6/

is allowed, but not, say,
&xx x(:3,8::2)=1,2,3,4,5,6/

As an extension of the Fortran 90 form, $ and $END may be used in place of & and / in
NAMELIST input, so that

$&xx x(1:3,8:10:2)=1,2,3,4,5,6 $end

could be used instead of the example above.

8.9.2 DOUBLE COMPLEX Statement

DOUBLE COMPLEX is a type-statement (and type) that specifies the type COMPLEX(KIND=2)
in GNU Fortran.

8.10 Control Statements

(The following information augments or overrides the information in Chapter 11 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 11 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

106 Using and Porting GNU Fortran

8.10.1 DO WHILE

The DO WHILE statement, a feature of both the MIL-STD 1753 and Fortran 90 standards, is
provided by the GNU Fortran language. The Fortran 90 “do forever” statement comprising
just DO is also supported.

8.10.2 END DO

The END DO statement is provided by the GNU Fortran language.
This statement is used in one of two ways:
• The Fortran 90 meaning, in which it specifies the termination point of a single DO loop

started with a DO statement that specifies no termination label.
• The MIL-STD 1753 meaning, in which it specifies the termination point of one or more

DO loops, all of which start with a DO statement that specify the label defined for the
END DO statement.
This kind of END DO statement is merely a synonym for CONTINUE, except it is permitted
only when the statement is labeled and a target of one or more labeled DO loops.
It is expected that this use of END DO will be removed from the GNU Fortran language
in the future, though it is likely that it will long be supported by g77 as a dialect form.

8.10.3 Construct Names

The GNU Fortran language supports construct names as defined by the Fortran 90 standard.
These names are local to the program unit and are defined as follows:

construct-name: block-statement

Here, construct-name is the construct name itself; its definition is connoted by the single
colon (‘:’); and block-statement is an IF, DO, or SELECT CASE statement that begins a block.

A block that is given a construct name must also specify the same construct name in its
termination statement:

END block construct-name

Here, block must be IF, DO, or SELECT, as appropriate.

8.10.4 The CYCLE and EXIT Statements

The CYCLE and EXIT statements specify that the remaining statements in the current iter-
ation of a particular active (enclosing) DO loop are to be skipped.

CYCLE specifies that these statements are skipped, but the END DO statement that marks
the end of the DO loop be executed—that is, the next iteration, if any, is to be started. If
the statement marking the end of the DO loop is not END DO—in other words, if the loop is
not a block DO—the CYCLE statement does not execute that statement, but does start the
next iteration (if any).

EXIT specifies that the loop specified by the DO construct is terminated.
The DO loop affected by CYCLE and EXIT is the innermost enclosing DO loop when the

following forms are used:

Chapter 8: The GNU Fortran Language 107

CYCLE
EXIT

Otherwise, the following forms specify the construct name of the pertinent DO loop:
CYCLE construct-name

EXIT construct-name

CYCLE and EXIT can be viewed as glorified GO TO statements. However, they cannot be
easily thought of as GO TO statements in obscure cases involving FORTRAN 77 loops. For
example:

DO 10 I = 1, 5

DO 10 J = 1, 5

IF (J .EQ. 5) EXIT

DO 10 K = 1, 5

IF (K .EQ. 3) CYCLE

10 PRINT *, ’I=’, I, ’ J=’, J, ’ K=’, K

20 CONTINUE

In particular, neither the EXIT nor CYCLE statements above are equivalent to a GO TO state-
ment to either label ‘10’ or ‘20’.

To understand the effect of CYCLE and EXIT in the above fragment, it is helpful to first
translate it to its equivalent using only block DO loops:

DO I = 1, 5

DO J = 1, 5

IF (J .EQ. 5) EXIT

DO K = 1, 5

IF (K .EQ. 3) CYCLE

10 PRINT *, ’I=’, I, ’ J=’, J, ’ K=’, K

END DO

END DO

END DO

20 CONTINUE

Adding new labels allows translation of CYCLE and EXIT to GO TO so they may be more
easily understood by programmers accustomed to FORTRAN coding:

DO I = 1, 5

DO J = 1, 5

IF (J .EQ. 5) GOTO 18

DO K = 1, 5

IF (K .EQ. 3) GO TO 12

10 PRINT *, ’I=’, I, ’ J=’, J, ’ K=’, K

12 END DO

END DO

18 END DO

20 CONTINUE

Thus, the CYCLE statement in the innermost loop skips over the PRINT statement as it begins
the next iteration of the loop, while the EXIT statement in the middle loop ends that loop
but not the outermost loop.

8.11 Functions and Subroutines

(The following information augments or overrides the information in Chapter 15 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 15 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

108 Using and Porting GNU Fortran

8.11.1 The %VAL() Construct

%VAL(arg)

The %VAL() construct specifies that an argument, arg, is to be passed by value, instead
of by reference or descriptor.

%VAL() is restricted to actual arguments in invocations of external procedures.
Use of %VAL() is recommended only for code that is accessing facilities outside of GNU

Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions the deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Implementation Note: Currently, g77 passes all arguments either by reference or by
descriptor.

Thus, use of %VAL() tends to be restricted to cases where the called procedure is written
in a language other than Fortran that supports call-by-value semantics. (C is an example
of such a language.)

See Section 13.2 [Procedures (SUBROUTINE and FUNCTION)], page 252, for detailed
information on how this particular version of g77 passes arguments to procedures.

8.11.2 The %REF() Construct

%REF(arg)

The %REF() construct specifies that an argument, arg, is to be passed by reference,
instead of by value or descriptor.

%REF() is restricted to actual arguments in invocations of external procedures.
Use of %REF() is recommended only for code that is accessing facilities outside of GNU

Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions the deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %REF() supplying a pointer to the procedure being invoked. While that
is a likely implementation choice, other implementation choices are available that preserve
Fortran pass-by-reference semantics without passing a pointer to the argument, arg. (For
example, a copy-in/copy-out implementation.)

Implementation Note: Currently, g77 passes all arguments (other than variables and
arrays of type CHARACTER) by reference. Future versions of, or dialects supported by, g77
might not pass CHARACTER functions by reference.

Thus, use of %REF() tends to be restricted to cases where arg is type CHARACTER but the
called procedure accesses it via a means other than the method used for Fortran CHARACTER
arguments.

See Section 13.2 [Procedures (SUBROUTINE and FUNCTION)], page 252, for detailed
information on how this particular version of g77 passes arguments to procedures.

Chapter 8: The GNU Fortran Language 109

8.11.3 The %DESCR() Construct

%DESCR(arg)

The %DESCR() construct specifies that an argument, arg, is to be passed by descriptor,
instead of by value or reference.

%DESCR() is restricted to actual arguments in invocations of external procedures.

Use of %DESCR() is recommended only for code that is accessing facilities outside of GNU
Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions the deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %DESCR() supplying a pointer and/or a length passed by value to the
procedure being invoked. While that is a likely implementation choice, other implemen-
tation choices are available that preserve the pass-by-reference semantics without passing
a pointer to the argument, arg. (For example, a copy-in/copy-out implementation.) And,
future versions of g77 might change the way descriptors are implemented, such as passing
a single argument pointing to a record containing the pointer/length information instead of
passing that same information via two arguments as it currently does.

Implementation Note: Currently, g77 passes all variables and arrays of type CHARACTER
by descriptor. Future versions of, or dialects supported by, g77 might pass CHARACTER
functions by descriptor as well.

Thus, use of %DESCR() tends to be restricted to cases where arg is not type CHARACTER
but the called procedure accesses it via a means similar to the method used for Fortran
CHARACTER arguments.

See Section 13.2 [Procedures (SUBROUTINE and FUNCTION)], page 252, for detailed
information on how this particular version of g77 passes arguments to procedures.

8.11.4 Generics and Specifics

The ANSI FORTRAN 77 language defines generic and specific intrinsics. In short, the
distinctions are:

• Specific intrinsics have specific types for their arguments and a specific return type.

• Generic intrinsics are treated, on a case-by-case basis in the program’s source code, as
one of several possible specific intrinsics.

Typically, a generic intrinsic has a return type that is determined by the type of one
or more of its arguments.

The GNU Fortran language generalizes these concepts somewhat, especially by providing
intrinsic subroutines and generic intrinsics that are treated as either a specific intrinsic
subroutine or a specific intrinsic function (e.g. SECOND).

However, GNU Fortran avoids generalizing this concept to the point where existing code
would be accepted as meaning something possibly different than what was intended.

110 Using and Porting GNU Fortran

For example, ABS is a generic intrinsic, so all working code written using ABS of an
INTEGER argument expects an INTEGER return value. Similarly, all such code expects that
ABS of an INTEGER*2 argument returns an INTEGER*2 return value.

Yet, IABS is a specific intrinsic that accepts only an INTEGER(KIND=1) argument. Code
that passes something other than an INTEGER(KIND=1) argument to IABS is not valid GNU
Fortran code, because it is not clear what the author intended.

For example, if ‘J’ is INTEGER(KIND=6), ‘IABS(J)’ is not defined by the GNU Fortran
language, because the programmer might have used that construct to mean any of the
following, subtly different, things:

• Convert ‘J’ to INTEGER(KIND=1) first (as if ‘IABS(INT(J))’ had been written).
• Convert the result of the intrinsic to INTEGER(KIND=1) (as if ‘INT(ABS(J))’ had been

written).
• No conversion (as if ‘ABS(J)’ had been written).

The distinctions matter especially when types and values wider than INTEGER(KIND=1)
(such as INTEGER(KIND=2)), or when operations performing more “arithmetic” than
absolute-value, are involved.

The following sample program is not a valid GNU Fortran program, but might be ac-
cepted by other compilers. If so, the output is likely to be revealing in terms of how a given
compiler treats intrinsics (that normally are specific) when they are given arguments that
do not conform to their stated requirements:

PROGRAM JCB002

C Version 1:

C Modified 1999-02-15 (Burley) to delete my email address.

C Modified 1997-05-21 (Burley) to accommodate compilers that implement

C INT(I1-I2) as INT(I1)-INT(I2) given INTEGER*2 I1,I2.

C

C Version 0:

C Written by James Craig Burley 1997-02-20.

C

C Purpose:

C Determine how compilers handle non-standard IDIM

C on INTEGER*2 operands, which presumably can be

C extrapolated into understanding how the compiler

C generally treats specific intrinsics that are passed

C arguments not of the correct types.

C

C If your compiler implements INTEGER*2 and INTEGER

C as the same type, change all INTEGER*2 below to

C INTEGER*1.

C

INTEGER*2 I0, I4

INTEGER I1, I2, I3

INTEGER*2 ISMALL, ILARGE

INTEGER*2 ITOOLG, ITWO

INTEGER*2 ITMP

LOGICAL L2, L3, L4

C

C Find smallest INTEGER*2 number.

C

ISMALL=0

10 I0 = ISMALL-1

Chapter 8: The GNU Fortran Language 111

IF ((I0 .GE. ISMALL) .OR. (I0+1 .NE. ISMALL)) GOTO 20

ISMALL = I0

GOTO 10

20 CONTINUE

C

C Find largest INTEGER*2 number.

C

ILARGE=0

30 I0 = ILARGE+1

IF ((I0 .LE. ILARGE) .OR. (I0-1 .NE. ILARGE)) GOTO 40

ILARGE = I0

GOTO 30

40 CONTINUE

C

C Multiplying by two adds stress to the situation.

C

ITWO = 2

C

C Need a number that, added to -2, is too wide to fit in I*2.

C

ITOOLG = ISMALL

C

C Use IDIM the straightforward way.

C

I1 = IDIM (ILARGE, ISMALL) * ITWO + ITOOLG

C

C Calculate result for first interpretation.

C

I2 = (INT (ILARGE) - INT (ISMALL)) * ITWO + ITOOLG

C

C Calculate result for second interpretation.

C

ITMP = ILARGE - ISMALL

I3 = (INT (ITMP)) * ITWO + ITOOLG

C

C Calculate result for third interpretation.

C

I4 = (ILARGE - ISMALL) * ITWO + ITOOLG

C

C Print results.

C

PRINT *, ’ILARGE=’, ILARGE

PRINT *, ’ITWO=’, ITWO

PRINT *, ’ITOOLG=’, ITOOLG

PRINT *, ’ISMALL=’, ISMALL

PRINT *, ’I1=’, I1

PRINT *, ’I2=’, I2

PRINT *, ’I3=’, I3

PRINT *, ’I4=’, I4

PRINT *

L2 = (I1 .EQ. I2)

L3 = (I1 .EQ. I3)

L4 = (I1 .EQ. I4)

IF (L2 .AND. .NOT.L3 .AND. .NOT.L4) THEN

PRINT *, ’Interp 1: IDIM(I*2,I*2) => IDIM(INT(I*2),INT(I*2))’

STOP

END IF

IF (L3 .AND. .NOT.L2 .AND. .NOT.L4) THEN

112 Using and Porting GNU Fortran

PRINT *, ’Interp 2: IDIM(I*2,I*2) => INT(DIM(I*2,I*2))’

STOP

END IF

IF (L4 .AND. .NOT.L2 .AND. .NOT.L3) THEN

PRINT *, ’Interp 3: IDIM(I*2,I*2) => DIM(I*2,I*2)’

STOP

END IF

PRINT *, ’Results need careful analysis.’

END

No future version of the GNU Fortran language will likely permit specific intrinsic invo-
cations with wrong-typed arguments (such as IDIM in the above example), since it has been
determined that disagreements exist among many production compilers on the interpreta-
tion of such invocations. These disagreements strongly suggest that Fortran programmers,
and certainly existing Fortran programs, disagree about the meaning of such invocations.

The first version of JCB002 didn’t accommodate some compilers’ treatment of
‘INT(I1-I2)’ where ‘I1’ and ‘I2’ are INTEGER*2. In such a case, these compilers
apparently convert both operands to INTEGER*4 and then do an INTEGER*4 subtraction,
instead of doing an INTEGER*2 subtraction on the original values in ‘I1’ and ‘I2’.

However, the results of the careful analyses done on the outputs of programs compiled
by these various compilers show that they all implement either ‘Interp 1’ or ‘Interp 2’
above.

Specifically, it is believed that the new version of JCB002 above will confirm that:
• Digital Semiconductor (“DEC”) Alpha OSF/1, HP-UX 10.0.1, AIX 3.2.5 f77 compilers

all implement ‘Interp 1’.
• IRIX 5.3 f77 compiler implements ‘Interp 2’.
• Solaris 2.5, SunOS 4.1.3, DECstation ULTRIX 4.3, and IRIX 6.1 f77 compilers all

implement ‘Interp 3’.

If you get different results than the above for the stated compilers, or have results for
other compilers that might be worth adding to the above list, please let us know the details
(compiler product, version, machine, results, and so on).

8.11.5 REAL() and AIMAG() of Complex

The GNU Fortran language disallows REAL(expr) and AIMAG(expr), where expr is any
COMPLEX type other than COMPLEX(KIND=1), except when they are used in the following
way:

REAL(REAL(expr))
REAL(AIMAG(expr))

The above forms explicitly specify that the desired effect is to convert the real or imag-
inary part of expr, which might be some REAL type other than REAL(KIND=1), to type
REAL(KIND=1), and have that serve as the value of the expression.

The GNU Fortran language offers clearly named intrinsics to extract the real and imag-
inary parts of a complex entity without any conversion:

REALPART(expr)
IMAGPART(expr)

Chapter 8: The GNU Fortran Language 113

To express the above using typical extended FORTRAN 77, use the following constructs
(when expr is COMPLEX(KIND=2)):

DBLE(expr)
DIMAG(expr)

The FORTRAN 77 language offers no way to explicitly specify the real and imaginary
parts of a complex expression of arbitrary type, apparently as a result of requiring support
for only one COMPLEX type (COMPLEX(KIND=1)). The concepts of converting an expression
to type REAL(KIND=1) and of extracting the real part of a complex expression were thus
“smooshed” by FORTRAN 77 into a single intrinsic, since they happened to have the exact
same effect in that language (due to having only one COMPLEX type).

Note: When ‘-ff90’ is in effect, g77 treats ‘REAL(expr)’, where expr is of type COMPLEX,
as ‘REALPART(expr)’, whereas with ‘-fugly-complex -fno-f90’ in effect, it is treated as
‘REAL(REALPART(expr))’.

See Section 9.9.3 [Ugly Complex Part Extraction], page 207, for more information.

8.11.6 CMPLX() of DOUBLE PRECISION

In accordance with Fortran 90 and at least some (perhaps all) other compilers, the GNU For-
tran language defines CMPLX() as always returning a result that is type COMPLEX(KIND=1).

This means ‘CMPLX(D1,D2)’, where ‘D1’ and ‘D2’ are REAL(KIND=2) (DOUBLE PRECISION),
is treated as:

CMPLX(SNGL(D1), SNGL(D2))

(It was necessary for Fortran 90 to specify this behavior for DOUBLE PRECISION argu-
ments, since that is the behavior mandated by FORTRAN 77.)

The GNU Fortran language also provides the DCMPLX() intrinsic, which is provided
by some FORTRAN 77 compilers to construct a DOUBLE COMPLEX entity from of DOUBLE
PRECISION operands. However, this solution does not scale well when more COMPLEX types
(having various precisions and ranges) are offered by Fortran implementations.

Fortran 90 extends the CMPLX() intrinsic by adding an extra argument used to specify
the desired kind of complex result. However, this solution is somewhat awkward to use,
and g77 currently does not support it.

The GNU Fortran language provides a simple way to build a complex value out of two
numbers, with the precise type of the value determined by the types of the two numbers
(via the usual type-promotion mechanism):

COMPLEX(real, imag)

When real and imag are the same REAL types, COMPLEX() performs no conversion other
than to put them together to form a complex result of the same (complex version of real)
type.

See Section 8.11.9.44 [Complex Intrinsic], page 127, for more information.

8.11.7 MIL-STD 1753 Support

The GNU Fortran language includes the MIL-STD 1753 intrinsics BTEST, IAND, IBCLR,
IBITS, IBSET, IEOR, IOR, ISHFT, ISHFTC, MVBITS, and NOT.

114 Using and Porting GNU Fortran

8.11.8 f77/f2c Intrinsics

The bit-manipulation intrinsics supported by traditional f77 and by f2c are available in
the GNU Fortran language. These include AND, LSHIFT, OR, RSHIFT, and XOR.

Also supported are the intrinsics CDABS, CDCOS, CDEXP, CDLOG, CDSIN, CDSQRT, DCMPLX,
DCONJG, DFLOAT, DIMAG, DREAL, and IMAG, ZABS, ZCOS, ZEXP, ZLOG, ZSIN, and ZSQRT.

8.11.9 Table of Intrinsic Functions

(Corresponds to Section 15.10 of ANSI X3.9-1978 FORTRAN 77.)
The GNU Fortran language adds various functions, subroutines, types, and arguments

to the set of intrinsic functions in ANSI FORTRAN 77. The complete set of intrinsics
supported by the GNU Fortran language is described below.

Note that a name is not treated as that of an intrinsic if it is specified in an EXTERNAL
statement in the same program unit; if a command-line option is used to disable the groups
to which the intrinsic belongs; or if the intrinsic is not named in an INTRINSIC statement
and a command-line option is used to hide the groups to which the intrinsic belongs.

So, it is recommended that any reference in a program unit to an intrinsic procedure
that is not a standard FORTRAN 77 intrinsic be accompanied by an appropriate INTRINSIC
statement in that program unit. This sort of defensive programming makes it more likely
that an implementation will issue a diagnostic rather than generate incorrect code for such
a reference.

The terminology used below is based on that of the Fortran 90 standard, so that the
text may be more concise and accurate:
• OPTIONAL means the argument may be omitted.
• ‘A-1, A-2, ..., A-n’ means more than one argument (generally named ‘A’) may be

specified.
• ‘scalar’ means the argument must not be an array (must be a variable or array element,

or perhaps a constant if expressions are permitted).
• ‘DIMENSION(4)’ means the argument must be an array having 4 elements.
• INTENT(IN) means the argument must be an expression (such as a constant or a variable

that is defined upon invocation of the intrinsic).
• INTENT(OUT) means the argument must be definable by the invocation of the intrinsic

(that is, must not be a constant nor an expression involving operators other than array
reference and substring reference).

• INTENT(INOUT) means the argument must be defined prior to, and definable by,
invocation of the intrinsic (a combination of the requirements of INTENT(IN) and
INTENT(OUT).

• See Section 8.7.1.3 [Kind Notation], page 100, for an explanation of KIND.

8.11.9.1 Abort Intrinsic

Chapter 8: The GNU Fortran Language 115

CALL Abort()

Intrinsic groups: unix.
Description:

Prints a message and potentially causes a core dump via abort(3).

8.11.9.2 Abs Intrinsic

Abs(A)

Abs: INTEGER or REAL function. The exact type depends on that of argument A—if A
is COMPLEX, this function’s type is REAL with the same ‘KIND=’ value as the type of A.
Otherwise, this function’s type is the same as that of A.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the absolute value of A.
If A is type COMPLEX, the absolute value is computed as:

SQRT(REALPART(A)**2+IMAGPART(A)**2)

Otherwise, it is computed by negating A if it is negative, or returning A.
See Section 8.11.9.227 [Sign Intrinsic], page 182, for how to explicitly compute the posi-

tive or negative form of the absolute value of an expression.

8.11.9.3 Access Intrinsic

Access(Name, Mode)

Access: INTEGER(KIND=1) function.
Name: CHARACTER; scalar; INTENT(IN).
Mode: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Checks file Name for accessibility in the mode specified by Mode and returns 0 if the
file is accessible in that mode, otherwise an error code if the file is inaccessible or Mode
is invalid. See access(2). A null character (‘CHAR(0)’) marks the end of the name in
Name—otherwise, trailing blanks in Name are ignored. Mode may be a concatenation of
any of the following characters:

‘r’ Read permission

‘w’ Write permission

‘x’ Execute permission

‘SPC’ Existence

116 Using and Porting GNU Fortran

8.11.9.4 AChar Intrinsic

AChar(I)

AChar: CHARACTER*1 function.
I : INTEGER; scalar; INTENT(IN).
Intrinsic groups: f2c, f90.
Description:

Returns the ASCII character corresponding to the code specified by I.
See Section 8.11.9.131 [IAChar Intrinsic], page 154, for the inverse of this function.
See Section 8.11.9.39 [Char Intrinsic], page 125, for the function corresponding to the

system’s native character set.

8.11.9.5 ACos Intrinsic

ACos(X)

ACos: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the arc-cosine (inverse cosine) of X in radians.
See Section 8.11.9.46 [Cos Intrinsic], page 128, for the inverse of this function.

8.11.9.6 AdjustL Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL AdjustL’ to use this name for an external procedure.

8.11.9.7 AdjustR Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL AdjustR’ to use this name for an external procedure.

8.11.9.8 AImag Intrinsic

AImag(Z)

AImag: REAL function. This intrinsic is valid when argument Z is COMPLEX(KIND=1). When
Z is any other COMPLEX type, this intrinsic is valid only when used as the argument to
REAL(), as explained below.
Z : COMPLEX; scalar; INTENT(IN).

Chapter 8: The GNU Fortran Language 117

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the (possibly converted) imaginary part of Z.

Use of AIMAG() with an argument of a type other than COMPLEX(KIND=1) is restricted
to the following case:

REAL(AIMAG(Z))

This expression converts the imaginary part of Z to REAL(KIND=1).

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 112, for more information.

8.11.9.9 AInt Intrinsic

AInt(A)

AInt: REAL function, the ‘KIND=’ value of the type being that of argument A.

A: REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved.
(Also called “truncation towards zero”.)

See Section 8.11.9.21 [ANInt Intrinsic], page 120, for how to round to nearest whole
number.

See Section 8.11.9.148 [Int Intrinsic], page 160, for how to truncate and then convert
number to INTEGER.

8.11.9.10 Alarm Intrinsic

CALL Alarm(Seconds, Handler, Status)

Seconds: INTEGER; scalar; INTENT(IN).

Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global
INTEGER(KIND=1) scalar.

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Causes external subroutine Handler to be executed after a delay of Seconds seconds
by using alarm(1) to set up a signal and signal(2) to catch it. If Status is supplied,
it will be returned with the number of seconds remaining until any previously scheduled
alarm was due to be delivered, or zero if there was no previously scheduled alarm. See
Section 8.11.9.228 [Signal Intrinsic (subroutine)], page 183.

118 Using and Porting GNU Fortran

8.11.9.11 All Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL All’ to use this name for an external procedure.

8.11.9.12 Allocated Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Allocated’ to use this name for an external procedure.

8.11.9.13 ALog Intrinsic

ALog(X)

ALog: REAL(KIND=1) function.
X : REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic], page 167.

8.11.9.14 ALog10 Intrinsic

ALog10(X)

ALog10: REAL(KIND=1) function.
X : REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG10() that is specific to one type for X. See Section 8.11.9.171 [Log10
Intrinsic], page 168.

8.11.9.15 AMax0 Intrinsic

AMax0(A-1, A-2, ..., A-n)

AMax0: REAL(KIND=1) function.
A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX() that is specific to one type for A and a different return type. See
Section 8.11.9.179 [Max Intrinsic], page 171.

Chapter 8: The GNU Fortran Language 119

8.11.9.16 AMax1 Intrinsic

AMax1(A-1, A-2, ..., A-n)

AMax1: REAL(KIND=1) function.
A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX() that is specific to one type for A. See Section 8.11.9.179 [Max
Intrinsic], page 171.

8.11.9.17 AMin0 Intrinsic

AMin0(A-1, A-2, ..., A-n)

AMin0: REAL(KIND=1) function.
A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A and a different return type. See
Section 8.11.9.188 [Min Intrinsic], page 174.

8.11.9.18 AMin1 Intrinsic

AMin1(A-1, A-2, ..., A-n)

AMin1: REAL(KIND=1) function.
A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A. See Section 8.11.9.188 [Min
Intrinsic], page 174.

8.11.9.19 AMod Intrinsic

AMod(A, P)

AMod: REAL(KIND=1) function.
A: REAL(KIND=1); scalar; INTENT(IN).
P: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).

120 Using and Porting GNU Fortran

Description:

Archaic form of MOD() that is specific to one type for A. See Section 8.11.9.194 [Mod
Intrinsic], page 175.

8.11.9.20 And Intrinsic

And(I, J)

And: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the
types of all the arguments.

I : INTEGER or LOGICAL; scalar; INTENT(IN).

J: INTEGER or LOGICAL; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns value resulting from boolean AND of pair of bits in each of I and J.

8.11.9.21 ANInt Intrinsic

ANInt(A)

ANInt: REAL function, the ‘KIND=’ value of the type being that of argument A.

A: REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns A with the fractional portion of its magnitude eliminated by rounding to the
nearest whole number and with its sign preserved.

A fractional portion exactly equal to ‘.5’ is rounded to the whole number that is larger
in magnitude. (Also called “Fortran round”.)

See Section 8.11.9.9 [AInt Intrinsic], page 117, for how to truncate to whole number.

See Section 8.11.9.198 [NInt Intrinsic], page 176, for how to round and then convert
number to INTEGER.

8.11.9.22 Any Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Any’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 121

8.11.9.23 ASin Intrinsic

ASin(X)

ASin: REAL function, the ‘KIND=’ value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the arc-sine (inverse sine) of X in radians.

See Section 8.11.9.229 [Sin Intrinsic], page 183, for the inverse of this function.

8.11.9.24 Associated Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Associated’ to use this name for an external procedure.

8.11.9.25 ATan Intrinsic

ATan(X)

ATan: REAL function, the ‘KIND=’ value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the arc-tangent (inverse tangent) of X in radians.

See Section 8.11.9.243 [Tan Intrinsic], page 188, for the inverse of this function.

8.11.9.26 ATan2 Intrinsic

ATan2(Y, X)

ATan2: REAL function, the exact type being the result of cross-promoting the types of all
the arguments.

Y : REAL; scalar; INTENT(IN).

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the arc-tangent (inverse tangent) of the complex number (Y, X) in radians.

See Section 8.11.9.243 [Tan Intrinsic], page 188, for the inverse of this function.

122 Using and Porting GNU Fortran

8.11.9.27 BesJ0 Intrinsic

BesJ0(X)

BesJ0: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the first kind of order 0 of X. See bessel(3m), on whose
implementation the function depends.

8.11.9.28 BesJ1 Intrinsic

BesJ1(X)

BesJ1: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the first kind of order 1 of X. See bessel(3m), on whose
implementation the function depends.

8.11.9.29 BesJN Intrinsic

BesJN(N, X)

BesJN: REAL function, the ‘KIND=’ value of the type being that of argument X.
N : INTEGER not wider than the default kind; scalar; INTENT(IN).
X : REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the first kind of order N of X. See bessel(3m), on
whose implementation the function depends.

8.11.9.30 BesY0 Intrinsic

BesY0(X)

BesY0: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: unix.

Chapter 8: The GNU Fortran Language 123

Description:
Calculates the Bessel function of the second kind of order 0 of X. See bessel(3m), on

whose implementation the function depends.

8.11.9.31 BesY1 Intrinsic

BesY1(X)

BesY1: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the second kind of order 1 of X. See bessel(3m), on
whose implementation the function depends.

8.11.9.32 BesYN Intrinsic

BesYN(N, X)

BesYN: REAL function, the ‘KIND=’ value of the type being that of argument X.
N : INTEGER not wider than the default kind; scalar; INTENT(IN).
X : REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the second kind of order N of X. See bessel(3m), on
whose implementation the function depends.

8.11.9.33 Bit Size Intrinsic

Bit_Size(I)

Bit Size: INTEGER function, the ‘KIND=’ value of the type being that of argument I.
I : INTEGER; scalar.
Intrinsic groups: f90.
Description:

Returns the number of bits (integer precision plus sign bit) represented by the type for
I.

See Section 8.11.9.34 [BTest Intrinsic], page 124, for how to test the value of a bit in a
variable or array.

See Section 8.11.9.136 [IBSet Intrinsic], page 156, for how to set a bit in a variable to 1.
See Section 8.11.9.134 [IBClr Intrinsic], page 155, for how to set a bit in a variable to 0.

124 Using and Porting GNU Fortran

8.11.9.34 BTest Intrinsic

BTest(I, Pos)

BTest: LOGICAL(KIND=1) function.
I : INTEGER; scalar; INTENT(IN).
Pos: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, f90, vxt.
Description:

Returns .TRUE. if bit Pos in I is 1, .FALSE. otherwise.
(Bit 0 is the low-order (rightmost) bit, adding the value 20, or 1, to the number if set to

1; bit 1 is the next-higher-order bit, adding 21, or 2; bit 2 adds 22, or 4; and so on.)
See Section 8.11.9.33 [Bit Size Intrinsic], page 123, for how to obtain the number of bits

in a type. The leftmost bit of I is ‘BIT_SIZE(I-1)’.

8.11.9.35 CAbs Intrinsic

CAbs(A)

CAbs: REAL(KIND=1) function.
A: COMPLEX(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 115.

8.11.9.36 CCos Intrinsic

CCos(X)

CCos: COMPLEX(KIND=1) function.
X : COMPLEX(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic], page 128.

8.11.9.37 Ceiling Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Ceiling’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 125

8.11.9.38 CExp Intrinsic

CExp(X)

CExp: COMPLEX(KIND=1) function.

X : COMPLEX(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic], page 143.

8.11.9.39 Char Intrinsic

Char(I)

Char: CHARACTER*1 function.

I : INTEGER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the character corresponding to the code specified by I, using the system’s native
character set.

Because the system’s native character set is used, the correspondence between character
and their codes is not necessarily the same between GNU Fortran implementations.

Note that no intrinsic exists to convert a numerical value to a printable character string.
For example, there is no intrinsic that, given an INTEGER or REAL argument with the value
‘154’, returns the CHARACTER result ‘’154’’.

Instead, you can use internal-file I/O to do this kind of conversion. For example:
INTEGER VALUE

CHARACTER*10 STRING

VALUE = 154

WRITE (STRING, ’(I10)’), VALUE

PRINT *, STRING

END

The above program, when run, prints:
154

See Section 8.11.9.137 [IChar Intrinsic], page 156, for the inverse of the CHAR function.

See Section 8.11.9.4 [AChar Intrinsic], page 116, for the function corresponding to the
ASCII character set.

126 Using and Porting GNU Fortran

8.11.9.40 ChDir Intrinsic (subroutine)

CALL ChDir(Dir, Status)

Dir: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Sets the current working directory to be Dir. If the Status argument is supplied, it
contains 0 on success or a nonzero error code otherwise upon return. See chdir(3).

Caution: Using this routine during I/O to a unit connected with a non-absolute file
name can cause subsequent I/O on such a unit to fail because the I/O library might reopen
files by name.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.17 [ChDir
Intrinsic (function)], page 221.

8.11.9.41 ChMod Intrinsic (subroutine)

CALL ChMod(Name, Mode, Status)

Name: CHARACTER; scalar; INTENT(IN).

Mode: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Changes the access mode of file Name according to the specification Mode, which is
given in the format of chmod(1). A null character (‘CHAR(0)’) marks the end of the name in
Name—otherwise, trailing blanks in Name are ignored. Currently, Name must not contain
the single quote character.

If the Status argument is supplied, it contains 0 on success or a nonzero error code upon
return.

Note that this currently works by actually invoking /bin/chmod (or the chmod found
when the library was configured) and so might fail in some circumstances and will, anyway,
be slow.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.18 [ChMod
Intrinsic (function)], page 221.

Chapter 8: The GNU Fortran Language 127

8.11.9.42 CLog Intrinsic

CLog(X)

CLog: COMPLEX(KIND=1) function.
X : COMPLEX(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic], page 167.

8.11.9.43 Cmplx Intrinsic

Cmplx(X, Y)

Cmplx: COMPLEX(KIND=1) function.
X : INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Y : INTEGER or REAL; OPTIONAL (must be omitted if X is COMPLEX); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

If X is not type COMPLEX, constructs a value of type COMPLEX(KIND=1) from the real and
imaginary values specified by X and Y, respectively. If Y is omitted, ‘0.’ is assumed.

If X is type COMPLEX, converts it to type COMPLEX(KIND=1).
See Section 8.11.9.44 [Complex Intrinsic], page 127, for information on easily constructing

a COMPLEX value of arbitrary precision from REAL arguments.

8.11.9.44 Complex Intrinsic

Complex(Real, Imag)

Complex: COMPLEX function, the exact type being the result of cross-promoting the types
of all the arguments.
Real: INTEGER or REAL; scalar; INTENT(IN).
Imag : INTEGER or REAL; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:

Returns a COMPLEX value that has ‘Real’ and ‘Imag’ as its real and imaginary parts,
respectively.

If Real and Imag are the same type, and that type is not INTEGER, no data conversion
is performed, and the type of the resulting value has the same kind value as the types of
Real and Imag.

128 Using and Porting GNU Fortran

If Real and Imag are not the same type, the usual type-promotion rules are applied to
both, converting either or both to the appropriate REAL type. The type of the resulting
value has the same kind value as the type to which both Real and Imag were converted, in
this case.

If Real and Imag are both INTEGER, they are both converted to REAL(KIND=1), and the
result of the COMPLEX() invocation is type COMPLEX(KIND=1).

Note: The way to do this in standard Fortran 90 is too hairy to describe here, but it is
important to note that ‘CMPLX(D1,D2)’ returns a COMPLEX(KIND=1) result even if ‘D1’ and
‘D2’ are type REAL(KIND=2). Hence the availability of COMPLEX() in GNU Fortran.

8.11.9.45 Conjg Intrinsic

Conjg(Z)

Conjg: COMPLEX function, the ‘KIND=’ value of the type being that of argument Z.
Z : COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the complex conjugate:
COMPLEX(REALPART(Z), -IMAGPART(Z))

8.11.9.46 Cos Intrinsic

Cos(X)

Cos: REAL or COMPLEX function, the exact type being that of argument X.
X : REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the cosine of X, an angle measured in radians.
See Section 8.11.9.5 [ACos Intrinsic], page 116, for the inverse of this function.

8.11.9.47 CosH Intrinsic

CosH(X)

CosH: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the hyperbolic cosine of X.

Chapter 8: The GNU Fortran Language 129

8.11.9.48 Count Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Count’ to use this name for an external procedure.

8.11.9.49 CPU Time Intrinsic

CALL CPU_Time(Seconds)

Seconds: REAL; scalar; INTENT(OUT).
Intrinsic groups: f90.
Description:

Returns in Seconds the current value of the system time. This implementation of the
Fortran 95 intrinsic is just an alias for second See Section 8.11.9.221 [Second Intrinsic
(subroutine)], page 181.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

8.11.9.50 CShift Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL CShift’ to use this name for an external procedure.

8.11.9.51 CSin Intrinsic

CSin(X)

CSin: COMPLEX(KIND=1) function.
X : COMPLEX(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic], page 183.

8.11.9.52 CSqRt Intrinsic

CSqRt(X)

CSqRt: COMPLEX(KIND=1) function.
X : COMPLEX(KIND=1); scalar; INTENT(IN).

130 Using and Porting GNU Fortran

Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic], page 185.

8.11.9.53 CTime Intrinsic (subroutine)

CALL CTime(STime, Result)

STime: INTEGER; scalar; INTENT(IN).
Result: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Converts STime, a system time value, such as returned by TIME8(), to a string of the
form ‘Sat Aug 19 18:13:14 1995’, and returns that string in Result.

See Section 8.11.9.246 [Time8 Intrinsic], page 189.
Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.
For information on other intrinsics with the same name: See Section 8.11.9.54 [CTime

Intrinsic (function)], page 130.

8.11.9.54 CTime Intrinsic (function)

CTime(STime)

CTime: CHARACTER*(*) function.
STime: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Converts STime, a system time value, such as returned by TIME8(), to a string of the
form ‘Sat Aug 19 18:13:14 1995’, and returns that string as the function value.

See Section 8.11.9.246 [Time8 Intrinsic], page 189.
For information on other intrinsics with the same name: See Section 8.11.9.53 [CTime

Intrinsic (subroutine)], page 130.

8.11.9.55 DAbs Intrinsic

DAbs(A)

DAbs: REAL(KIND=2) function.
A: REAL(KIND=2); scalar; INTENT(IN).

Chapter 8: The GNU Fortran Language 131

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 115.

8.11.9.56 DACos Intrinsic

DACos(X)

DACos: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ACOS() that is specific to one type for X. See Section 8.11.9.5 [ACos
Intrinsic], page 116.

8.11.9.57 DASin Intrinsic

DASin(X)

DASin: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ASIN() that is specific to one type for X. See Section 8.11.9.23 [ASin
Intrinsic], page 121.

8.11.9.58 DATan Intrinsic

DATan(X)

DATan: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ATAN() that is specific to one type for X. See Section 8.11.9.25 [ATan
Intrinsic], page 121.

132 Using and Porting GNU Fortran

8.11.9.59 DATan2 Intrinsic

DATan2(Y, X)

DATan2: REAL(KIND=2) function.

Y : REAL(KIND=2); scalar; INTENT(IN).

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ATAN2() that is specific to one type for Y and X. See Section 8.11.9.26
[ATan2 Intrinsic], page 121.

8.11.9.60 Date and Time Intrinsic

CALL Date_and_Time(Date, Time, Zone, Values)

Date: CHARACTER; scalar; INTENT(OUT).

Time: CHARACTER; OPTIONAL; scalar; INTENT(OUT).

Zone: CHARACTER; OPTIONAL; scalar; INTENT(OUT).

Values: INTEGER(KIND=1); OPTIONAL; DIMENSION(8); INTENT(OUT).

Intrinsic groups: f90.

Description:

Returns:

Date The date in the form ccyymmdd: century, year, month and day;

Time The time in the form ‘hhmmss.ss ’: hours, minutes, seconds and milliseconds;

Zone The difference between local time and UTC (GMT) in the form Shhmm: sign,
hours and minutes, e.g. ‘-0500’ (winter in New York);

Values The year, month of the year, day of the month, time difference in minutes
from UTC, hour of the day, minutes of the hour, seconds of the minute, and
milliseconds of the second in successive values of the array.

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

On systems where a millisecond timer isn’t available, the millisecond value is returned
as zero.

Chapter 8: The GNU Fortran Language 133

8.11.9.61 DbesJ0 Intrinsic

DbesJ0(X)

DbesJ0: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESJ0() that is specific to one type for X. See Section 8.11.9.27 [BesJ0
Intrinsic], page 122.

8.11.9.62 DbesJ1 Intrinsic

DbesJ1(X)

DbesJ1: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESJ1() that is specific to one type for X. See Section 8.11.9.28 [BesJ1
Intrinsic], page 122.

8.11.9.63 DbesJN Intrinsic

DbesJN(N, X)

DbesJN: REAL(KIND=2) function.
N : INTEGER not wider than the default kind; scalar; INTENT(IN).
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESJN() that is specific to one type for X. See Section 8.11.9.29 [BesJN
Intrinsic], page 122.

8.11.9.64 DbesY0 Intrinsic

DbesY0(X)

DbesY0: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.

134 Using and Porting GNU Fortran

Description:
Archaic form of BESY0() that is specific to one type for X. See Section 8.11.9.30 [BesY0

Intrinsic], page 122.

8.11.9.65 DbesY1 Intrinsic

DbesY1(X)

DbesY1: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESY1() that is specific to one type for X. See Section 8.11.9.31 [BesY1
Intrinsic], page 123.

8.11.9.66 DbesYN Intrinsic

DbesYN(N, X)

DbesYN: REAL(KIND=2) function.
N : INTEGER not wider than the default kind; scalar; INTENT(IN).
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESYN() that is specific to one type for X. See Section 8.11.9.32 [BesYN
Intrinsic], page 123.

8.11.9.67 Dble Intrinsic

Dble(A)

Dble: REAL(KIND=2) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns A converted to double precision (REAL(KIND=2)). If A is COMPLEX, the real part
of A is used for the conversion and the imaginary part disregarded.

See Section 8.11.9.232 [Sngl Intrinsic], page 184, for the function that converts to single
precision.

See Section 8.11.9.148 [Int Intrinsic], page 160, for the function that converts to INTEGER.
See Section 8.11.9.44 [Complex Intrinsic], page 127, for the function that converts to

COMPLEX.

Chapter 8: The GNU Fortran Language 135

8.11.9.68 DCos Intrinsic

DCos(X)

DCos: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic], page 128.

8.11.9.69 DCosH Intrinsic

DCosH(X)

DCosH: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of COSH() that is specific to one type for X. See Section 8.11.9.47 [CosH
Intrinsic], page 128.

8.11.9.70 DDiM Intrinsic

DDiM(X, Y)

DDiM: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Y : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of DIM() that is specific to one type for X and Y. See Section 8.11.9.75
[DiM Intrinsic], page 136.

8.11.9.71 DErF Intrinsic

DErF(X)

DErF: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.

136 Using and Porting GNU Fortran

Description:
Archaic form of ERF() that is specific to one type for X. See Section 8.11.9.94 [ErF

Intrinsic], page 141.

8.11.9.72 DErFC Intrinsic

DErFC(X)

DErFC: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of ERFC() that is specific to one type for X. See Section 8.11.9.95 [ErFC
Intrinsic], page 142.

8.11.9.73 DExp Intrinsic

DExp(X)

DExp: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic], page 143.

8.11.9.74 Digits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Digits’ to use this name for an external procedure.

8.11.9.75 DiM Intrinsic

DiM(X, Y)

DiM: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.
X : INTEGER or REAL; scalar; INTENT(IN).
Y : INTEGER or REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘X-Y ’ if X is greater than Y ; otherwise returns zero.

Chapter 8: The GNU Fortran Language 137

8.11.9.76 DInt Intrinsic

DInt(A)

DInt: REAL(KIND=2) function.
A: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of AINT() that is specific to one type for A. See Section 8.11.9.9 [AInt
Intrinsic], page 117.

8.11.9.77 DLog Intrinsic

DLog(X)

DLog: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic], page 167.

8.11.9.78 DLog10 Intrinsic

DLog10(X)

DLog10: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG10() that is specific to one type for X. See Section 8.11.9.171 [Log10
Intrinsic], page 168.

8.11.9.79 DMax1 Intrinsic

DMax1(A-1, A-2, ..., A-n)

DMax1: REAL(KIND=2) function.
A: REAL(KIND=2); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX() that is specific to one type for A. See Section 8.11.9.179 [Max
Intrinsic], page 171.

138 Using and Porting GNU Fortran

8.11.9.80 DMin1 Intrinsic

DMin1(A-1, A-2, ..., A-n)

DMin1: REAL(KIND=2) function.

A: REAL(KIND=2); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MIN() that is specific to one type for A. See Section 8.11.9.188 [Min
Intrinsic], page 174.

8.11.9.81 DMod Intrinsic

DMod(A, P)

DMod: REAL(KIND=2) function.

A: REAL(KIND=2); scalar; INTENT(IN).

P: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MOD() that is specific to one type for A. See Section 8.11.9.194 [Mod
Intrinsic], page 175.

8.11.9.82 DNInt Intrinsic

DNInt(A)

DNInt: REAL(KIND=2) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ANINT() that is specific to one type for A. See Section 8.11.9.21 [ANInt
Intrinsic], page 120.

8.11.9.83 Dot Product Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Dot_Product’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 139

8.11.9.84 DProd Intrinsic

DProd(X, Y)

DProd: REAL(KIND=2) function.
X : REAL(KIND=1); scalar; INTENT(IN).
Y : REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘DBLE(X)*DBLE(Y)’.

8.11.9.85 DSign Intrinsic

DSign(A, B)

DSign: REAL(KIND=2) function.
A: REAL(KIND=2); scalar; INTENT(IN).
B: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIGN() that is specific to one type for A and B. See Section 8.11.9.227
[Sign Intrinsic], page 182.

8.11.9.86 DSin Intrinsic

DSin(X)

DSin: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic], page 183.

8.11.9.87 DSinH Intrinsic

DSinH(X)

DSinH: REAL(KIND=2) function.
X : REAL(KIND=2); scalar; INTENT(IN).

140 Using and Porting GNU Fortran

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SINH() that is specific to one type for X. See Section 8.11.9.230 [SinH
Intrinsic], page 184.

8.11.9.88 DSqRt Intrinsic

DSqRt(X)

DSqRt: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic], page 185.

8.11.9.89 DTan Intrinsic

DTan(X)

DTan: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of TAN() that is specific to one type for X. See Section 8.11.9.243 [Tan
Intrinsic], page 188.

8.11.9.90 DTanH Intrinsic

DTanH(X)

DTanH: REAL(KIND=2) function.

X : REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of TANH() that is specific to one type for X. See Section 8.11.9.244 [TanH
Intrinsic], page 189.

Chapter 8: The GNU Fortran Language 141

8.11.9.91 DTime Intrinsic (subroutine)

CALL DTime(TArray, Result)

TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).

Result: REAL(KIND=1); scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Initially, return the number of seconds of runtime since the start of the process’s execu-
tion in Result, and the user and system components of this in ‘TArray(1)’ and ‘TArray(2)’
respectively. The value of Result is equal to ‘TArray(1) + TArray(2)’.

Subsequent invocations of ‘DTIME()’ set values based on accumulations since the previous
invocation.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 10.5.2.36 [DTime
Intrinsic (function)], page 225.

8.11.9.92 EOShift Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL EOShift’ to use this name for an external procedure.

8.11.9.93 Epsilon Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Epsilon’ to use this name for an external procedure.

8.11.9.94 ErF Intrinsic

ErF(X)

ErF: REAL function, the ‘KIND=’ value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the error function of X. See erf(3m), which provides the implementation.

142 Using and Porting GNU Fortran

8.11.9.95 ErFC Intrinsic

ErFC(X)

ErFC: REAL function, the ‘KIND=’ value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the complementary error function of X : ‘ERFC(R) = 1 - ERF(R)’ (except that
the result might be more accurate than explicitly evaluating that formulae would give). See
erfc(3m), which provides the implementation.

8.11.9.96 ETime Intrinsic (subroutine)

CALL ETime(TArray, Result)

TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).

Result: REAL(KIND=1); scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Return the number of seconds of runtime since the start of the process’s execution
in Result, and the user and system components of this in ‘TArray(1)’ and ‘TArray(2)’
respectively. The value of Result is equal to ‘TArray(1) + TArray(2)’.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 8.11.9.97 [ETime
Intrinsic (function)], page 142.

8.11.9.97 ETime Intrinsic (function)

ETime(TArray)

ETime: REAL(KIND=1) function.

TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).

Intrinsic groups: unix.

Description:

Chapter 8: The GNU Fortran Language 143

Return the number of seconds of runtime since the start of the process’s execution as the
function value, and the user and system components of this in ‘TArray(1)’ and ‘TArray(2)’
respectively. The functions’ value is equal to ‘TArray(1) + TArray(2)’.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

For information on other intrinsics with the same name: See Section 8.11.9.96 [ETime
Intrinsic (subroutine)], page 142.

8.11.9.98 Exit Intrinsic

CALL Exit(Status)

Status: INTEGER not wider than the default kind; OPTIONAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Exit the program with status Status after closing open Fortran I/O units and otherwise
behaving as exit(2). If Status is omitted the canonical ‘success’ value will be returned to
the system.

8.11.9.99 Exp Intrinsic

Exp(X)

Exp: REAL or COMPLEX function, the exact type being that of argument X.

X : REAL or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns ‘e**X ’, where e is approximately 2.7182818.

See Section 8.11.9.170 [Log Intrinsic], page 167, for the inverse of this function.

8.11.9.100 Exponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Exponent’ to use this name for an external procedure.

8.11.9.101 FDate Intrinsic (subroutine)

144 Using and Porting GNU Fortran

CALL FDate(Date)

Date: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Returns the current date (using the same format as CTIME()) in Date.
Equivalent to:

CALL CTIME(Date, TIME8())

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

See Section 8.11.9.53 [CTime Intrinsic (subroutine)], page 130.
Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.
For information on other intrinsics with the same name: See Section 8.11.9.102 [FDate

Intrinsic (function)], page 144.

8.11.9.102 FDate Intrinsic (function)

FDate()

FDate: CHARACTER*(*) function.
Intrinsic groups: unix.
Description:

Returns the current date (using the same format as CTIME()).
Equivalent to:

CTIME(TIME8())

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

See Section 8.11.9.54 [CTime Intrinsic (function)], page 130.
For information on other intrinsics with the same name: See Section 8.11.9.101 [FDate

Intrinsic (subroutine)], page 143.

8.11.9.103 FGet Intrinsic (subroutine)

CALL FGet(C, Status)

C : CHARACTER; scalar; INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Chapter 8: The GNU Fortran Language 145

Reads a single character into C in stream mode from unit 5 (by-passing normal formatted
output) using getc(3). Returns in Status 0 on success, −1 on end-of-file, and the error
code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.37 [FGet
Intrinsic (function)], page 226.

8.11.9.104 FGetC Intrinsic (subroutine)

CALL FGetC(Unit, C, Status)

Unit: INTEGER; scalar; INTENT(IN).

C : CHARACTER; scalar; INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Reads a single character into C in stream mode from unit Unit (by-passing normal
formatted output) using getc(3). Returns in Status 0 on success, −1 on end-of-file, and
the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.38 [FGetC
Intrinsic (function)], page 226.

8.11.9.105 Float Intrinsic

Float(A)

Float: REAL(KIND=1) function.

A: INTEGER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of REAL() that is specific to one type for A. See Section 8.11.9.211 [Real
Intrinsic], page 178.

8.11.9.106 Floor Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Floor’ to use this name for an external procedure.

146 Using and Porting GNU Fortran

8.11.9.107 Flush Intrinsic

CALL Flush(Unit)

Unit: INTEGER; OPTIONAL; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Flushes Fortran unit(s) currently open for output. Without the optional argument, all
such units are flushed, otherwise just the unit specified by Unit.

Some non-GNU implementations of Fortran provide this intrinsic as a library procedure
that might or might not support the (optional) Unit argument.

8.11.9.108 FNum Intrinsic

FNum(Unit)

FNum: INTEGER(KIND=1) function.

Unit: INTEGER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Returns the Unix file descriptor number corresponding to the open Fortran I/O unit
Unit. This could be passed to an interface to C I/O routines.

8.11.9.109 FPut Intrinsic (subroutine)

CALL FPut(C, Status)

C : CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Writes the single character C in stream mode to unit 6 (by-passing normal formatted
output) using putc(3). Returns in Status 0 on success, the error code from ferror(3)
otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.41 [FPut
Intrinsic (function)], page 227.

Chapter 8: The GNU Fortran Language 147

8.11.9.110 FPutC Intrinsic (subroutine)

CALL FPutC(Unit, C, Status)

Unit: INTEGER; scalar; INTENT(IN).
C : CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Writes the single character Unit in stream mode to unit 6 (by-passing normal formatted
output) using putc(3). Returns in C 0 on success, the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.42 [FPutC
Intrinsic (function)], page 227.

8.11.9.111 Fraction Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Fraction’ to use this name for an external procedure.

8.11.9.112 FSeek Intrinsic

CALL FSeek(Unit, Offset, Whence, ErrLab)

Unit: INTEGER; scalar; INTENT(IN).
Offset: INTEGER; scalar; INTENT(IN).
Whence: INTEGER; scalar; INTENT(IN).
ErrLab: ‘*label ’, where label is the label of an executable statement; OPTIONAL.
Intrinsic groups: unix.
Description:

Attempts to move Fortran unit Unit to the specified Offset: absolute offset if Whence=0;
relative to the current offset if Whence=1; relative to the end of the file if Whence=2. It
branches to label ErrLab if Unit is not open or if the call otherwise fails.

8.11.9.113 FStat Intrinsic (subroutine)

CALL FStat(Unit, SArray, Status)

Unit: INTEGER; scalar; INTENT(IN).
SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

148 Using and Porting GNU Fortran

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the file open on Fortran I/O unit Unit and places them in the array
SArray. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:
1. Device ID
2. Inode number
3. File mode
4. Number of links
5. Owner’s uid
6. Owner’s gid
7. ID of device containing directory entry for file (0 if not available)
8. File size (bytes)
9. Last access time

10. Last modification time
11. Last file status change time
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

If the Status argument is supplied, it contains 0 on success or a nonzero error code upon
return.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.114 [FStat
Intrinsic (function)], page 148.

8.11.9.114 FStat Intrinsic (function)

FStat(Unit, SArray)

FStat: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the file open on Fortran I/O unit Unit and places them in the array
SArray. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:

Chapter 8: The GNU Fortran Language 149

1. Device ID
2. Inode number
3. File mode
4. Number of links
5. Owner’s uid
6. Owner’s gid
7. ID of device containing directory entry for file (0 if not available)
8. File size (bytes)
9. Last access time

10. Last modification time
11. Last file status change time
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

Returns 0 on success or a nonzero error code.
For information on other intrinsics with the same name: See Section 8.11.9.113 [FStat

Intrinsic (subroutine)], page 147.

8.11.9.115 FTell Intrinsic (subroutine)

CALL FTell(Unit, Offset)

Unit: INTEGER; scalar; INTENT(IN).
Offset: INTEGER(KIND=1); scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets Offset to the current offset of Fortran unit Unit (or to −1 if Unit is not open).
Some non-GNU implementations of Fortran provide this intrinsic as only a function, not

as a subroutine.
For information on other intrinsics with the same name: See Section 8.11.9.116 [FTell

Intrinsic (function)], page 149.

8.11.9.116 FTell Intrinsic (function)

FTell(Unit)

FTell: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.

150 Using and Porting GNU Fortran

Description:
Returns the current offset of Fortran unit Unit (or −1 if Unit is not open).
For information on other intrinsics with the same name: See Section 8.11.9.115 [FTell

Intrinsic (subroutine)], page 149.

8.11.9.117 GError Intrinsic

CALL GError(Message)

Message: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Returns the system error message corresponding to the last system error (C errno).

8.11.9.118 GetArg Intrinsic

CALL GetArg(Pos, Value)

Pos: INTEGER not wider than the default kind; scalar; INTENT(IN).
Value: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets Value to the Pos-th command-line argument (or to all blanks if there are fewer
than Value command-line arguments); CALL GETARG(0, value) sets value to the name of
the program (on systems that support this feature).

See Section 8.11.9.133 [IArgC Intrinsic], page 155, for information on how to get the
number of arguments.

8.11.9.119 GetCWD Intrinsic (subroutine)

CALL GetCWD(Name, Status)

Name: CHARACTER; scalar; INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Places the current working directory in Name. If the Status argument is supplied, it
contains 0 success or a nonzero error code upon return (ENOSYS if the system does not
provide getcwd(3) or getwd(3)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.120 [GetCWD
Intrinsic (function)], page 151.

Chapter 8: The GNU Fortran Language 151

8.11.9.120 GetCWD Intrinsic (function)

GetCWD(Name)

GetCWD: INTEGER(KIND=1) function.
Name: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Places the current working directory in Name. Returns 0 on success, otherwise a nonzero
error code (ENOSYS if the system does not provide getcwd(3) or getwd(3)).

For information on other intrinsics with the same name: See Section 8.11.9.119 [GetCWD
Intrinsic (subroutine)], page 150.

8.11.9.121 GetEnv Intrinsic

CALL GetEnv(Name, Value)

Name: CHARACTER; scalar; INTENT(IN).
Value: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets Value to the value of environment variable given by the value of Name ($name in
shell terms) or to blanks if $name has not been set. A null character (‘CHAR(0)’) marks the
end of the name in Name—otherwise, trailing blanks in Name are ignored.

8.11.9.122 GetGId Intrinsic

GetGId()

GetGId: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the group id for the current process.

8.11.9.123 GetLog Intrinsic

CALL GetLog(Login)

Login: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

152 Using and Porting GNU Fortran

Returns the login name for the process in Login.
Caution: On some systems, the getlogin(3) function, which this intrinsic calls at run

time, is either not implemented or returns a null pointer. In the latter case, this intrinsic
returns blanks in Login.

8.11.9.124 GetPId Intrinsic

GetPId()

GetPId: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the process id for the current process.

8.11.9.125 GetUId Intrinsic

GetUId()

GetUId: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the user id for the current process.

8.11.9.126 GMTime Intrinsic

CALL GMTime(STime, TArray)

STime: INTEGER(KIND=1); scalar; INTENT(IN).
TArray : INTEGER(KIND=1); DIMENSION(9); INTENT(OUT).
Intrinsic groups: unix.
Description:

Given a system time value STime, fills TArray with values extracted from it appropriate
to the GMT time zone using gmtime(3).

The array elements are as follows:
1. Seconds after the minute, range 0–59 or 0–61 to allow for leap seconds
2. Minutes after the hour, range 0–59
3. Hours past midnight, range 0–23
4. Day of month, range 0–31
5. Number of months since January, range 0–12
6. Years since 1900

Chapter 8: The GNU Fortran Language 153

7. Number of days since Sunday, range 0–6

8. Days since January 1

9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and
negative if the information isn’t available.

8.11.9.127 HostNm Intrinsic (subroutine)

CALL HostNm(Name, Status)

Name: CHARACTER; scalar; INTENT(OUT).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Fills Name with the system’s host name returned by gethostname(2). If the Status
argument is supplied, it contains 0 on success or a nonzero error code upon return (ENOSYS
if the system does not provide gethostname(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

On some systems (specifically SCO) it might be necessary to link the “socket” library
if you call this routine. Typically this means adding ‘-lg2c -lsocket -lm’ to the g77
command line when linking the program.

For information on other intrinsics with the same name: See Section 8.11.9.128 [HostNm
Intrinsic (function)], page 153.

8.11.9.128 HostNm Intrinsic (function)

HostNm(Name)

HostNm: INTEGER(KIND=1) function.

Name: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Fills Name with the system’s host name returned by gethostname(2), returning 0 on
success or a nonzero error code (ENOSYS if the system does not provide gethostname(2)).

On some systems (specifically SCO) it might be necessary to link the “socket” library
if you call this routine. Typically this means adding ‘-lg2c -lsocket -lm’ to the g77
command line when linking the program.

For information on other intrinsics with the same name: See Section 8.11.9.127 [HostNm
Intrinsic (subroutine)], page 153.

154 Using and Porting GNU Fortran

8.11.9.129 Huge Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Huge’ to use this name for an external procedure.

8.11.9.130 IAbs Intrinsic

IAbs(A)

IAbs: INTEGER(KIND=1) function.

A: INTEGER(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 115.

8.11.9.131 IAChar Intrinsic

IAChar(C)

IAChar: INTEGER(KIND=1) function.

C : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: f2c, f90.

Description:

Returns the code for the ASCII character in the first character position of C.

See Section 8.11.9.4 [AChar Intrinsic], page 116, for the inverse of this function.

See Section 8.11.9.137 [IChar Intrinsic], page 156, for the function corresponding to the
system’s native character set.

8.11.9.132 IAnd Intrinsic

IAnd(I, J)

IAnd: INTEGER function, the exact type being the result of cross-promoting the types of all
the arguments.

I : INTEGER; scalar; INTENT(IN).

J: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns value resulting from boolean AND of pair of bits in each of I and J.

Chapter 8: The GNU Fortran Language 155

8.11.9.133 IArgC Intrinsic

IArgC()

IArgC: INTEGER(KIND=1) function.

Intrinsic groups: unix.

Description:

Returns the number of command-line arguments.

This count does not include the specification of the program name itself.

8.11.9.134 IBClr Intrinsic

IBClr(I, Pos)

IBClr: INTEGER function, the ‘KIND=’ value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Pos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns the value of I with bit Pos cleared (set to zero). See Section 8.11.9.34 [BTest
Intrinsic], page 124, for information on bit positions.

8.11.9.135 IBits Intrinsic

IBits(I, Pos, Len)

IBits: INTEGER function, the ‘KIND=’ value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Pos: INTEGER; scalar; INTENT(IN).

Len: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Extracts a subfield of length Len from I, starting from bit position Pos and extending
left for Len bits. The result is right-justified and the remaining bits are zeroed. The value
of ‘Pos+Len ’ must be less than or equal to the value ‘BIT_SIZE(I)’. See Section 8.11.9.33
[Bit Size Intrinsic], page 123.

156 Using and Porting GNU Fortran

8.11.9.136 IBSet Intrinsic

IBSet(I, Pos)

IBSet: INTEGER function, the ‘KIND=’ value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Pos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Returns the value of I with bit Pos set (to one). See Section 8.11.9.34 [BTest Intrinsic],
page 124, for information on bit positions.

8.11.9.137 IChar Intrinsic

IChar(C)

IChar: INTEGER(KIND=1) function.

C : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the code for the character in the first character position of C.

Because the system’s native character set is used, the correspondence between character
and their codes is not necessarily the same between GNU Fortran implementations.

Note that no intrinsic exists to convert a printable character string to a numerical value.
For example, there is no intrinsic that, given the CHARACTER value ‘’154’’, returns an
INTEGER or REAL value with the value ‘154’.

Instead, you can use internal-file I/O to do this kind of conversion. For example:
INTEGER VALUE

CHARACTER*10 STRING

STRING = ’154’

READ (STRING, ’(I10)’), VALUE

PRINT *, VALUE

END

The above program, when run, prints:
154

See Section 8.11.9.39 [Char Intrinsic], page 125, for the inverse of the ICHAR function.

See Section 8.11.9.131 [IAChar Intrinsic], page 154, for the function corresponding to
the ASCII character set.

Chapter 8: The GNU Fortran Language 157

8.11.9.138 IDate Intrinsic (UNIX)

CALL IDate(TArray)

TArray : INTEGER(KIND=1); DIMENSION(3); INTENT(OUT).

Intrinsic groups: unix.

Description:

Fills TArray with the numerical values at the current local time. The day (in the range
1–31), month (in the range 1–12), and year appear in elements 1, 2, and 3 of TArray,
respectively. The year has four significant digits.

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

For information on other intrinsics with the same name: See Section 10.5.2.43 [IDate
Intrinsic (VXT)], page 227.

8.11.9.139 IDiM Intrinsic

IDiM(X, Y)

IDiM: INTEGER(KIND=1) function.

X : INTEGER(KIND=1); scalar; INTENT(IN).

Y : INTEGER(KIND=1); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of DIM() that is specific to one type for X and Y. See Section 8.11.9.75
[DiM Intrinsic], page 136.

8.11.9.140 IDInt Intrinsic

IDInt(A)

IDInt: INTEGER(KIND=1) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of INT() that is specific to one type for A. See Section 8.11.9.148 [Int
Intrinsic], page 160.

158 Using and Porting GNU Fortran

8.11.9.141 IDNInt Intrinsic

IDNInt(A)

IDNInt: INTEGER(KIND=1) function.
A: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of NINT() that is specific to one type for A. See Section 8.11.9.198 [NInt
Intrinsic], page 176.

8.11.9.142 IEOr Intrinsic

IEOr(I, J)

IEOr: INTEGER function, the exact type being the result of cross-promoting the types of all
the arguments.
I : INTEGER; scalar; INTENT(IN).
J: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, f90, vxt.
Description:

Returns value resulting from boolean exclusive-OR of pair of bits in each of I and J.

8.11.9.143 IErrNo Intrinsic

IErrNo()

IErrNo: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the last system error number (corresponding to the C errno).

8.11.9.144 IFix Intrinsic

IFix(A)

IFix: INTEGER(KIND=1) function.
A: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of INT() that is specific to one type for A. See Section 8.11.9.148 [Int
Intrinsic], page 160.

Chapter 8: The GNU Fortran Language 159

8.11.9.145 Imag Intrinsic

Imag(Z)

Imag: REAL function, the ‘KIND=’ value of the type being that of argument Z.
Z : COMPLEX; scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

The imaginary part of Z is returned, without conversion.
Note: The way to do this in standard Fortran 90 is ‘AIMAG(Z)’. However, when, for

example, Z is DOUBLE COMPLEX, ‘AIMAG(Z)’ means something different for some compilers
that are not true Fortran 90 compilers but offer some extensions standardized by Fortran
90 (such as the DOUBLE COMPLEX type, also known as COMPLEX(KIND=2)).

The advantage of IMAG() is that, while not necessarily more or less portable than
AIMAG(), it is more likely to cause a compiler that doesn’t support it to produce a di-
agnostic than generate incorrect code.

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 112, for more information.

8.11.9.146 ImagPart Intrinsic

ImagPart(Z)

ImagPart: REAL function, the ‘KIND=’ value of the type being that of argument Z.
Z : COMPLEX; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:

The imaginary part of Z is returned, without conversion.
Note: The way to do this in standard Fortran 90 is ‘AIMAG(Z)’. However, when, for

example, Z is DOUBLE COMPLEX, ‘AIMAG(Z)’ means something different for some compilers
that are not true Fortran 90 compilers but offer some extensions standardized by Fortran
90 (such as the DOUBLE COMPLEX type, also known as COMPLEX(KIND=2)).

The advantage of IMAGPART() is that, while not necessarily more or less portable than
AIMAG(), it is more likely to cause a compiler that doesn’t support it to produce a diagnostic
than generate incorrect code.

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 112, for more information.

8.11.9.147 Index Intrinsic

Index(String, Substring)

Index: INTEGER(KIND=1) function.

160 Using and Porting GNU Fortran

String : CHARACTER; scalar; INTENT(IN).

Substring : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the position of the start of the first occurrence of string Substring as a substring
in String, counting from one. If Substring doesn’t occur in String, zero is returned.

8.11.9.148 Int Intrinsic

Int(A)

Int: INTEGER(KIND=1) function.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER(KIND=1).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disregarded.

See Section 8.11.9.198 [NInt Intrinsic], page 176, for how to convert, rounded to nearest
whole number.

See Section 8.11.9.9 [AInt Intrinsic], page 117, for how to truncate to whole number
without converting.

8.11.9.149 Int2 Intrinsic

Int2(A)

Int2: INTEGER(KIND=6) function.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Intrinsic groups: gnu.

Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER(KIND=6).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disregarded.

See Section 8.11.9.148 [Int Intrinsic], page 160.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran
language, as more is learned about how it is used.

Chapter 8: The GNU Fortran Language 161

8.11.9.150 Int8 Intrinsic

Int8(A)

Int8: INTEGER(KIND=2) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER(KIND=2).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disregarded.

See Section 8.11.9.148 [Int Intrinsic], page 160.
The precise meaning of this intrinsic might change in a future version of the GNU Fortran

language, as more is learned about how it is used.

8.11.9.151 IOr Intrinsic

IOr(I, J)

IOr: INTEGER function, the exact type being the result of cross-promoting the types of all
the arguments.
I : INTEGER; scalar; INTENT(IN).
J: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, f90, vxt.
Description:

Returns value resulting from boolean OR of pair of bits in each of I and J.

8.11.9.152 IRand Intrinsic

IRand(Flag)

IRand: INTEGER(KIND=1) function.
Flag : INTEGER; OPTIONAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns a uniform quasi-random number up to a system-dependent limit. If Flag is 0,
the next number in sequence is returned; if Flag is 1, the generator is restarted by calling
the UNIX function ‘srand(0)’; if Flag has any other value, it is used as a new seed with
srand().

See Section 8.11.9.236 [SRand Intrinsic], page 185.

162 Using and Porting GNU Fortran

Note: As typically implemented (by the routine of the same name in the C library), this
random number generator is a very poor one, though the BSD and GNU libraries provide
a much better implementation than the ‘traditional’ one. On a different system you almost
certainly want to use something better.

8.11.9.153 IsaTty Intrinsic

IsaTty(Unit)

IsaTty: LOGICAL(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns .TRUE. if and only if the Fortran I/O unit specified by Unit is connected to a
terminal device. See isatty(3).

8.11.9.154 IShft Intrinsic

IShft(I, Shift)

IShft: INTEGER function, the ‘KIND=’ value of the type being that of argument I.
I : INTEGER; scalar; INTENT(IN).
Shift: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, f90, vxt.
Description:

All bits representing I are shifted Shift places. ‘Shift.GT.0’ indicates a left shift,
‘Shift.EQ.0’ indicates no shift and ‘Shift.LT.0’ indicates a right shift. If the absolute
value of the shift count is greater than ‘BIT_SIZE(I)’, the result is undefined. Bits shifted
out from the left end or the right end are lost. Zeros are shifted in from the opposite end.

See Section 8.11.9.155 [IShftC Intrinsic], page 162, for the circular-shift equivalent.

8.11.9.155 IShftC Intrinsic

IShftC(I, Shift, Size)

IShftC: INTEGER function, the ‘KIND=’ value of the type being that of argument I.
I : INTEGER; scalar; INTENT(IN).
Shift: INTEGER; scalar; INTENT(IN).
Size: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, f90, vxt.
Description:

Chapter 8: The GNU Fortran Language 163

The rightmost Size bits of the argument I are shifted circularly Shift places, i.e. the bits
shifted out of one end are shifted into the opposite end. No bits are lost. The unshifted
bits of the result are the same as the unshifted bits of I. The absolute value of the argument
Shift must be less than or equal to Size. The value of Size must be greater than or equal
to one and less than or equal to ‘BIT_SIZE(I)’.

See Section 8.11.9.154 [IShft Intrinsic], page 162, for the logical shift equivalent.

8.11.9.156 ISign Intrinsic

ISign(A, B)

ISign: INTEGER(KIND=1) function.
A: INTEGER(KIND=1); scalar; INTENT(IN).
B: INTEGER(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIGN() that is specific to one type for A and B. See Section 8.11.9.227
[Sign Intrinsic], page 182.

8.11.9.157 ITime Intrinsic

CALL ITime(TArray)

TArray : INTEGER(KIND=1); DIMENSION(3); INTENT(OUT).
Intrinsic groups: unix.
Description:

Returns the current local time hour, minutes, and seconds in elements 1, 2, and 3 of
TArray, respectively.

8.11.9.158 Kill Intrinsic (subroutine)

CALL Kill(Pid, Signal, Status)

Pid: INTEGER; scalar; INTENT(IN).
Signal: INTEGER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sends the signal specified by Signal to the process Pid. If the Status argument is supplied,
it contains 0 on success or a nonzero error code upon return. See kill(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

164 Using and Porting GNU Fortran

For information on other intrinsics with the same name: See Section 10.5.2.93 [Kill
Intrinsic (function)], page 233.

8.11.9.159 Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Kind’ to use this name for an external procedure.

8.11.9.160 LBound Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL LBound’ to use this name for an external procedure.

8.11.9.161 Len Intrinsic

Len(String)

Len: INTEGER(KIND=1) function.

String : CHARACTER; scalar.

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the length of String.

If String is an array, the length of an element of String is returned.

Note that String need not be defined when this intrinsic is invoked, since only the length,
not the content, of String is needed.

See Section 8.11.9.33 [Bit Size Intrinsic], page 123, for the function that determines the
size of its argument in bits.

8.11.9.162 Len Trim Intrinsic

Len_Trim(String)

Len Trim: INTEGER(KIND=1) function.

String : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: f90.

Description:

Returns the index of the last non-blank character in String. LNBLNK and LEN_TRIM are
equivalent.

Chapter 8: The GNU Fortran Language 165

8.11.9.163 LGe Intrinsic

LGe(String_A, String_B)

LGe: LOGICAL(KIND=1) function.
String A: CHARACTER; scalar; INTENT(IN).
String B: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘.TRUE.’ if ‘String_A.GE.String_B ’, ‘.FALSE.’ otherwise. String A and
String B are interpreted as containing ASCII character codes. If either value contains a
character not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if
spaces were appended to it to form a value that has the same length as the longer.

The lexical comparison intrinsics LGe, LGt, LLe, and LLt differ from the correspond-
ing intrinsic operators .GE., .GT., .LE., .LT.. Because the ASCII collating sequence is
assumed, the following expressions always return ‘.TRUE.’:

LGE (’0’, ’ ’)

LGE (’A’, ’0’)

LGE (’a’, ’A’)

The following related expressions do not always return ‘.TRUE.’, as they are not neces-
sarily evaluated assuming the arguments use ASCII encoding:

’0’ .GE. ’ ’

’A’ .GE. ’0’

’a’ .GE. ’A’

The same difference exists between LGt and .GT.; between LLe and .LE.; and between
LLt and .LT..

8.11.9.164 LGt Intrinsic

LGt(String_A, String_B)

LGt: LOGICAL(KIND=1) function.
String A: CHARACTER; scalar; INTENT(IN).
String B: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘.TRUE.’ if ‘String_A.GT.String_B ’, ‘.FALSE.’ otherwise. String A and
String B are interpreted as containing ASCII character codes. If either value contains a
character not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if
spaces were appended to it to form a value that has the same length as the longer.

See Section 8.11.9.163 [LGe Intrinsic], page 165, for information on the distinction be-
tween the LGT intrinsic and the .GT. operator.

166 Using and Porting GNU Fortran

8.11.9.165 Link Intrinsic (subroutine)

CALL Link(Path1, Path2, Status)

Path1: CHARACTER; scalar; INTENT(IN).
Path2: CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Makes a (hard) link from file Path1 to Path2. A null character (‘CHAR(0)’) marks the
end of the names in Path1 and Path2—otherwise, trailing blanks in Path1 and Path2 are
ignored. If the Status argument is supplied, it contains 0 on success or a nonzero error code
upon return. See link(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.94 [Link
Intrinsic (function)], page 234.

8.11.9.166 LLe Intrinsic

LLe(String_A, String_B)

LLe: LOGICAL(KIND=1) function.
String A: CHARACTER; scalar; INTENT(IN).
String B: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘.TRUE.’ if ‘String_A.LE.String_B ’, ‘.FALSE.’ otherwise. String A and
String B are interpreted as containing ASCII character codes. If either value contains a
character not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if
spaces were appended to it to form a value that has the same length as the longer.

See Section 8.11.9.163 [LGe Intrinsic], page 165, for information on the distinction be-
tween the LLE intrinsic and the .LE. operator.

8.11.9.167 LLt Intrinsic

LLt(String_A, String_B)

LLt: LOGICAL(KIND=1) function.
String A: CHARACTER; scalar; INTENT(IN).

Chapter 8: The GNU Fortran Language 167

String B: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘.TRUE.’ if ‘String_A.LT.String_B ’, ‘.FALSE.’ otherwise. String A and
String B are interpreted as containing ASCII character codes. If either value contains a
character not in the ASCII character set, the result is processor dependent.

If the String A and String B are not the same length, the shorter is compared as if
spaces were appended to it to form a value that has the same length as the longer.

See Section 8.11.9.163 [LGe Intrinsic], page 165, for information on the distinction be-
tween the LLT intrinsic and the .LT. operator.

8.11.9.168 LnBlnk Intrinsic

LnBlnk(String)

LnBlnk: INTEGER(KIND=1) function.
String : CHARACTER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns the index of the last non-blank character in String. LNBLNK and LEN_TRIM are
equivalent.

8.11.9.169 Loc Intrinsic

Loc(Entity)

Loc: INTEGER(KIND=7) function.
Entity : Any type; cannot be a constant or expression.
Intrinsic groups: unix.
Description:

The LOC() intrinsic works the same way as the %LOC() construct. See Section 8.8.1 [The
%LOC() Construct], page 104, for more information.

8.11.9.170 Log Intrinsic

Log(X)

Log: REAL or COMPLEX function, the exact type being that of argument X.
X : REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

168 Using and Porting GNU Fortran

Returns the natural logarithm of X, which must be greater than zero or, if type COMPLEX,
must not be zero.

See Section 8.11.9.99 [Exp Intrinsic], page 143, for the inverse of this function.

See Section 8.11.9.171 [Log10 Intrinsic], page 168, for the ‘common’ (base-10) logarithm
function.

8.11.9.171 Log10 Intrinsic

Log10(X)

Log10: REAL function, the ‘KIND=’ value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the common logarithm (base 10) of X, which must be greater than zero.

The inverse of this function is ‘10. ** LOG10(X)’.

See Section 8.11.9.170 [Log Intrinsic], page 167, for the natural logarithm function.

8.11.9.172 Logical Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Logical’ to use this name for an external procedure.

8.11.9.173 Long Intrinsic

Long(A)

Long: INTEGER(KIND=1) function.

A: INTEGER(KIND=6); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Archaic form of INT() that is specific to one type for A. See Section 8.11.9.148 [Int
Intrinsic], page 160.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran
language, as more is learned about how it is used.

8.11.9.174 LShift Intrinsic

Chapter 8: The GNU Fortran Language 169

LShift(I, Shift)

LShift: INTEGER function, the ‘KIND=’ value of the type being that of argument I.
I : INTEGER; scalar; INTENT(IN).
Shift: INTEGER; scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Returns I shifted to the left Shift bits.
Although similar to the expression ‘I*(2**Shift)’, there are important differences. For

example, the sign of the result is not necessarily the same as the sign of I.
Currently this intrinsic is defined assuming the underlying representation of I is as a

two’s-complement integer. It is unclear at this point whether that definition will apply
when a different representation is involved.

See Section 8.11.9.174 [LShift Intrinsic], page 168, for the inverse of this function.
See Section 8.11.9.154 [IShft Intrinsic], page 162, for information on a more widely

available left-shifting intrinsic that is also more precisely defined.

8.11.9.175 LStat Intrinsic (subroutine)

CALL LStat(File, SArray, Status)

File: CHARACTER; scalar; INTENT(IN).
SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. If File is a symbolic link it returns data on the link itself, so the routine is
available only on systems that support symbolic links. The values in this array are extracted
from the stat structure as returned by fstat(2) q.v., as follows:
1. Device ID
2. Inode number
3. File mode
4. Number of links
5. Owner’s uid
6. Owner’s gid
7. ID of device containing directory entry for file (0 if not available)
8. File size (bytes)
9. Last access time

10. Last modification time

170 Using and Porting GNU Fortran

11. Last file status change time
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

If the Status argument is supplied, it contains 0 on success or a nonzero error code upon
return (ENOSYS if the system does not provide lstat(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.176 [LStat
Intrinsic (function)], page 170.

8.11.9.176 LStat Intrinsic (function)

LStat(File, SArray)

LStat: INTEGER(KIND=1) function.

File: CHARACTER; scalar; INTENT(IN).

SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).

Intrinsic groups: unix.

Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. If File is a symbolic link it returns data on the link itself, so the routine is
available only on systems that support symbolic links. The values in this array are extracted
from the stat structure as returned by fstat(2) q.v., as follows:

1. Device ID
2. Inode number
3. File mode
4. Number of links
5. Owner’s uid
6. Owner’s gid
7. ID of device containing directory entry for file (0 if not available)
8. File size (bytes)
9. Last access time

10. Last modification time
11. Last file status change time
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)

Chapter 8: The GNU Fortran Language 171

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

Returns 0 on success or a nonzero error code (ENOSYS if the system does not provide
lstat(2)).

For information on other intrinsics with the same name: See Section 8.11.9.175 [LStat
Intrinsic (subroutine)], page 169.

8.11.9.177 LTime Intrinsic

CALL LTime(STime, TArray)

STime: INTEGER(KIND=1); scalar; INTENT(IN).
TArray : INTEGER(KIND=1); DIMENSION(9); INTENT(OUT).
Intrinsic groups: unix.
Description:

Given a system time value STime, fills TArray with values extracted from it appropriate
to the GMT time zone using localtime(3).

The array elements are as follows:
1. Seconds after the minute, range 0–59 or 0–61 to allow for leap seconds
2. Minutes after the hour, range 0–59
3. Hours past midnight, range 0–23
4. Day of month, range 0–31
5. Number of months since January, range 0–12
6. Years since 1900
7. Number of days since Sunday, range 0–6
8. Days since January 1
9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and

negative if the information isn’t available.

8.11.9.178 MatMul Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL MatMul’ to use this name for an external procedure.

8.11.9.179 Max Intrinsic

Max(A-1, A-2, ..., A-n)

Max: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.
A: INTEGER or REAL; at least two such arguments must be provided; scalar; INTENT(IN).

172 Using and Porting GNU Fortran

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the argument with the largest value.

See Section 8.11.9.188 [Min Intrinsic], page 174, for the opposite function.

8.11.9.180 Max0 Intrinsic

Max0(A-1, A-2, ..., A-n)

Max0: INTEGER(KIND=1) function.

A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MAX() that is specific to one type for A. See Section 8.11.9.179 [Max
Intrinsic], page 171.

8.11.9.181 Max1 Intrinsic

Max1(A-1, A-2, ..., A-n)

Max1: INTEGER(KIND=1) function.

A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of MAX() that is specific to one type for A and a different return type. See
Section 8.11.9.179 [Max Intrinsic], page 171.

8.11.9.182 MaxExponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL MaxExponent’ to use this name for an external procedure.

8.11.9.183 MaxLoc Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL MaxLoc’ to use this name for an external procedure.

8.11.9.184 MaxVal Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL MaxVal’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 173

8.11.9.185 MClock Intrinsic

MClock()

MClock: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the number of clock ticks since the start of the process. Supported on systems
with clock(3) (q.v.).

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but
supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might
be, or become, negative, or numerically less than previous values, during a single run of the
compiled program.

See Section 8.11.9.186 [MClock8 Intrinsic], page 173, for information on a similar intrinsic
that might be portable to more GNU Fortran implementations, though to fewer Fortran
compilers.

If the system does not support clock(3), -1 is returned.

8.11.9.186 MClock8 Intrinsic

MClock8()

MClock8: INTEGER(KIND=2) function.
Intrinsic groups: unix.
Description:

Returns the number of clock ticks since the start of the process. Supported on systems
with clock(3) (q.v.).

Warning: this intrinsic does not increase the range of the timing values over that re-
turned by clock(3). On a system with a 32-bit clock(3), MCLOCK8 will return a 32-bit
value, even though converted to an ‘INTEGER(KIND=2)’ value. That means overflows of
the 32-bit value can still occur. Therefore, the values returned by this intrinsic might be,
or become, negative, or numerically less than previous values, during a single run of the
compiled program.

No Fortran implementations other than GNU Fortran are known to support this intrinsic
at the time of this writing. See Section 8.11.9.185 [MClock Intrinsic], page 173, for infor-
mation on a similar intrinsic that might be portable to more Fortran compilers, though to
fewer GNU Fortran implementations.

If the system does not support clock(3), -1 is returned.

8.11.9.187 Merge Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Merge’ to use this name for an external procedure.

174 Using and Porting GNU Fortran

8.11.9.188 Min Intrinsic

Min(A-1, A-2, ..., A-n)

Min: INTEGER or REAL function, the exact type being the result of cross-promoting the types
of all the arguments.
A: INTEGER or REAL; at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the argument with the smallest value.
See Section 8.11.9.179 [Max Intrinsic], page 171, for the opposite function.

8.11.9.189 Min0 Intrinsic

Min0(A-1, A-2, ..., A-n)

Min0: INTEGER(KIND=1) function.
A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A. See Section 8.11.9.188 [Min
Intrinsic], page 174.

8.11.9.190 Min1 Intrinsic

Min1(A-1, A-2, ..., A-n)

Min1: INTEGER(KIND=1) function.
A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A and a different return type. See
Section 8.11.9.188 [Min Intrinsic], page 174.

8.11.9.191 MinExponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL MinExponent’ to use this name for an external procedure.

8.11.9.192 MinLoc Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL MinLoc’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 175

8.11.9.193 MinVal Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL MinVal’ to use this name for an external procedure.

8.11.9.194 Mod Intrinsic

Mod(A, P)

Mod: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.

A: INTEGER or REAL; scalar; INTENT(IN).

P: INTEGER or REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns remainder calculated as:
A - (INT(A / P) * P)

P must not be zero.

8.11.9.195 Modulo Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Modulo’ to use this name for an external procedure.

8.11.9.196 MvBits Intrinsic

CALL MvBits(From, FromPos, Len, TO, ToPos)

From: INTEGER; scalar; INTENT(IN).

FromPos: INTEGER; scalar; INTENT(IN).

Len: INTEGER; scalar; INTENT(IN).

TO: INTEGER with same ‘KIND=’ value as for From; scalar; INTENT(INOUT).

ToPos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, f90, vxt.

Description:

Moves Len bits from positions FromPos through ‘FromPos+Len-1’ of From to positions
ToPos through ‘FromPos+Len-1’ of TO. The portion of argument TO not affected by the
movement of bits is unchanged. Arguments From and TO are permitted to be the same
numeric storage unit. The values of ‘FromPos+Len ’ and ‘ToPos+Len ’ must be less than or
equal to ‘BIT_SIZE(From)’.

176 Using and Porting GNU Fortran

8.11.9.197 Nearest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Nearest’ to use this name for an external procedure.

8.11.9.198 NInt Intrinsic

NInt(A)

NInt: INTEGER(KIND=1) function.
A: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns A with the fractional portion of its magnitude eliminated by rounding to the
nearest whole number and with its sign preserved, converted to type INTEGER(KIND=1).

If A is type COMPLEX, its real part is rounded and converted.
A fractional portion exactly equal to ‘.5’ is rounded to the whole number that is larger

in magnitude. (Also called “Fortran round”.)
See Section 8.11.9.148 [Int Intrinsic], page 160, for how to convert, truncate to whole

number.
See Section 8.11.9.21 [ANInt Intrinsic], page 120, for how to round to nearest whole

number without converting.

8.11.9.199 Not Intrinsic

Not(I)

Not: INTEGER function, the ‘KIND=’ value of the type being that of argument I.
I : INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, f90, vxt.
Description:

Returns value resulting from boolean NOT of each bit in I.

8.11.9.200 Or Intrinsic

Or(I, J)

Or: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the
types of all the arguments.
I : INTEGER or LOGICAL; scalar; INTENT(IN).
J: INTEGER or LOGICAL; scalar; INTENT(IN).

Chapter 8: The GNU Fortran Language 177

Intrinsic groups: f2c.

Description:

Returns value resulting from boolean OR of pair of bits in each of I and J.

8.11.9.201 Pack Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Pack’ to use this name for an external procedure.

8.11.9.202 PError Intrinsic

CALL PError(String)

String : CHARACTER; scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Prints (on the C stderr stream) a newline-terminated error message corresponding to
the last system error. This is prefixed by String, a colon and a space. See perror(3).

8.11.9.203 Precision Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Precision’ to use this name for an external procedure.

8.11.9.204 Present Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Present’ to use this name for an external procedure.

8.11.9.205 Product Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Product’ to use this name for an external procedure.

8.11.9.206 Radix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Radix’ to use this name for an external procedure.

178 Using and Porting GNU Fortran

8.11.9.207 Rand Intrinsic

Rand(Flag)

Rand: REAL(KIND=1) function.
Flag : INTEGER; OPTIONAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns a uniform quasi-random number between 0 and 1. If Flag is 0, the next number
in sequence is returned; if Flag is 1, the generator is restarted by calling ‘srand(0)’; if Flag
has any other value, it is used as a new seed with srand.

See Section 8.11.9.236 [SRand Intrinsic], page 185.
Note: As typically implemented (by the routine of the same name in the C library), this

random number generator is a very poor one, though the BSD and GNU libraries provide
a much better implementation than the ‘traditional’ one. On a different system you almost
certainly want to use something better.

8.11.9.208 Random Number Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Random_Number’ to use this name for an external procedure.

8.11.9.209 Random Seed Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Random_Seed’ to use this name for an external procedure.

8.11.9.210 Range Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Range’ to use this name for an external procedure.

8.11.9.211 Real Intrinsic

Real(A)

Real: REAL function. The exact type is ‘REAL(KIND=1)’ when argument A is any type other
than COMPLEX, or when it is COMPLEX(KIND=1). When A is any COMPLEX type other than
COMPLEX(KIND=1), this intrinsic is valid only when used as the argument to REAL(), as
explained below.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Chapter 8: The GNU Fortran Language 179

Converts A to REAL(KIND=1).
Use of REAL() with a COMPLEX argument (other than COMPLEX(KIND=1)) is restricted to

the following case:
REAL(REAL(A))

This expression converts the real part of A to REAL(KIND=1).
See Section 8.11.9.212 [RealPart Intrinsic], page 179, for information on a GNU Fortran

intrinsic that extracts the real part of an arbitrary COMPLEX value.
See Section 8.11.5 [REAL() and AIMAG() of Complex], page 112, for more information.

8.11.9.212 RealPart Intrinsic

RealPart(Z)

RealPart: REAL function, the ‘KIND=’ value of the type being that of argument Z.
Z : COMPLEX; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:

The real part of Z is returned, without conversion.
Note: The way to do this in standard Fortran 90 is ‘REAL(Z)’. However, when, for

example, Z is COMPLEX(KIND=2), ‘REAL(Z)’ means something different for some compilers
that are not true Fortran 90 compilers but offer some extensions standardized by Fortran
90 (such as the DOUBLE COMPLEX type, also known as COMPLEX(KIND=2)).

The advantage of REALPART() is that, while not necessarily more or less portable than
REAL(), it is more likely to cause a compiler that doesn’t support it to produce a diagnostic
than generate incorrect code.

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 112, for more information.

8.11.9.213 Rename Intrinsic (subroutine)

CALL Rename(Path1, Path2, Status)

Path1: CHARACTER; scalar; INTENT(IN).
Path2: CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Renames the file Path1 to Path2. A null character (‘CHAR(0)’) marks the end of the
names in Path1 and Path2—otherwise, trailing blanks in Path1 and Path2 are ignored. See
rename(2). If the Status argument is supplied, it contains 0 on success or a nonzero error
code upon return.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

180 Using and Porting GNU Fortran

For information on other intrinsics with the same name: See Section 10.5.2.126 [Rename
Intrinsic (function)], page 237.

8.11.9.214 Repeat Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Repeat’ to use this name for an external procedure.

8.11.9.215 Reshape Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Reshape’ to use this name for an external procedure.

8.11.9.216 RRSpacing Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL RRSpacing’ to use this name for an external procedure.

8.11.9.217 RShift Intrinsic

RShift(I, Shift)

RShift: INTEGER function, the ‘KIND=’ value of the type being that of argument I.

I : INTEGER; scalar; INTENT(IN).

Shift: INTEGER; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns I shifted to the right Shift bits.

Although similar to the expression ‘I/(2**Shift)’, there are important differences. For
example, the sign of the result is undefined.

Currently this intrinsic is defined assuming the underlying representation of I is as a
two’s-complement integer. It is unclear at this point whether that definition will apply
when a different representation is involved.

See Section 8.11.9.217 [RShift Intrinsic], page 180, for the inverse of this function.

See Section 8.11.9.154 [IShft Intrinsic], page 162, for information on a more widely
available right-shifting intrinsic that is also more precisely defined.

8.11.9.218 Scale Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Scale’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 181

8.11.9.219 Scan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Scan’ to use this name for an external procedure.

8.11.9.220 Second Intrinsic (function)

Second()

Second: REAL(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the process’s runtime in seconds—the same value as the UNIX function etime
returns.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

For information on other intrinsics with the same name: See Section 8.11.9.221 [Second
Intrinsic (subroutine)], page 181.

8.11.9.221 Second Intrinsic (subroutine)

CALL Second(Seconds)

Seconds: REAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Returns the process’s runtime in seconds in Seconds—the same value as the UNIX func-
tion etime returns.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

This routine is known from Cray Fortran. See Section 8.11.9.49 [CPU Time Intrinsic],
page 129, for a standard equivalent.

For information on other intrinsics with the same name: See Section 8.11.9.220 [Second
Intrinsic (function)], page 181.

8.11.9.222 Selected Int Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Selected_Int_Kind’ to use this name for an external procedure.

182 Using and Porting GNU Fortran

8.11.9.223 Selected Real Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Selected_Real_Kind’ to use this name for an external procedure.

8.11.9.224 Set Exponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Set_Exponent’ to use this name for an external procedure.

8.11.9.225 Shape Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Shape’ to use this name for an external procedure.

8.11.9.226 Short Intrinsic

Short(A)

Short: INTEGER(KIND=6) function.
A: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER(KIND=6).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disregarded.

See Section 8.11.9.148 [Int Intrinsic], page 160.
The precise meaning of this intrinsic might change in a future version of the GNU Fortran

language, as more is learned about how it is used.

8.11.9.227 Sign Intrinsic

Sign(A, B)

Sign: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.
A: INTEGER or REAL; scalar; INTENT(IN).
B: INTEGER or REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘ABS(A)*s ’, where s is +1 if ‘B.GE.0’, -1 otherwise.
See Section 8.11.9.2 [Abs Intrinsic], page 115, for the function that returns the magnitude

of a value.

Chapter 8: The GNU Fortran Language 183

8.11.9.228 Signal Intrinsic (subroutine)

CALL Signal(Number, Handler, Status)

Number: INTEGER; scalar; INTENT(IN).
Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global
INTEGER(KIND=1) scalar.
Status: INTEGER(KIND=7); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

If Handler is a an EXTERNAL routine, arranges for it to be invoked with a single integer
argument (of system-dependent length) when signal Number occurs. If Handler is an in-
teger, it can be used to turn off handling of signal Number or revert to its default action.
See signal(2).

Note that Handler will be called using C conventions, so the value of its argument in
Fortran terms Fortran terms is obtained by applying %LOC() (or LOC()) to it.

The value returned by signal(2) is written to Status, if that argument is supplied.
Otherwise the return value is ignored.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

Warning: Use of the libf2c run-time library function ‘signal_’ directly (such as via
‘EXTERNAL SIGNAL’) requires use of the %VAL() construct to pass an INTEGER value (such as
‘SIG_IGN’ or ‘SIG_DFL’) for the Handler argument.

However, while ‘CALL SIGNAL(signum, %VAL(SIG_IGN))’ works when ‘SIGNAL’ is treated
as an external procedure (and resolves, at link time, to libf2c’s ‘signal_’ routine), this
construct is not valid when ‘SIGNAL’ is recognized as the intrinsic of that name.

Therefore, for maximum portability and reliability, code such references to the ‘SIGNAL’
facility as follows:

INTRINSIC SIGNAL

...

CALL SIGNAL(signum, SIG_IGN)

g77 will compile such a call correctly, while other compilers will generally either do so
as well or reject the ‘INTRINSIC SIGNAL’ statement via a diagnostic, allowing you to take
appropriate action.

For information on other intrinsics with the same name: See Section 10.5.2.128 [Signal
Intrinsic (function)], page 238.

8.11.9.229 Sin Intrinsic

Sin(X)

Sin: REAL or COMPLEX function, the exact type being that of argument X.
X : REAL or COMPLEX; scalar; INTENT(IN).

184 Using and Porting GNU Fortran

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the sine of X, an angle measured in radians.

See Section 8.11.9.23 [ASin Intrinsic], page 121, for the inverse of this function.

8.11.9.230 SinH Intrinsic

SinH(X)

SinH: REAL function, the ‘KIND=’ value of the type being that of argument X.

X : REAL; scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Returns the hyperbolic sine of X.

8.11.9.231 Sleep Intrinsic

CALL Sleep(Seconds)

Seconds: INTEGER(KIND=1); scalar; INTENT(IN).

Intrinsic groups: unix.

Description:

Causes the process to pause for Seconds seconds. See sleep(2).

8.11.9.232 Sngl Intrinsic

Sngl(A)

Sngl: REAL(KIND=1) function.

A: REAL(KIND=2); scalar; INTENT(IN).

Intrinsic groups: (standard FORTRAN 77).

Description:

Archaic form of REAL() that is specific to one type for A. See Section 8.11.9.211 [Real
Intrinsic], page 178.

8.11.9.233 Spacing Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Spacing’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 185

8.11.9.234 Spread Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Spread’ to use this name for an external procedure.

8.11.9.235 SqRt Intrinsic

SqRt(X)

SqRt: REAL or COMPLEX function, the exact type being that of argument X.
X : REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the square root of X, which must not be negative.
To calculate and represent the square root of a negative number, complex arithmetic

must be used. For example, ‘SQRT(COMPLEX(X))’.
The inverse of this function is ‘SQRT(X) * SQRT(X)’.

8.11.9.236 SRand Intrinsic

CALL SRand(Seed)

Seed: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Reinitializes the generator with the seed in Seed. See Section 8.11.9.152 [IRand Intrinsic],
page 161. See Section 8.11.9.207 [Rand Intrinsic], page 178.

8.11.9.237 Stat Intrinsic (subroutine)

CALL Stat(File, SArray, Status)

File: CHARACTER; scalar; INTENT(IN).
SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:

186 Using and Porting GNU Fortran

1. Device ID
2. Inode number
3. File mode
4. Number of links
5. Owner’s uid
6. Owner’s gid
7. ID of device containing directory entry for file (0 if not available)
8. File size (bytes)
9. Last access time

10. Last modification time
11. Last file status change time
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

If the Status argument is supplied, it contains 0 on success or a nonzero error code upon
return.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.238 [Stat
Intrinsic (function)], page 186.

8.11.9.238 Stat Intrinsic (function)

Stat(File, SArray)

Stat: INTEGER(KIND=1) function.
File: CHARACTER; scalar; INTENT(IN).
SArray : INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:
1. Device ID
2. Inode number
3. File mode
4. Number of links
5. Owner’s uid

Chapter 8: The GNU Fortran Language 187

6. Owner’s gid
7. ID of device containing directory entry for file (0 if not available)
8. File size (bytes)
9. Last access time

10. Last modification time
11. Last file status change time
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

Returns 0 on success or a nonzero error code.

For information on other intrinsics with the same name: See Section 8.11.9.237 [Stat
Intrinsic (subroutine)], page 185.

8.11.9.239 Sum Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Sum’ to use this name for an external procedure.

8.11.9.240 SymLnk Intrinsic (subroutine)

CALL SymLnk(Path1, Path2, Status)

Path1: CHARACTER; scalar; INTENT(IN).

Path2: CHARACTER; scalar; INTENT(IN).

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Makes a symbolic link from file Path1 to Path2. A null character (‘CHAR(0)’) marks the
end of the names in Path1 and Path2—otherwise, trailing blanks in Path1 and Path2 are
ignored. If the Status argument is supplied, it contains 0 on success or a nonzero error code
upon return (ENOSYS if the system does not provide symlink(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.131 [SymLnk
Intrinsic (function)], page 239.

8.11.9.241 System Intrinsic (subroutine)

188 Using and Porting GNU Fortran

CALL System(Command, Status)

Command: CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Passes the command Command to a shell (see system(3)). If argument Status is present,
it contains the value returned by system(3), presumably 0 if the shell command succeeded.
Note that which shell is used to invoke the command is system-dependent and environment-
dependent.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.132 [System
Intrinsic (function)], page 240.

8.11.9.242 System Clock Intrinsic

CALL System_Clock(Count, Rate, Max)

Count: INTEGER(KIND=1); scalar; INTENT(OUT).
Rate: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Max: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: f90.
Description:

Returns in Count the current value of the system clock; this is the value returned by the
UNIX function times(2) in this implementation, but isn’t in general. Rate is the number
of clock ticks per second and Max is the maximum value this can take, which isn’t very
useful in this implementation since it’s just the maximum C unsigned int value.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

8.11.9.243 Tan Intrinsic

Tan(X)

Tan: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the tangent of X, an angle measured in radians.
See Section 8.11.9.25 [ATan Intrinsic], page 121, for the inverse of this function.

Chapter 8: The GNU Fortran Language 189

8.11.9.244 TanH Intrinsic

TanH(X)

TanH: REAL function, the ‘KIND=’ value of the type being that of argument X.
X : REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the hyperbolic tangent of X.

8.11.9.245 Time Intrinsic (UNIX)

Time()

Time: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the current time encoded as an integer (in the manner of the UNIX function
time(3)). This value is suitable for passing to CTIME, GMTIME, and LTIME.

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but
supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might
be, or become, negative, or numerically less than previous values, during a single run of the
compiled program.

See Section 8.11.9.246 [Time8 Intrinsic], page 189, for information on a similar intrinsic
that might be portable to more GNU Fortran implementations, though to fewer Fortran
compilers.

For information on other intrinsics with the same name: See Section 10.5.2.134 [Time
Intrinsic (VXT)], page 240.

8.11.9.246 Time8 Intrinsic

Time8()

Time8: INTEGER(KIND=2) function.
Intrinsic groups: unix.
Description:

Returns the current time encoded as a long integer (in the manner of the UNIX function
time(3)). This value is suitable for passing to CTIME, GMTIME, and LTIME.

Warning: this intrinsic does not increase the range of the timing values over that re-
turned by time(3). On a system with a 32-bit time(3), TIME8 will return a 32-bit value,
even though converted to an ‘INTEGER(KIND=2)’ value. That means overflows of the 32-bit
value can still occur. Therefore, the values returned by this intrinsic might be, or become,

190 Using and Porting GNU Fortran

negative, or numerically less than previous values, during a single run of the compiled
program.

No Fortran implementations other than GNU Fortran are known to support this intrinsic
at the time of this writing. See Section 8.11.9.245 [Time Intrinsic (UNIX)], page 189, for
information on a similar intrinsic that might be portable to more Fortran compilers, though
to fewer GNU Fortran implementations.

8.11.9.247 Tiny Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Tiny’ to use this name for an external procedure.

8.11.9.248 Transfer Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Transfer’ to use this name for an external procedure.

8.11.9.249 Transpose Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Transpose’ to use this name for an external procedure.

8.11.9.250 Trim Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Trim’ to use this name for an external procedure.

8.11.9.251 TtyNam Intrinsic (subroutine)

CALL TtyNam(Unit, Name)

Unit: INTEGER; scalar; INTENT(IN).

Name: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: unix.

Description:

Sets Name to the name of the terminal device open on logical unit Unit or to a blank
string if Unit is not connected to a terminal.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 8.11.9.252 [TtyNam
Intrinsic (function)], page 191.

Chapter 8: The GNU Fortran Language 191

8.11.9.252 TtyNam Intrinsic (function)

TtyNam(Unit)

TtyNam: CHARACTER*(*) function.
Unit: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns the name of the terminal device open on logical unit Unit or a blank string if
Unit is not connected to a terminal.

For information on other intrinsics with the same name: See Section 8.11.9.251 [TtyNam
Intrinsic (subroutine)], page 190.

8.11.9.253 UBound Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL UBound’ to use this name for an external procedure.

8.11.9.254 UMask Intrinsic (subroutine)

CALL UMask(Mask, Old)

Mask: INTEGER; scalar; INTENT(IN).
Old: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets the file creation mask to Mask and returns the old value in argument Old if it is
supplied. See umask(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 10.5.2.135 [UMask
Intrinsic (function)], page 241.

8.11.9.255 Unlink Intrinsic (subroutine)

CALL Unlink(File, Status)

File: CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

192 Using and Porting GNU Fortran

Unlink the file File. A null character (‘CHAR(0)’) marks the end of the name in File—
otherwise, trailing blanks in File are ignored. If the Status argument is supplied, it contains
0 on success or a nonzero error code upon return. See unlink(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.136 [Unlink
Intrinsic (function)], page 241.

8.11.9.256 Unpack Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Unpack’ to use this name for an external procedure.

8.11.9.257 Verify Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL Verify’ to use this name for an external procedure.

8.11.9.258 XOr Intrinsic

XOr(I, J)

XOr: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the
types of all the arguments.

I : INTEGER or LOGICAL; scalar; INTENT(IN).

J: INTEGER or LOGICAL; scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Returns value resulting from boolean exclusive-OR of pair of bits in each of I and J.

8.11.9.259 ZAbs Intrinsic

ZAbs(A)

ZAbs: REAL(KIND=2) function.

A: COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c.

Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 115.

Chapter 8: The GNU Fortran Language 193

8.11.9.260 ZCos Intrinsic

ZCos(X)

ZCos: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic], page 128.

8.11.9.261 ZExp Intrinsic

ZExp(X)

ZExp: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic], page 143.

8.11.9.262 ZLog Intrinsic

ZLog(X)

ZLog: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic], page 167.

8.11.9.263 ZSin Intrinsic

ZSin(X)

ZSin: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic], page 183.

194 Using and Porting GNU Fortran

8.11.9.264 ZSqRt Intrinsic

ZSqRt(X)

ZSqRt: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic], page 185.

8.12 Scope and Classes of Symbolic Names

(The following information augments or overrides the information in Chapter 18 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 18 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.12.1 Underscores in Symbol Names

Underscores (‘_’) are accepted in symbol names after the first character (which must be a
letter).

8.13 I/O

A dollar sign at the end of an output format specification suppresses the newline at the end
of the output.

Edit descriptors in FORMAT statements may contain compile-time INTEGER constant ex-
pressions in angle brackets, such as

10 FORMAT (I<WIDTH>)

The OPEN specifier NAME= is equivalent to FILE=.
These Fortran 90 features are supported:
• The O and Z edit descriptors are supported for I/O of integers in octal and hexadecimal

formats, respectively.
• The FILE= specifier may be omitted in an OPEN statement if STATUS=’SCRATCH’ is

supplied. The STATUS=’REPLACE’ specifier is supported.

8.14 Fortran 90 Features

For convenience this section collects a list (probably incomplete) of the Fortran 90 fea-
tures supported by the GNU Fortran language, even if they are documented elsewhere. See
Section 8.6 [Characters, Lines, and Execution Sequence], page 93, for information on addi-
tional fixed source form lexical issues. Further, the free source form is supported through

Chapter 8: The GNU Fortran Language 195

the ‘-ffree-form’ option. Other Fortran 90 features can be turned on by the ‘-ff90’ op-
tion; see Section 9.7 [Fortran 90], page 204. For information on the Fortran 90 intrinsics
available, see Section 8.11.9 [Table of Intrinsic Functions], page 114.

Automatic arrays in procedures
Character assignments

In character assignments, the variable being assigned may occur on the right
hand side of the assignment.

Character strings
Strings may have zero length and substrings of character constants are permit-
ted. Character constants may be enclosed in double quotes (") as well as single
quotes. See Section 8.7.4 [Character Type], page 104.

Construct names
(Symbolic tags on blocks.) See Section 8.10.3 [Construct Names], page 106.

CYCLE and EXIT
See Section 8.10.4 [The CYCLE and EXIT Statements], page 106.

DOUBLE COMPLEX
See Section 8.9.2 [DOUBLE COMPLEX Statement], page 105.

DO WHILE See Section 8.10.1 [DO WHILE], page 106.

END decoration
See Section 8.6.4 [Statements], page 95.

END DO See Section 8.10.2 [END DO], page 106.

KIND

IMPLICIT NONE
INCLUDE statements

See Section 8.6.7 [INCLUDE], page 96.

List-directed and namelist I/O on internal files
Binary, octal and hexadecimal constants

These are supported more generally than required by Fortran 90. See Sec-
tion 8.7.3 [Integer Type], page 103.

‘O’ and ‘Z’ edit descriptors
NAMELIST See Section 8.9.1 [NAMELIST], page 105.

OPEN specifiers
STATUS=’REPLACE’ is supported. The FILE= specifier may be omitted in an
OPEN statement if STATUS=’SCRATCH’ is supplied.

FORMAT edit descriptors
The Z edit descriptor is supported.

Relational operators
The operators <, <=, ==, /=, > and >= may be used instead of .LT., .LE., .EQ.,
.NE., .GT. and .GE. respectively.

196 Using and Porting GNU Fortran

SELECT CASE
Not fully implemented. See Section 15.3.5 [SELECT CASE on CHARACTER Type],
page 291.

Specification statements
A limited subset of the Fortran 90 syntax and semantics for variable declarations
is supported, including KIND. See Section 8.7.1.3 [Kind Notation], page 100.
(KIND is of limited usefulness in the absence of the KIND-related intrinsics, since
these intrinsics permit writing more widely portable code.) An example of
supported KIND usage is:

INTEGER (KIND=1) :: FOO=1, BAR=2

CHARACTER (LEN=3) FOO

PARAMETER and DIMENSION attributes aren’t supported.

Chapter 9: Other Dialects 197

9 Other Dialects

GNU Fortran supports a variety of features that are not considered part of the GNU Fortran
language itself, but are representative of various dialects of Fortran that g77 supports in
whole or in part.

Any of the features listed below might be disallowed by g77 unless some command-line
option is specified. Currently, some of the features are accepted using the default invocation
of g77, but that might change in the future.

Note: This portion of the documentation definitely needs a lot of work!

9.1 Source Form

GNU Fortran accepts programs written in either fixed form or free form.

Fixed form corresponds to ANSI FORTRAN 77 (plus popular extensions, such as allow-
ing tabs) and Fortran 90’s fixed form.

Free form corresponds to Fortran 90’s free form (though possibly not entirely up-to-date,
and without complaining about some things that for which Fortran 90 requires diagnostics,
such as the spaces in the constant in ‘R = 3 . 1’).

The way a Fortran compiler views source files depends entirely on the implementation
choices made for the compiler, since those choices are explicitly left to the implementation
by the published Fortran standards. GNU Fortran currently tries to be somewhat like a
few popular compilers (f2c, Digital (“DEC”) Fortran, and so on).

This section describes how g77 interprets source lines.

9.1.1 Carriage Returns

Carriage returns (‘\r’) in source lines are ignored. This is somewhat different from f2c,
which seems to treat them as spaces outside character/Hollerith constants, and encodes
them as ‘\r’ inside such constants.

9.1.2 Tabs

A source line with a 〈TAB〉 character anywhere in it is treated as entirely significant—
however long it is—instead of ending in column 72 (for fixed-form source) or 132 (for
free-form source). This also is different from f2c, which encodes tabs as ‘\t’ (the ASCII
〈TAB〉 character) inside character and Hollerith constants, but nevertheless seems to treat
the column position as if it had been affected by the canonical tab positioning.

g77 effectively translates tabs to the appropriate number of spaces (a la the default
for the UNIX expand command) before doing any other processing, other than (currently)
noting whether a tab was found on a line and using this information to decide how to
interpret the length of the line and continued constants.

198 Using and Porting GNU Fortran

9.1.3 Short Lines

Source lines shorter than the applicable fixed-form length are treated as if they were padded
with spaces to that length. (None of this is relevant to source files written in free form.)

This affects only continued character and Hollerith constants, and is a different interpre-
tation than provided by some other popular compilers (although a bit more consistent with
the traditional punched-card basis of Fortran and the way the Fortran standard expressed
fixed source form).

g77 might someday offer an option to warn about cases where differences might be seen
as a result of this treatment, and perhaps an option to specify the alternate behavior as
well.

Note that this padding cannot apply to lines that are effectively of infinite length—
such lines are specified using command-line options like ‘-ffixed-line-length-none’, for
example.

9.1.4 Long Lines

Source lines longer than the applicable length are truncated to that length. Currently, g77
does not warn if the truncated characters are not spaces, to accommodate existing code
written for systems that treated truncated text as commentary (especially in columns 73
through 80).

See Section 5.4 [Options Controlling Fortran Dialect], page 35, for information on the
‘-ffixed-line-length-n ’ option, which can be used to set the line length applicable to
fixed-form source files.

9.1.5 Ampersand Continuation Line

A ‘&’ in column 1 of fixed-form source denotes an arbitrary-length continuation line, imi-
tating the behavior of f2c.

9.2 Trailing Comment

g77 supports use of ‘/*’ to start a trailing comment. In the GNU Fortran language, ‘!’ is
used for this purpose.

‘/*’ is not in the GNU Fortran language because the use of ‘/*’ in a program might
suggest to some readers that a block, not trailing, comment is started (and thus ended by
‘*/’, not end of line), since that is the meaning of ‘/*’ in C.

Also, such readers might think they can use ‘//’ to start a trailing comment as an
alternative to ‘/*’, but ‘//’ already denotes concatenation, and such a “comment” might
actually result in a program that compiles without error (though it would likely behave
incorrectly).

Chapter 9: Other Dialects 199

9.3 Debug Line

Use of ‘D’ or ‘d’ as the first character (column 1) of a source line denotes a debug line.
In turn, a debug line is treated as either a comment line or a normal line, depending on

whether debug lines are enabled.
When treated as a comment line, a line beginning with ‘D’ or ‘d’ is treated as if it the

first character was ‘C’ or ‘c’, respectively. When treated as a normal line, such a line is
treated as if the first character was 〈SPC〉 (space).

(Currently, g77 provides no means for treating debug lines as normal lines.)

9.4 Dollar Signs in Symbol Names

Dollar signs (‘$’) are allowed in symbol names (after the first character) when the
‘-fdollar-ok’ option is specified.

9.5 Case Sensitivity

GNU Fortran offers the programmer way too much flexibility in deciding how source files
are to be treated vis-a-vis uppercase and lowercase characters. There are 66 useful settings
that affect case sensitivity, plus 10 settings that are nearly useless, with the remaining 116
settings being either redundant or useless.

None of these settings have any effect on the contents of comments (the text after a ‘c’
or ‘C’ in Column 1, for example) or of character or Hollerith constants. Note that things
like the ‘E’ in the statement ‘CALL FOO(3.2E10)’ and the ‘TO’ in ‘ASSIGN 10 TO LAB’ are
considered built-in keywords, and so are affected by these settings.

Low-level switches are identified in this section as follows:
A Source Case Conversion:

0 Preserve (see Note 1)
1 Convert to Upper Case
2 Convert to Lower Case

B Built-in Keyword Matching:
0 Match Any Case (per-character basis)
1 Match Upper Case Only
2 Match Lower Case Only
3 Match InitialCaps Only (see tables for spellings)

C Built-in Intrinsic Matching:
0 Match Any Case (per-character basis)
1 Match Upper Case Only
2 Match Lower Case Only
3 Match InitialCaps Only (see tables for spellings)

D User-defined Symbol Possibilities (warnings only):

200 Using and Porting GNU Fortran

0 Allow Any Case (per-character basis)

1 Allow Upper Case Only

2 Allow Lower Case Only

3 Allow InitialCaps Only (see Note 2)

Note 1: g77 eventually will support NAMELIST in a manner that is consistent with these
source switches—in the sense that input will be expected to meet the same requirements as
source code in terms of matching symbol names and keywords (for the exponent letters).

Currently, however, NAMELIST is supported by libg2c, which uppercases NAMELIST input
and symbol names for matching. This means not only that NAMELIST output currently shows
symbol (and keyword) names in uppercase even if lower-case source conversion (option A2) is
selected, but that NAMELIST cannot be adequately supported when source case preservation
(option A0) is selected.

If A0 is selected, a warning message will be output for each NAMELIST statement to this
effect. The behavior of the program is undefined at run time if two or more symbol names
appear in a given NAMELIST such that the names are identical when converted to upper
case (e.g. ‘NAMELIST /X/ VAR, Var, var’). For complete and total elegance, perhaps there
should be a warning when option A2 is selected, since the output of NAMELIST is currently
in uppercase but will someday be lowercase (when a libg77 is written), but that seems to
be overkill for a product in beta test.

Note 2: Rules for InitialCaps names are:

− Must be a single uppercase letter, or

− Must start with an uppercase letter and contain at least one lowercase letter.

So ‘A’, ‘Ab’, ‘ABc’, ‘AbC’, and ‘Abc’ are valid InitialCaps names, but ‘AB’, ‘A2’, and ‘ABC’ are
not. Note that most, but not all, built-in names meet these requirements—the exceptions
are some of the two-letter format specifiers, such as BN and BZ.

Here are the names of the corresponding command-line options:
A0: -fsource-case-preserve

A1: -fsource-case-upper

A2: -fsource-case-lower

B0: -fmatch-case-any

B1: -fmatch-case-upper

B2: -fmatch-case-lower

B3: -fmatch-case-initcap

C0: -fintrin-case-any

C1: -fintrin-case-upper

C2: -fintrin-case-lower

C3: -fintrin-case-initcap

D0: -fsymbol-case-any

D1: -fsymbol-case-upper

D2: -fsymbol-case-lower

D3: -fsymbol-case-initcap

Useful combinations of the above settings, along with abbreviated option names that set
some of these combinations all at once:

Chapter 9: Other Dialects 201

1: A0-- B0--- C0--- D0--- -fcase-preserve

2: A0-- B0--- C0--- D-1--

3: A0-- B0--- C0--- D--2-

4: A0-- B0--- C0--- D---3

5: A0-- B0--- C-1-- D0---

6: A0-- B0--- C-1-- D-1--

7: A0-- B0--- C-1-- D--2-

8: A0-- B0--- C-1-- D---3

9: A0-- B0--- C--2- D0---

10: A0-- B0--- C--2- D-1--

11: A0-- B0--- C--2- D--2-

12: A0-- B0--- C--2- D---3

13: A0-- B0--- C---3 D0---

14: A0-- B0--- C---3 D-1--

15: A0-- B0--- C---3 D--2-

16: A0-- B0--- C---3 D---3

17: A0-- B-1-- C0--- D0---

18: A0-- B-1-- C0--- D-1--

19: A0-- B-1-- C0--- D--2-

20: A0-- B-1-- C0--- D---3

21: A0-- B-1-- C-1-- D0---

22: A0-- B-1-- C-1-- D-1-- -fcase-strict-upper

23: A0-- B-1-- C-1-- D--2-

24: A0-- B-1-- C-1-- D---3

25: A0-- B-1-- C--2- D0---

26: A0-- B-1-- C--2- D-1--

27: A0-- B-1-- C--2- D--2-

28: A0-- B-1-- C--2- D---3

29: A0-- B-1-- C---3 D0---

30: A0-- B-1-- C---3 D-1--

31: A0-- B-1-- C---3 D--2-

32: A0-- B-1-- C---3 D---3

33: A0-- B--2- C0--- D0---

34: A0-- B--2- C0--- D-1--

35: A0-- B--2- C0--- D--2-

36: A0-- B--2- C0--- D---3

37: A0-- B--2- C-1-- D0---

38: A0-- B--2- C-1-- D-1--

39: A0-- B--2- C-1-- D--2-

40: A0-- B--2- C-1-- D---3

41: A0-- B--2- C--2- D0---

42: A0-- B--2- C--2- D-1--

43: A0-- B--2- C--2- D--2- -fcase-strict-lower

44: A0-- B--2- C--2- D---3

45: A0-- B--2- C---3 D0---

46: A0-- B--2- C---3 D-1--

47: A0-- B--2- C---3 D--2-

48: A0-- B--2- C---3 D---3

49: A0-- B---3 C0--- D0---

50: A0-- B---3 C0--- D-1--

51: A0-- B---3 C0--- D--2-

52: A0-- B---3 C0--- D---3

53: A0-- B---3 C-1-- D0---

54: A0-- B---3 C-1-- D-1--

55: A0-- B---3 C-1-- D--2-

56: A0-- B---3 C-1-- D---3

57: A0-- B---3 C--2- D0---

58: A0-- B---3 C--2- D-1--

202 Using and Porting GNU Fortran

59: A0-- B---3 C--2- D--2-

60: A0-- B---3 C--2- D---3

61: A0-- B---3 C---3 D0---

62: A0-- B---3 C---3 D-1--

63: A0-- B---3 C---3 D--2-

64: A0-- B---3 C---3 D---3 -fcase-initcap

65: A-1- B01-- C01-- D01-- -fcase-upper

66: A--2 B0-2- C0-2- D0-2- -fcase-lower

Number 22 is the “strict” ANSI FORTRAN 77 model wherein all input (except com-
ments, character constants, and Hollerith strings) must be entered in uppercase. Use
‘-fcase-strict-upper’ to specify this combination.

Number 43 is like Number 22 except all input must be lowercase. Use
‘-fcase-strict-lower’ to specify this combination.

Number 65 is the “classic” ANSI FORTRAN 77 model as implemented on many non-
UNIX machines whereby all the source is translated to uppercase. Use ‘-fcase-upper’ to
specify this combination.

Number 66 is the “canonical” UNIX model whereby all the source is translated to low-
ercase. Use ‘-fcase-lower’ to specify this combination.

There are a few nearly useless combinations:
67: A-1- B01-- C01-- D--2-

68: A-1- B01-- C01-- D---3

69: A-1- B01-- C--23 D01--

70: A-1- B01-- C--23 D--2-

71: A-1- B01-- C--23 D---3

72: A--2 B01-- C0-2- D-1--

73: A--2 B01-- C0-2- D---3

74: A--2 B01-- C-1-3 D0-2-

75: A--2 B01-- C-1-3 D-1--

76: A--2 B01-- C-1-3 D---3

The above allow some programs to be compiled but with restrictions that make most
useful programs impossible: Numbers 67 and 72 warn about any user-defined symbol names
(such as ‘SUBROUTINE FOO’); Numbers 68 and 73 warn about any user-defined symbol names
longer than one character that don’t have at least one non-alphabetic character after the
first; Numbers 69 and 74 disallow any references to intrinsics; and Numbers 70, 71, 75, and
76 are combinations of the restrictions in 67+69, 68+69, 72+74, and 73+74, respectively.

All redundant combinations are shown in the above tables anyplace where more than
one setting is shown for a low-level switch. For example, ‘B0-2-’ means either setting 0 or
2 is valid for switch B. The “proper” setting in such a case is the one that copies the setting
of switch A—any other setting might slightly reduce the speed of the compiler, though
possibly to an unmeasurable extent.

All remaining combinations are useless in that they prevent successful compilation of
non-null source files (source files with something other than comments).

9.6 VXT Fortran

g77 supports certain constructs that have different meanings in VXT Fortran than they do
in the GNU Fortran language.

Chapter 9: Other Dialects 203

Generally, this manual uses the invented term VXT Fortran to refer VAX FORTRAN
(circa v4). That compiler offered many popular features, though not necessarily those
that are specific to the VAX processor architecture, the VMS operating system, or Digital
Equipment Corporation’s Fortran product line. (VAX and VMS probably are trademarks
of Digital Equipment Corporation.)

An extension offered by a Digital Fortran product that also is offered by several other
Fortran products for different kinds of systems is probably going to be considered for inclu-
sion in g77 someday, and is considered a VXT Fortran feature.

The ‘-fvxt’ option generally specifies that, where the meaning of a construct is ambigu-
ous (means one thing in GNU Fortran and another in VXT Fortran), the VXT Fortran
meaning is to be assumed.

9.6.1 Meaning of Double Quote

g77 treats double-quote (‘"’) as beginning an octal constant of INTEGER(KIND=1) type when
the ‘-fvxt’ option is specified. The form of this octal constant is

"octal-digits

where octal-digits is a nonempty string of characters in the set ‘01234567’.
For example, the ‘-fvxt’ option permits this:

PRINT *, "20
END

The above program would print the value ‘16’.
See Section 8.7.3 [Integer Type], page 103, for information on the preferred construct for

integer constants specified using GNU Fortran’s octal notation.
(In the GNU Fortran language, the double-quote character (‘"’) delimits a character

constant just as does apostrophe (‘’’). There is no way to allow both constructs in the
general case, since statements like ‘PRINT *,"2000 !comment?"’ would be ambiguous.)

9.6.2 Meaning of Exclamation Point in Column 6

g77 treats an exclamation point (‘!’) in column 6 of a fixed-form source file as a continuation
character rather than as the beginning of a comment (as it does in any other column) when
the ‘-fvxt’ option is specified.

The following program, when run, prints a message indicating whether it is interpreted
according to GNU Fortran (and Fortran 90) rules or VXT Fortran rules:

C234567 (This line begins in column 1.)

I = 0

!1

IF (I.EQ.0) PRINT *, ’ I am a VXT Fortran program’

IF (I.EQ.1) PRINT *, ’ I am a Fortran 90 program’

IF (I.LT.0 .OR. I.GT.1) PRINT *, ’ I am a HAL 9000 computer’

END

(In the GNU Fortran and Fortran 90 languages, exclamation point is a valid character
and, unlike space (〈SPC〉) or zero (‘0’), marks a line as a continuation line when it appears
in column 6.)

204 Using and Porting GNU Fortran

9.7 Fortran 90

The GNU Fortran language includes a number of features that are part of Fortran 90, even
when the ‘-ff90’ option is not specified. The features enabled by ‘-ff90’ are intended to
be those that, when ‘-ff90’ is not specified, would have another meaning to g77—usually
meaning something invalid in the GNU Fortran language.

So, the purpose of ‘-ff90’ is not to specify whether g77 is to gratuitously reject Fortran
90 constructs. The ‘-pedantic’ option specified with ‘-fno-f90’ is intended to do that,
although its implementation is certainly incomplete at this point.

When ‘-ff90’ is specified:
• The type of ‘REAL(expr)’ and ‘AIMAG(expr)’, where expr is COMPLEX type, is the same

type as the real part of expr.
For example, assuming ‘Z’ is type COMPLEX(KIND=2), ‘REAL(Z)’ would return a value
of type REAL(KIND=2), not of type REAL(KIND=1), since ‘-ff90’ is specified.

9.8 Pedantic Compilation

The ‘-fpedantic’ command-line option specifies that g77 is to warn about code that is
not standard-conforming. This is useful for finding some extensions g77 accepts that other
compilers might not accept. (Note that the ‘-pedantic’ and ‘-pedantic-errors’ options
always imply ‘-fpedantic’.)

With ‘-fno-f90’ in force, ANSI FORTRAN 77 is used as the standard for conforming
code. With ‘-ff90’ in force, Fortran 90 is used.

The constructs for which g77 issues diagnostics when ‘-fpedantic’ and ‘-fno-f90’ are
in force are:
• Automatic arrays, as in

SUBROUTINE X(N)
REAL A(N)
...

where ‘A’ is not listed in any ENTRY statement, and thus is not a dummy argument.
• The commas in ‘READ (5), I’ and ‘WRITE (10), J’.

These commas are disallowed by FORTRAN 77, but, while strictly superfluous, are
syntactically elegant, especially given that commas are required in statements such as
‘READ 99, I’ and ‘PRINT *, J’. Many compilers permit the superfluous commas for this
reason.

• DOUBLE COMPLEX, either explicitly or implicitly.
An explicit use of this type is via a DOUBLE COMPLEX or IMPLICIT DOUBLE COMPLEX
statement, for examples.
An example of an implicit use is the expression ‘C*D’, where ‘C’ is COMPLEX(KIND=1) and
‘D’ is DOUBLE PRECISION. This expression is prohibited by ANSI FORTRAN 77 because
the rules of promotion would suggest that it produce a DOUBLE COMPLEX result—a type
not provided for by that standard.

• Automatic conversion of numeric expressions to INTEGER(KIND=1) in contexts such as:

Chapter 9: Other Dialects 205

− Array-reference indexes.
− Alternate-return values.
− Computed GOTO.
− FORMAT run-time expressions (not yet supported).
− Dimension lists in specification statements.
− Numbers for I/O statements (such as ‘READ (UNIT=3.2), I’)
− Sizes of CHARACTER entities in specification statements.
− Kind types in specification entities (a Fortran 90 feature).
− Initial, terminal, and incrementation parameters for implied-DO constructs in DATA

statements.
• Automatic conversion of LOGICAL expressions to INTEGER in contexts such as arithmetic

IF (where COMPLEX expressions are disallowed anyway).
• Zero-size array dimensions, as in:

INTEGER I(10,20,4:2)

• Zero-length CHARACTER entities, as in:
PRINT *, ’’

• Substring operators applied to character constants and named constants, as in:
PRINT *, ’hello’(3:5)

• Null arguments passed to statement function, as in:
PRINT *, FOO(,3)

• Disagreement among program units regarding whether a given COMMON area is SAVEd
(for targets where program units in a single source file are “glued” together as they
typically are for UNIX development environments).

• Disagreement among program units regarding the size of a named COMMON block.
• Specification statements following first DATA statement.

(In the GNU Fortran language, ‘DATA I/1/’ may be followed by ‘INTEGER J’, but not
‘INTEGER I’. The ‘-fpedantic’ option disallows both of these.)

• Semicolon as statement separator, as in:
CALL FOO; CALL BAR

• Use of ‘&’ in column 1 of fixed-form source (to indicate continuation).
• Use of CHARACTER constants to initialize numeric entities, and vice versa.
• Expressions having two arithmetic operators in a row, such as ‘X*-Y’.

If ‘-fpedantic’ is specified along with ‘-ff90’, the following constructs result in diag-
nostics:
• Use of semicolon as a statement separator on a line that has an INCLUDE directive.

9.9 Distensions

The ‘-fugly-*’ command-line options determine whether certain features supported by
VAX FORTRAN and other such compilers, but considered too ugly to be in code that

206 Using and Porting GNU Fortran

can be changed to use safer and/or more portable constructs, are accepted. These are
humorously referred to as “distensions”, extensions that just plain look ugly in the harsh
light of day.

9.9.1 Implicit Argument Conversion

The ‘-fno-ugly-args’ option disables passing typeless and Hollerith constants as actual
arguments in procedure invocations. For example:

CALL FOO(4HABCD)
CALL BAR(’123’O)

These constructs can be too easily used to create non-portable code, but are not considered
as “ugly” as others. Further, they are widely used in existing Fortran source code in ways
that often are quite portable. Therefore, they are enabled by default.

9.9.2 Ugly Assumed-Size Arrays

The ‘-fugly-assumed’ option enables the treatment of any array with a final dimension
specified as ‘1’ as an assumed-size array, as if ‘*’ had been specified instead.

For example, ‘DIMENSION X(1)’ is treated as if it had read ‘DIMENSION X(*)’ if ‘X’ is
listed as a dummy argument in a preceding SUBROUTINE, FUNCTION, or ENTRY statement in
the same program unit.

Use an explicit lower bound to avoid this interpretation. For example, ‘DIMENSION
X(1:1)’ is never treated as if it had read ‘DIMENSION X(*)’ or ‘DIMENSION X(1:*)’. Nor
is ‘DIMENSION X(2-1)’ affected by this option, since that kind of expression is unlikely to
have been intended to designate an assumed-size array.

This option is used to prevent warnings being issued about apparent out-of-bounds
reference such as ‘X(2) = 99’.

It also prevents the array from being used in contexts that disallow assumed-size arrays,
such as ‘PRINT *,X’. In such cases, a diagnostic is generated and the source file is not
compiled.

The construct affected by this option is used only in old code that pre-exists the
widespread acceptance of adjustable and assumed-size arrays in the Fortran community.

Note: This option does not affect how ‘DIMENSION X(1)’ is treated if ‘X’ is listed as a
dummy argument only after the DIMENSION statement (presumably in an ENTRY statement).
For example, ‘-fugly-assumed’ has no effect on the following program unit:

SUBROUTINE X
REAL A(1)
RETURN
ENTRY Y(A)
PRINT *, A
END

Chapter 9: Other Dialects 207

9.9.3 Ugly Complex Part Extraction

The ‘-fugly-complex’ option enables use of the REAL() and AIMAG() intrinsics with argu-
ments that are COMPLEX types other than COMPLEX(KIND=1).

With ‘-ff90’ in effect, these intrinsics return the unconverted real and imaginary parts
(respectively) of their argument.

With ‘-fno-f90’ in effect, these intrinsics convert the real and imaginary parts to
REAL(KIND=1), and return the result of that conversion.

Due to this ambiguity, the GNU Fortran language defines these constructs as invalid,
except in the specific case where they are entirely and solely passed as an argument to an
invocation of the REAL() intrinsic. For example,

REAL(REAL(Z))

is permitted even when ‘Z’ is COMPLEX(KIND=2) and ‘-fno-ugly-complex’ is in effect, be-
cause the meaning is clear.

g77 enforces this restriction, unless ‘-fugly-complex’ is specified, in which case the
appropriate interpretation is chosen and no diagnostic is issued.

See Section 22.1 [CMPAMBIG], page 351, for information on how to cope with existing
code with unclear expectations of REAL() and AIMAG() with COMPLEX(KIND=2) arguments.

See Section 8.11.9.212 [RealPart Intrinsic], page 179, for information on the REALPART()
intrinsic, used to extract the real part of a complex expression without conversion. See Sec-
tion 8.11.9.146 [ImagPart Intrinsic], page 159, for information on the IMAGPART() intrinsic,
used to extract the imaginary part of a complex expression without conversion.

9.9.4 Ugly Null Arguments

The ‘-fugly-comma’ option enables use of a single trailing comma to mean “pass an extra
trailing null argument” in a list of actual arguments to an external procedure, and use of
an empty list of arguments to such a procedure to mean “pass a single null argument”.

(Null arguments often are used in some procedure-calling schemes to indicate omitted
arguments.)

For example, ‘CALL FOO(,)’ means “pass two null arguments”, rather than “pass one
null argument”. Also, ‘CALL BAR()’ means “pass one null argument”.

This construct is considered “ugly” because it does not provide an elegant way to pass a
single null argument that is syntactically distinct from passing no arguments. That is, this
construct changes the meaning of code that makes no use of the construct.

So, with ‘-fugly-comma’ in force, ‘CALL FOO()’ and ‘I = JFUNC()’ pass a single null
argument, instead of passing no arguments as required by the Fortran 77 and 90 standards.

Note: Many systems gracefully allow the case where a procedure call passes one extra
argument that the called procedure does not expect.

So, in practice, there might be no difference in the behavior of a program that does ‘CALL
FOO()’ or ‘I = JFUNC()’ and is compiled with ‘-fugly-comma’ in force as compared to its
behavior when compiled with the default, ‘-fno-ugly-comma’, in force, assuming ‘FOO’ and
‘JFUNC’ do not expect any arguments to be passed.

208 Using and Porting GNU Fortran

9.9.5 Ugly Conversion of Initializers

The constructs disabled by ‘-fno-ugly-init’ are:

• Use of Hollerith and typeless constants in contexts where they set initial (compile-
time) values for variables, arrays, and named constants—that is, DATA and PARAMETER
statements, plus type-declaration statements specifying initial values.
Here are some sample initializations that are disabled by the ‘-fno-ugly-init’ option:

PARAMETER (VAL=’9A304FFE’X)
REAL*8 STRING/8HOUTPUT00/
DATA VAR/4HABCD/

• In the same contexts as above, use of character constants to initialize numeric items
and vice versa (one constant per item).
Here are more sample initializations that are disabled by the ‘-fno-ugly-init’ option:

INTEGER IA
CHARACTER BELL
PARAMETER (IA = ’A’)
PARAMETER (BELL = 7)

• Use of Hollerith and typeless constants on the right-hand side of assignment statements
to numeric types, and in other contexts (such as passing arguments in invocations of
intrinsic procedures and statement functions) that are treated as assignments to known
types (the dummy arguments, in these cases).
Here are sample statements that are disabled by the ‘-fno-ugly-init’ option:

IVAR = 4HABCD
PRINT *, IMAX0(2HAB, 2HBA)

The above constructs, when used, can tend to result in non-portable code. But, they
are widely used in existing Fortran code in ways that often are quite portable. Therefore,
they are enabled by default.

9.9.6 Ugly Integer Conversions

The constructs enabled via ‘-fugly-logint’ are:
• Automatic conversion between INTEGER and LOGICAL as dictated by context (typically

implies nonportable dependencies on how a particular implementation encodes .TRUE.
and .FALSE.).

• Use of a LOGICAL variable in ASSIGN and assigned-GOTO statements.

The above constructs are disabled by default because use of them tends to lead to non-
portable code. Even existing Fortran code that uses that often turns out to be non-portable,
if not outright buggy.

Some of this is due to differences among implementations as far as how .TRUE. and
.FALSE. are encoded as INTEGER values—Fortran code that assumes a particular coding
is likely to use one of the above constructs, and is also likely to not work correctly on
implementations using different encodings.

See Section 15.5.5 [Equivalence Versus Equality], page 307, for more information.

Chapter 9: Other Dialects 209

9.9.7 Ugly Assigned Labels

The ‘-fugly-assign’ option forces g77 to use the same storage for assigned labels as it
would for a normal assignment to the same variable.

For example, consider the following code fragment:
I = 3
ASSIGN 10 TO I

Normally, for portability and improved diagnostics, g77 reserves distinct storage for a “sib-
ling” of ‘I’, used only for ASSIGN statements to that variable (along with the corresponding
assigned-GOTO and assigned-FORMAT-I/O statements that reference the variable).

However, some code (that violates the ANSI FORTRAN 77 standard) attempts to copy
assigned labels among variables involved with ASSIGN statements, as in:

ASSIGN 10 TO I
ISTATE(5) = I
...
J = ISTATE(ICUR)
GOTO J

Such code doesn’t work under g77 unless ‘-fugly-assign’ is specified on the command-
line, ensuring that the value of I referenced in the second line is whatever value g77 uses
to designate statement label ‘10’, so the value may be copied into the ‘ISTATE’ array, later
retrieved into a variable of the appropriate type (‘J’), and used as the target of an assigned-
GOTO statement.

Note: To avoid subtle program bugs, when ‘-fugly-assign’ is specified, g77 requires
the type of variables specified in assigned-label contexts must be the same type returned
by %LOC(). On many systems, this type is effectively the same as INTEGER(KIND=1), while,
on others, it is effectively the same as INTEGER(KIND=2).

Do not depend on g77 actually writing valid pointers to these variables, however. While
g77 currently chooses that implementation, it might be changed in the future.

See Section 13.12 [Assigned Statement Labels (ASSIGN and GOTO)], page 259, for
implementation details on assigned-statement labels.

210 Using and Porting GNU Fortran

Chapter 10: The GNU Fortran Compiler 211

10 The GNU Fortran Compiler

The GNU Fortran compiler, g77, supports programs written in the GNU Fortran language
and in some other dialects of Fortran.

Some aspects of how g77 works are universal regardless of dialect, and yet are not
properly part of the GNU Fortran language itself. These are described below.

Note: This portion of the documentation definitely needs a lot of work!

10.1 Compiler Limits

g77, as with GNU tools in general, imposes few arbitrary restrictions on lengths of iden-
tifiers, number of continuation lines, number of external symbols in a program, and so
on.

For example, some other Fortran compiler have an option (such as ‘-Nlx ’) to increase
the limit on the number of continuation lines. Also, some Fortran compilation systems have
an option (such as ‘-Nxx ’) to increase the limit on the number of external symbols.

g77, gcc, and GNU ld (the GNU linker) have no equivalent options, since they do not
impose arbitrary limits in these areas.

g77 does currently limit the number of dimensions in an array to the same degree as do
the Fortran standards—seven (7). This restriction might be lifted in a future version.

10.2 Run-time Environment Limits

As a portable Fortran implementation, g77 offers its users direct access to, and otherwise
depends upon, the underlying facilities of the system used to build g77, the system on which
g77 itself is used to compile programs, and the system on which the g77-compiled program
is actually run. (For most users, the three systems are of the same type—combination of
operating environment and hardware—often the same physical system.)

The run-time environment for a particular system inevitably imposes some limits on a
program’s use of various system facilities. These limits vary from system to system.

Even when such limits might be well beyond the possibility of being encountered on a
particular system, the g77 run-time environment has certain built-in limits, usually, but
not always, stemming from intrinsics with inherently limited interfaces.

Currently, the g77 run-time environment does not generally offer a less-limiting environ-
ment by augmenting the underlying system’s own environment.

Therefore, code written in the GNU Fortran language, while syntactically and seman-
tically portable, might nevertheless make non-portable assumptions about the run-time
environment—assumptions that prove to be false for some particular environments.

The GNU Fortran language, the g77 compiler and run-time environment, and the g77
documentation do not yet offer comprehensive portable work-arounds for such limits, though
programmers should be able to find their own in specific instances.

Not all of the limitations are described in this document. Some of the known limitations
include:

212 Using and Porting GNU Fortran

10.2.1 Timer Wraparounds

Intrinsics that return values computed from system timers, whether elapsed (wall-clock)
timers, process CPU timers, or other kinds of timers, are prone to experiencing wrap-
around errors (or returning wrapped-around values from successive calls) due to insufficient
ranges offered by the underlying system’s timers.

Some of the symptoms of such behaviors include apparently negative time being com-
puted for a duration, an extremely short amount of time being computed for a long duration,
and an extremely long amount of time being computed for a short duration.

See the following for intrinsics known to have potential problems in these areas on at
least some systems: Section 8.11.9.49 [CPU Time Intrinsic], page 129, Section 10.5.2.36
[DTime Intrinsic (function)], page 225, Section 8.11.9.91 [DTime Intrinsic (subroutine)],
page 141, Section 8.11.9.97 [ETime Intrinsic (function)], page 142, Section 8.11.9.96
[ETime Intrinsic (subroutine)], page 142, Section 8.11.9.185 [MClock Intrinsic], page 173,
Section 8.11.9.186 [MClock8 Intrinsic], page 173, Section 10.5.2.127 [Secnds Intrinsic],
page 238, Section 8.11.9.220 [Second Intrinsic (function)], page 181, Section 8.11.9.221
[Second Intrinsic (subroutine)], page 181, Section 8.11.9.242 [System Clock Intrinsic],
page 188, Section 8.11.9.245 [Time Intrinsic (UNIX)], page 189, Section 10.5.2.134 [Time
Intrinsic (VXT)], page 240, Section 8.11.9.246 [Time8 Intrinsic], page 189.

10.2.2 Year 2000 (Y2K) Problems

While the g77 compiler itself is believed to be Year-2000 (Y2K) compliant, some intrinsics
are not, and, potentially, some underlying systems are not, perhaps rendering some Y2K-
compliant intrinsics non-compliant when used on those particular systems.

Fortran code that uses non-Y2K-compliant intrinsics (listed below) is, itself, almost
certainly not compliant, and should be modified to use Y2K-compliant intrinsics instead.

Fortran code that uses no non-Y2K-compliant intrinsics, but which currently is running
on a non-Y2K-compliant system, can be made more Y2K compliant by compiling and
linking it for use on a new Y2K-compliant system, such as a new version of an old, non-
Y2K-compliant, system.

Currently, information on Y2K and related issues is being maintained at
http://www.gnu.org/software/year2000-list.html.

See the following for intrinsics known to have potential problems in these areas on at
least some systems: Section 10.5.2.24 [Date Intrinsic], page 222, Section 10.5.2.43 [IDate
Intrinsic (VXT)], page 227.

The libg2c library shipped with any g77 that warns about invocation of a non-Y2K-
compliant intrinsic has renamed the EXTERNAL procedure names of those intrinsics. This is
done so that the libg2c implementations of these intrinsics cannot be directly linked to as
EXTERNAL names (which normally would avoid the non-Y2K-intrinsic warning).

The renamed forms of the EXTERNAL names of these renamed procedures may be linked
to by appending the string ‘_y2kbug’ to the name of the procedure in the source code. For
example:

CHARACTER*20 STR

INTEGER YY, MM, DD

Chapter 10: The GNU Fortran Compiler 213

EXTERNAL DATE_Y2KBUG, VXTIDATE_Y2KBUG

CALL DATE_Y2KBUG (STR)

CALL VXTIDATE_Y2KBUG (MM, DD, YY)

(Note that the EXTERNAL statement is not actually required, since the modified names
are not recognized as intrinsics by the current version of g77. But it is shown in this specific
case, for purposes of illustration.)

The renaming of EXTERNAL procedure names of these intrinsics causes unresolved refer-
ences at link time. For example, ‘EXTERNAL DATE; CALL DATE(STR)’ is normally compiled
by g77 as, in C, ‘date_(&str, 20);’. This, in turn, links to the date_ procedure in the
libE77 portion of libg2c, which purposely calls a nonexistent procedure named G77_date_
y2kbuggy_0. The resulting link-time error is designed, via this name, to encourage the
programmer to look up the index entries to this portion of the g77 documentation.

Generally, we recommend that the EXTERNAL method of invoking procedures in libg2c
not be used. When used, some of the correctness checking normally performed by g77 is
skipped.

In particular, it is probably better to use the INTRINSIC method of invoking non-Y2K-
compliant procedures, so anyone compiling the code can quickly notice the potential Y2K
problems (via the warnings printing by g77) without having to even look at the code itself.

If there are problems linking libg2c to code compiled by g77 that involve the string
‘y2kbug’, and these are not explained above, that probably indicates that a version of
libg2c older than g77 is being linked to, or that the new library is being linked to code
compiled by an older version of g77.

That’s because, as of the version that warns about non-Y2K-compliant intrinsic invo-
cation, g77 references the libg2c implementations of those intrinsics using new names,
containing the string ‘y2kbug’.

So, linking newly-compiled code (invoking one of the intrinsics in question) to an old
library might yield an unresolved reference to G77_date_y2kbug_0. (The old library calls
it G77_date_0.)

Similarly, linking previously-compiled code to a new library might yield an unresolved
reference to G77_vxtidate_0. (The new library calls it G77_vxtidate_y2kbug_0.)

The proper fix for the above problems is to obtain the latest release of g77 and related
products (including libg2c) and install them on all systems, then recompile, relink, and
install (as appropriate) all existing Fortran programs.

(Normally, this sort of renaming is steadfastly avoided. In this case, however, it seems
more important to highlight potential Y2K problems than to ease the transition of poten-
tially non-Y2K-compliant code to new versions of g77 and libg2c.)

10.2.3 Array Size

Currently, g77 uses the default INTEGER type for array indexes, which limits the sizes of
single-dimension arrays on systems offering a larger address space than can be addressed by
that type. (That g77 puts all arrays in memory could be considered another limitation—it
could use large temporary files—but that decision is left to the programmer as an imple-
mentation choice by most Fortran implementations.)

214 Using and Porting GNU Fortran

It is not yet clear whether this limitation never, sometimes, or always applies to the sizes
of multiple-dimension arrays as a whole.

For example, on a system with 64-bit addresses and 32-bit default INTEGER, an array
with a size greater than can be addressed by a 32-bit offset can be declared using multiple
dimensions. Such an array is therefore larger than a single-dimension array can be, on the
same system.

Whether large multiple-dimension arrays are reliably supported depends mostly on the
gcc back end (code generator) used by g77, and has not yet been fully investigated.

10.2.4 Character-variable Length

Currently, g77 uses the default INTEGER type for the lengths of CHARACTER variables and
array elements.

This means that, for example, a system with a 64-bit address space and a 32-bit default
INTEGER type does not, under g77, support a CHARACTER*n declaration where n is greater
than 2147483647.

10.2.5 Year 10000 (Y10K) Problems

Most intrinsics returning, or computing values based on, date information are prone to
Year-10000 (Y10K) problems, due to supporting only 4 digits for the year.

See the following for examples: Section 8.11.9.102 [FDate Intrinsic (function)], page 144,
Section 8.11.9.101 [FDate Intrinsic (subroutine)], page 143, Section 8.11.9.138 [IDate Intrin-
sic (UNIX)], page 157, Section 10.5.2.134 [Time Intrinsic (VXT)], page 240, Section 8.11.9.60
[Date and Time Intrinsic], page 132.

10.3 Compiler Types

Fortran implementations have a fair amount of freedom given them by the standard as
far as how much storage space is used and how much precision and range is offered by the
various types such as LOGICAL(KIND=1), INTEGER(KIND=1), REAL(KIND=1), REAL(KIND=2),
COMPLEX(KIND=1), and CHARACTER. Further, many compilers offer so-called ‘*n ’ notation,
but the interpretation of n varies across compilers and target architectures.

The standard requires that LOGICAL(KIND=1), INTEGER(KIND=1), and REAL(KIND=1) oc-
cupy the same amount of storage space, and that COMPLEX(KIND=1) and REAL(KIND=2) take
twice as much storage space as REAL(KIND=1). Further, it requires that COMPLEX(KIND=1)
entities be ordered such that when a COMPLEX(KIND=1) variable is storage-associated (such
as via EQUIVALENCE) with a two-element REAL(KIND=1) array named ‘R’, ‘R(1)’ corresponds
to the real element and ‘R(2)’ to the imaginary element of the COMPLEX(KIND=1) variable.

(Few requirements as to precision or ranges of any of these are placed on the implemen-
tation, nor is the relationship of storage sizes of these types to the CHARACTER type specified,
by the standard.)

g77 follows the above requirements, warning when compiling a program requires place-
ment of items in memory that contradict the requirements of the target architecture. (For

Chapter 10: The GNU Fortran Compiler 215

example, a program can require placement of a REAL(KIND=2) on a boundary that is not an
even multiple of its size, but still an even multiple of the size of a REAL(KIND=1) variable.
On some target architectures, using the canonical mapping of Fortran types to underlying
architectural types, such placement is prohibited by the machine definition or the Applica-
tion Binary Interface (ABI) in force for the configuration defined for building gcc and g77.
g77 warns about such situations when it encounters them.)

g77 follows consistent rules for configuring the mapping between Fortran types, includ-
ing the ‘*n ’ notation, and the underlying architectural types as accessed by a similarly-
configured applicable version of the gcc compiler. These rules offer a widely portable,
consistent Fortran/C environment, although they might well conflict with the expectations
of users of Fortran compilers designed and written for particular architectures.

These rules are based on the configuration that is in force for the version of gcc built
in the same release as g77 (and which was therefore used to build both the g77 compiler
components and the libg2c run-time library):

REAL(KIND=1)
Same as float type.

REAL(KIND=2)
Same as whatever floating-point type that is twice the size of a float—usually,
this is a double.

INTEGER(KIND=1)
Same as an integral type that is occupies the same amount of memory storage
as float—usually, this is either an int or a long int.

LOGICAL(KIND=1)
Same gcc type as INTEGER(KIND=1).

INTEGER(KIND=2)
Twice the size, and usually nearly twice the range, as INTEGER(KIND=1)—
usually, this is either a long int or a long long int.

LOGICAL(KIND=2)
Same gcc type as INTEGER(KIND=2).

INTEGER(KIND=3)
Same gcc type as signed char.

LOGICAL(KIND=3)
Same gcc type as INTEGER(KIND=3).

INTEGER(KIND=6)
Twice the size, and usually nearly twice the range, as INTEGER(KIND=3)—
usually, this is a short.

LOGICAL(KIND=6)
Same gcc type as INTEGER(KIND=6).

COMPLEX(KIND=1)
Two REAL(KIND=1) scalars (one for the real part followed by one for the imag-
inary part).

216 Using and Porting GNU Fortran

COMPLEX(KIND=2)
Two REAL(KIND=2) scalars.

numeric-type*n
(Where numeric-type is any type other than CHARACTER.) Same as whatever
gcc type occupies n times the storage space of a gcc char item.

DOUBLE PRECISION
Same as REAL(KIND=2).

DOUBLE COMPLEX
Same as COMPLEX(KIND=2).

Note that the above are proposed correspondences and might change in future versions
of g77—avoid writing code depending on them.

Other types supported by g77 are derived from gcc types such as char, short, int, long
int, long long int, long double, and so on. That is, whatever types gcc already supports,
g77 supports now or probably will support in a future version. The rules for the ‘numeric-
type*n ’ notation apply to these types, and new values for ‘numeric-type(KIND=n)’ will
be assigned in a way that encourages clarity, consistency, and portability.

10.4 Compiler Constants

g77 strictly assigns types to all constants not documented as “typeless” (typeless constants
including ‘’1’Z’, for example). Many other Fortran compilers attempt to assign types to
typed constants based on their context. This results in hard-to-find bugs, nonportable code,
and is not in the spirit (though it strictly follows the letter) of the 77 and 90 standards.

g77 might offer, in a future release, explicit constructs by which a wider variety of
typeless constants may be specified, and/or user-requested warnings indicating places where
g77 might differ from how other compilers assign types to constants.

See Section 15.5.4 [Context-Sensitive Constants], page 306, for more information on this
issue.

10.5 Compiler Intrinsics

g77 offers an ever-widening set of intrinsics. Currently these all are procedures (functions
and subroutines).

Some of these intrinsics are unimplemented, but their names reserved to reduce future
problems with existing code as they are implemented. Others are implemented as part
of the GNU Fortran language, while yet others are provided for compatibility with other
dialects of Fortran but are not part of the GNU Fortran language.

To manage these distinctions, g77 provides intrinsic groups, a facility that is simply an
extension of the intrinsic groups provided by the GNU Fortran language.

Chapter 10: The GNU Fortran Compiler 217

10.5.1 Intrinsic Groups

A given specific intrinsic belongs in one or more groups. Each group is deleted, disabled,
hidden, or enabled by default or a command-line option. The meaning of each term follows.

Deleted No intrinsics are recognized as belonging to that group.

Disabled Intrinsics are recognized as belonging to the group, but references to them
(other than via the INTRINSIC statement) are disallowed through that group.

Hidden Intrinsics in that group are recognized and enabled (if implemented) only if
the first mention of the actual name of an intrinsic in a program unit is in an
INTRINSIC statement.

Enabled Intrinsics in that group are recognized and enabled (if implemented).

The distinction between deleting and disabling a group is illustrated by the following
example. Assume intrinsic ‘FOO’ belongs only to group ‘FGR’. If group ‘FGR’ is deleted, the
following program unit will successfully compile, because ‘FOO()’ will be seen as a reference
to an external function named ‘FOO’:

PRINT *, FOO()
END

If group ‘FGR’ is disabled, compiling the above program will produce diagnostics, either
because the ‘FOO’ intrinsic is improperly invoked or, if properly invoked, it is not enabled.
To change the above program so it references an external function ‘FOO’ instead of the
disabled ‘FOO’ intrinsic, add the following line to the top:

EXTERNAL FOO

So, deleting a group tells g77 to pretend as though the intrinsics in that group do not exist
at all, whereas disabling it tells g77 to recognize them as (disabled) intrinsics in intrinsic-like
contexts.

Hiding a group is like enabling it, but the intrinsic must be first named in an INTRINSIC
statement to be considered a reference to the intrinsic rather than to an external procedure.
This might be the “safest” way to treat a new group of intrinsics when compiling old code,
because it allows the old code to be generally written as if those new intrinsics never existed,
but to be changed to use them by inserting INTRINSIC statements in the appropriate places.
However, it should be the goal of development to use EXTERNAL for all names of external
procedures that might be intrinsic names.

If an intrinsic is in more than one group, it is enabled if any of its containing groups
are enabled; if not so enabled, it is hidden if any of its containing groups are hidden; if
not so hidden, it is disabled if any of its containing groups are disabled; if not so disabled,
it is deleted. This extra complication is necessary because some intrinsics, such as IBITS,
belong to more than one group, and hence should be enabled if any of the groups to which
they belong are enabled, and so on.

The groups are:

badu77 UNIX intrinsics having inappropriate forms (usually functions that have in-
tended side effects).

218 Using and Porting GNU Fortran

gnu Intrinsics the GNU Fortran language supports that are extensions to the Fortran
standards (77 and 90).

f2c Intrinsics supported by AT&T’s f2c converter and/or libf2c.

f90 Fortran 90 intrinsics.

mil MIL-STD 1753 intrinsics (MVBITS, IAND, BTEST, and so on).

unix UNIX intrinsics (IARGC, EXIT, ERF, and so on).

vxt VAX/VMS FORTRAN (current as of v4) intrinsics.

10.5.2 Other Intrinsics

g77 supports intrinsics other than those in the GNU Fortran language proper. This set of
intrinsics is described below.

10.5.2.1 ACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL ACosD’ to use this name for an external procedure.

10.5.2.2 AIMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL AIMax0’ to use this name for an external procedure.

10.5.2.3 AIMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL AIMin0’ to use this name for an external procedure.

10.5.2.4 AJMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL AJMax0’ to use this name for an external procedure.

10.5.2.5 AJMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL AJMin0’ to use this name for an external procedure.

10.5.2.6 ASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL ASinD’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 219

10.5.2.7 ATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL ATan2D’ to use this name for an external procedure.

10.5.2.8 ATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL ATanD’ to use this name for an external procedure.

10.5.2.9 BITest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL BITest’ to use this name for an external procedure.

10.5.2.10 BJTest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL BJTest’ to use this name for an external procedure.

10.5.2.11 CDAbs Intrinsic

CDAbs(A)

CDAbs: REAL(KIND=2) function.

A: COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 115.

10.5.2.12 CDCos Intrinsic

CDCos(X)

CDCos: COMPLEX(KIND=2) function.

X : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic], page 128.

220 Using and Porting GNU Fortran

10.5.2.13 CDExp Intrinsic

CDExp(X)

CDExp: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic], page 143.

10.5.2.14 CDLog Intrinsic

CDLog(X)

CDLog: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic], page 167.

10.5.2.15 CDSin Intrinsic

CDSin(X)

CDSin: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic], page 183.

10.5.2.16 CDSqRt Intrinsic

CDSqRt(X)

CDSqRt: COMPLEX(KIND=2) function.
X : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic], page 185.

Chapter 10: The GNU Fortran Compiler 221

10.5.2.17 ChDir Intrinsic (function)

ChDir(Dir)

ChDir: INTEGER(KIND=1) function.
Dir: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Sets the current working directory to be Dir. Returns 0 on success or a nonzero error
code. See chdir(3).

Caution: Using this routine during I/O to a unit connected with a non-absolute file
name can cause subsequent I/O on such a unit to fail because the I/O library might reopen
files by name.

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.40 [ChDir

Intrinsic (subroutine)], page 126.

10.5.2.18 ChMod Intrinsic (function)

ChMod(Name, Mode)

ChMod: INTEGER(KIND=1) function.
Name: CHARACTER; scalar; INTENT(IN).
Mode: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Changes the access mode of file Name according to the specification Mode, which is
given in the format of chmod(1). A null character (‘CHAR(0)’) marks the end of the name in
Name—otherwise, trailing blanks in Name are ignored. Currently, Name must not contain
the single quote character.

Returns 0 on success or a nonzero error code otherwise.
Note that this currently works by actually invoking /bin/chmod (or the chmod found

when the library was configured) and so might fail in some circumstances and will, anyway,
be slow.

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.41 [ChMod

Intrinsic (subroutine)], page 126.

10.5.2.19 CosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL CosD’ to use this name for an external procedure.

222 Using and Porting GNU Fortran

10.5.2.20 DACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DACosD’ to use this name for an external procedure.

10.5.2.21 DASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DASinD’ to use this name for an external procedure.

10.5.2.22 DATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DATan2D’ to use this name for an external procedure.

10.5.2.23 DATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DATanD’ to use this name for an external procedure.

10.5.2.24 Date Intrinsic

CALL Date(Date)

Date: CHARACTER; scalar; INTENT(OUT).

Intrinsic groups: vxt.

Description:

Returns Date in the form ‘dd-mmm-yy ’, representing the numeric day of the month dd,
a three-character abbreviation of the month name mmm and the last two digits of the year
yy, e.g. ‘25-Nov-96’.

This intrinsic is not recommended, due to the year 2000 approaching. Therefore, pro-
grams making use of this intrinsic might not be Year 2000 (Y2K) compliant. See Sec-
tion 8.11.9.53 [CTime Intrinsic (subroutine)], page 130, for information on obtaining more
digits for the current (or any) date.

10.5.2.25 DbleQ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DbleQ’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 223

10.5.2.26 DCmplx Intrinsic

DCmplx(X, Y)

DCmplx: COMPLEX(KIND=2) function.

X : INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).

Y : INTEGER or REAL; OPTIONAL (must be omitted if X is COMPLEX); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

If X is not type COMPLEX, constructs a value of type COMPLEX(KIND=2) from the real and
imaginary values specified by X and Y, respectively. If Y is omitted, ‘0D0’ is assumed.

If X is type COMPLEX, converts it to type COMPLEX(KIND=2).

Although this intrinsic is not standard Fortran, it is a popular extension offered by many
compilers that support DOUBLE COMPLEX, since it offers the easiest way to convert to DOUBLE
COMPLEX without using Fortran 90 features (such as the ‘KIND=’ argument to the CMPLX()
intrinsic).

(‘CMPLX(0D0, 0D0)’ returns a single-precision COMPLEX result, as required by standard
FORTRAN 77. That’s why so many compilers provide DCMPLX(), since ‘DCMPLX(0D0,
0D0)’ returns a DOUBLE COMPLEX result. Still, DCMPLX() converts even REAL*16 arguments
to their REAL*8 equivalents in most dialects of Fortran, so neither it nor CMPLX() allow easy
construction of arbitrary-precision values without potentially forcing a conversion involving
extending or reducing precision. GNU Fortran provides such an intrinsic, called COMPLEX().)

See Section 8.11.9.44 [Complex Intrinsic], page 127, for information on easily constructing
a COMPLEX value of arbitrary precision from REAL arguments.

10.5.2.27 DConjg Intrinsic

DConjg(Z)

DConjg: COMPLEX(KIND=2) function.

Z : COMPLEX(KIND=2); scalar; INTENT(IN).

Intrinsic groups: f2c, vxt.

Description:

Archaic form of CONJG() that is specific to one type for Z. See Section 8.11.9.45 [Conjg
Intrinsic], page 128.

10.5.2.28 DCosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DCosD’ to use this name for an external procedure.

224 Using and Porting GNU Fortran

10.5.2.29 DFloat Intrinsic

DFloat(A)

DFloat: REAL(KIND=2) function.
A: INTEGER; scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of REAL() that is specific to one type for A. See Section 8.11.9.211 [Real
Intrinsic], page 178.

10.5.2.30 DFlotI Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DFlotI’ to use this name for an external procedure.

10.5.2.31 DFlotJ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DFlotJ’ to use this name for an external procedure.

10.5.2.32 DImag Intrinsic

DImag(Z)

DImag: REAL(KIND=2) function.
Z : COMPLEX(KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of AIMAG() that is specific to one type for Z. See Section 8.11.9.8 [AImag
Intrinsic], page 116.

10.5.2.33 DReal Intrinsic

DReal(A)

DReal: REAL(KIND=2) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: vxt.
Description:

Converts A to REAL(KIND=2).

Chapter 10: The GNU Fortran Compiler 225

If A is type COMPLEX, its real part is converted (if necessary) to REAL(KIND=2), and its
imaginary part is disregarded.

Although this intrinsic is not standard Fortran, it is a popular extension offered by many
compilers that support DOUBLE COMPLEX, since it offers the easiest way to extract the real
part of a DOUBLE COMPLEX value without using the Fortran 90 REAL() intrinsic in a way that
produces a return value inconsistent with the way many FORTRAN 77 compilers handle
REAL() of a DOUBLE COMPLEX value.

See Section 8.11.9.212 [RealPart Intrinsic], page 179, for information on a GNU Fortran
intrinsic that avoids these areas of confusion.

See Section 8.11.9.67 [Dble Intrinsic], page 134, for information on the standard FOR-
TRAN 77 replacement for DREAL().

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 112, for more information
on this issue.

10.5.2.34 DSinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DSinD’ to use this name for an external procedure.

10.5.2.35 DTanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL DTanD’ to use this name for an external procedure.

10.5.2.36 DTime Intrinsic (function)

DTime(TArray)

DTime: REAL(KIND=1) function.
TArray : REAL(KIND=1); DIMENSION(2); INTENT(OUT).
Intrinsic groups: badu77.
Description:

Initially, return the number of seconds of runtime since the start of the process’s execu-
tion as the function value, and the user and system components of this in ‘TArray(1)’ and
‘TArray(2)’ respectively. The functions’ value is equal to ‘TArray(1) + TArray(2)’.

Subsequent invocations of ‘DTIME()’ return values accumulated since the previous invo-
cation.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.91 [DTime

Intrinsic (subroutine)], page 141.

226 Using and Porting GNU Fortran

10.5.2.37 FGet Intrinsic (function)

FGet(C)

FGet: INTEGER(KIND=1) function.
C : CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: badu77.
Description:

Reads a single character into C in stream mode from unit 5 (by-passing normal formatted
input) using getc(3). Returns 0 on success, −1 on end-of-file, and the error code from
ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.103 [FGet
Intrinsic (subroutine)], page 144.

10.5.2.38 FGetC Intrinsic (function)

FGetC(Unit, C)

FGetC: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
C : CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: badu77.
Description:

Reads a single character into C in stream mode from unit Unit (by-passing normal
formatted output) using getc(3). Returns 0 on success, −1 on end-of-file, and the error
code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.104 [FGetC
Intrinsic (subroutine)], page 145.

10.5.2.39 FloatI Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL FloatI’ to use this name for an external procedure.

10.5.2.40 FloatJ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL FloatJ’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 227

10.5.2.41 FPut Intrinsic (function)

FPut(C)

FPut: INTEGER(KIND=1) function.
C : CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Writes the single character C in stream mode to unit 6 (by-passing normal formatted
output) using getc(3). Returns 0 on success, the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.109 [FPut
Intrinsic (subroutine)], page 146.

10.5.2.42 FPutC Intrinsic (function)

FPutC(Unit, C)

FPutC: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
C : CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Writes the single character C in stream mode to unit Unit (by-passing normal formatted
output) using putc(3). Returns 0 on success, the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.110 [FPutC
Intrinsic (subroutine)], page 147.

10.5.2.43 IDate Intrinsic (VXT)

CALL IDate(M, D, Y)

M : INTEGER(KIND=1); scalar; INTENT(OUT).
D: INTEGER(KIND=1); scalar; INTENT(OUT).
Y : INTEGER(KIND=1); scalar; INTENT(OUT).
Intrinsic groups: vxt.
Description:

228 Using and Porting GNU Fortran

Returns the numerical values of the current local time. The month (in the range 1–12)
is returned in M, the day (in the range 1–31) in D, and the year in Y (in the range 0–99).

This intrinsic is not recommended, due to the fact that its return value for year wraps
around century boundaries (change from a larger value to a smaller one). Therefore, pro-
grams making use of this intrinsic, for instance, might not be Year 2000 (Y2K) compliant.
For example, the date might appear, to such programs, to wrap around as of the Year 2000.

See Section 8.11.9.138 [IDate Intrinsic (UNIX)], page 157, for information on obtaining
more digits for the current date.

For information on other intrinsics with the same name: See Section 8.11.9.138 [IDate
Intrinsic (UNIX)], page 157.

10.5.2.44 IIAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIAbs’ to use this name for an external procedure.

10.5.2.45 IIAnd Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIAnd’ to use this name for an external procedure.

10.5.2.46 IIBClr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIBClr’ to use this name for an external procedure.

10.5.2.47 IIBits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIBits’ to use this name for an external procedure.

10.5.2.48 IIBSet Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIBSet’ to use this name for an external procedure.

10.5.2.49 IIDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIDiM’ to use this name for an external procedure.

10.5.2.50 IIDInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIDInt’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 229

10.5.2.51 IIDNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIDNnt’ to use this name for an external procedure.

10.5.2.52 IIEOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIEOr’ to use this name for an external procedure.

10.5.2.53 IIFix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIFix’ to use this name for an external procedure.

10.5.2.54 IInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IInt’ to use this name for an external procedure.

10.5.2.55 IIOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIOr’ to use this name for an external procedure.

10.5.2.56 IIQint Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIQint’ to use this name for an external procedure.

10.5.2.57 IIQNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIQNnt’ to use this name for an external procedure.

10.5.2.58 IIShftC Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IIShftC’ to use this name for an external procedure.

10.5.2.59 IISign Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IISign’ to use this name for an external procedure.

230 Using and Porting GNU Fortran

10.5.2.60 IMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IMax0’ to use this name for an external procedure.

10.5.2.61 IMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IMax1’ to use this name for an external procedure.

10.5.2.62 IMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IMin0’ to use this name for an external procedure.

10.5.2.63 IMin1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IMin1’ to use this name for an external procedure.

10.5.2.64 IMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IMod’ to use this name for an external procedure.

10.5.2.65 INInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL INInt’ to use this name for an external procedure.

10.5.2.66 INot Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL INot’ to use this name for an external procedure.

10.5.2.67 IZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL IZExt’ to use this name for an external procedure.

10.5.2.68 JIAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIAbs’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 231

10.5.2.69 JIAnd Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIAnd’ to use this name for an external procedure.

10.5.2.70 JIBClr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIBClr’ to use this name for an external procedure.

10.5.2.71 JIBits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIBits’ to use this name for an external procedure.

10.5.2.72 JIBSet Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIBSet’ to use this name for an external procedure.

10.5.2.73 JIDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIDiM’ to use this name for an external procedure.

10.5.2.74 JIDInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIDInt’ to use this name for an external procedure.

10.5.2.75 JIDNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIDNnt’ to use this name for an external procedure.

10.5.2.76 JIEOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIEOr’ to use this name for an external procedure.

10.5.2.77 JIFix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIFix’ to use this name for an external procedure.

232 Using and Porting GNU Fortran

10.5.2.78 JInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JInt’ to use this name for an external procedure.

10.5.2.79 JIOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIOr’ to use this name for an external procedure.

10.5.2.80 JIQint Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIQint’ to use this name for an external procedure.

10.5.2.81 JIQNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIQNnt’ to use this name for an external procedure.

10.5.2.82 JIShft Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIShft’ to use this name for an external procedure.

10.5.2.83 JIShftC Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JIShftC’ to use this name for an external procedure.

10.5.2.84 JISign Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JISign’ to use this name for an external procedure.

10.5.2.85 JMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JMax0’ to use this name for an external procedure.

10.5.2.86 JMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JMax1’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 233

10.5.2.87 JMin0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JMin0’ to use this name for an external procedure.

10.5.2.88 JMin1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JMin1’ to use this name for an external procedure.

10.5.2.89 JMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JMod’ to use this name for an external procedure.

10.5.2.90 JNInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JNInt’ to use this name for an external procedure.

10.5.2.91 JNot Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JNot’ to use this name for an external procedure.

10.5.2.92 JZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL JZExt’ to use this name for an external procedure.

10.5.2.93 Kill Intrinsic (function)

Kill(Pid, Signal)

Kill: INTEGER(KIND=1) function.
Pid: INTEGER; scalar; INTENT(IN).
Signal: INTEGER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Sends the signal specified by Signal to the process Pid. Returns 0 on success or a nonzero
error code. See kill(2).

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.158 [Kill

Intrinsic (subroutine)], page 163.

234 Using and Porting GNU Fortran

10.5.2.94 Link Intrinsic (function)

Link(Path1, Path2)

Link: INTEGER(KIND=1) function.
Path1: CHARACTER; scalar; INTENT(IN).
Path2: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Makes a (hard) link from file Path1 to Path2. A null character (‘CHAR(0)’) marks the
end of the names in Path1 and Path2—otherwise, trailing blanks in Path1 and Path2 are
ignored. Returns 0 on success or a nonzero error code. See link(2).

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.165 [Link

Intrinsic (subroutine)], page 166.

10.5.2.95 QAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QAbs’ to use this name for an external procedure.

10.5.2.96 QACos Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QACos’ to use this name for an external procedure.

10.5.2.97 QACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QACosD’ to use this name for an external procedure.

10.5.2.98 QASin Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QASin’ to use this name for an external procedure.

10.5.2.99 QASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QASinD’ to use this name for an external procedure.

10.5.2.100 QATan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QATan’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 235

10.5.2.101 QATan2 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QATan2’ to use this name for an external procedure.

10.5.2.102 QATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QATan2D’ to use this name for an external procedure.

10.5.2.103 QATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QATanD’ to use this name for an external procedure.

10.5.2.104 QCos Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QCos’ to use this name for an external procedure.

10.5.2.105 QCosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QCosD’ to use this name for an external procedure.

10.5.2.106 QCosH Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QCosH’ to use this name for an external procedure.

10.5.2.107 QDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QDiM’ to use this name for an external procedure.

10.5.2.108 QExp Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QExp’ to use this name for an external procedure.

10.5.2.109 QExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QExt’ to use this name for an external procedure.

236 Using and Porting GNU Fortran

10.5.2.110 QExtD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QExtD’ to use this name for an external procedure.

10.5.2.111 QFloat Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QFloat’ to use this name for an external procedure.

10.5.2.112 QInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QInt’ to use this name for an external procedure.

10.5.2.113 QLog Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QLog’ to use this name for an external procedure.

10.5.2.114 QLog10 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QLog10’ to use this name for an external procedure.

10.5.2.115 QMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QMax1’ to use this name for an external procedure.

10.5.2.116 QMin1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QMin1’ to use this name for an external procedure.

10.5.2.117 QMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QMod’ to use this name for an external procedure.

10.5.2.118 QNInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QNInt’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 237

10.5.2.119 QSin Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QSin’ to use this name for an external procedure.

10.5.2.120 QSinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QSinD’ to use this name for an external procedure.

10.5.2.121 QSinH Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QSinH’ to use this name for an external procedure.

10.5.2.122 QSqRt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QSqRt’ to use this name for an external procedure.

10.5.2.123 QTan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QTan’ to use this name for an external procedure.

10.5.2.124 QTanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QTanD’ to use this name for an external procedure.

10.5.2.125 QTanH Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL QTanH’ to use this name for an external procedure.

10.5.2.126 Rename Intrinsic (function)

Rename(Path1, Path2)

Rename: INTEGER(KIND=1) function.
Path1: CHARACTER; scalar; INTENT(IN).
Path2: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

238 Using and Porting GNU Fortran

Renames the file Path1 to Path2. A null character (‘CHAR(0)’) marks the end of the
names in Path1 and Path2—otherwise, trailing blanks in Path1 and Path2 are ignored. See
rename(2). Returns 0 on success or a nonzero error code.

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.213 [Rename

Intrinsic (subroutine)], page 179.

10.5.2.127 Secnds Intrinsic

Secnds(T)

Secnds: REAL(KIND=1) function.
T: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: vxt.
Description:

Returns the local time in seconds since midnight minus the value T.
This values returned by this intrinsic become numerically less than previous values (they

wrap around) during a single run of the compiler program, under normal circumstances
(such as running through the midnight hour).

10.5.2.128 Signal Intrinsic (function)

Signal(Number, Handler)

Signal: INTEGER(KIND=7) function.
Number: INTEGER; scalar; INTENT(IN).
Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global
INTEGER(KIND=1) scalar.
Intrinsic groups: badu77.
Description:

If Handler is a an EXTERNAL routine, arranges for it to be invoked with a single integer
argument (of system-dependent length) when signal Number occurs. If Handler is an in-
teger, it can be used to turn off handling of signal Number or revert to its default action.
See signal(2).

Note that Handler will be called using C conventions, so the value of its argument in
Fortran terms is obtained by applying %LOC() (or LOC()) to it.

The value returned by signal(2) is returned.
Due to the side effects performed by this intrinsic, the function form is not recommended.
Warning: If the returned value is stored in an INTEGER(KIND=1) (default INTEGER)

argument, truncation of the original return value occurs on some systems (such as Alphas,
which have 64-bit pointers but 32-bit default integers), with no warning issued by g77 under
normal circumstances.

Therefore, the following code fragment might silently fail on some systems:

Chapter 10: The GNU Fortran Compiler 239

INTEGER RTN

EXTERNAL MYHNDL

RTN = SIGNAL(signum, MYHNDL)

...

! Restore original handler:

RTN = SIGNAL(signum, RTN)

The reason for the failure is that ‘RTN’ might not hold all the information on the original
handler for the signal, thus restoring an invalid handler. This bug could manifest itself as
a spurious run-time failure at an arbitrary point later during the program’s execution, for
example.

Warning: Use of the libf2c run-time library function ‘signal_’ directly (such as via
‘EXTERNAL SIGNAL’) requires use of the %VAL() construct to pass an INTEGER value (such as
‘SIG_IGN’ or ‘SIG_DFL’) for the Handler argument.

However, while ‘RTN = SIGNAL(signum, %VAL(SIG_IGN))’ works when ‘SIGNAL’ is
treated as an external procedure (and resolves, at link time, to libf2c’s ‘signal_’
routine), this construct is not valid when ‘SIGNAL’ is recognized as the intrinsic of that
name.

Therefore, for maximum portability and reliability, code such references to the ‘SIGNAL’
facility as follows:

INTRINSIC SIGNAL

...

RTN = SIGNAL(signum, SIG_IGN)

g77 will compile such a call correctly, while other compilers will generally either do so
as well or reject the ‘INTRINSIC SIGNAL’ statement via a diagnostic, allowing you to take
appropriate action.

For information on other intrinsics with the same name: See Section 8.11.9.228 [Signal
Intrinsic (subroutine)], page 183.

10.5.2.129 SinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL SinD’ to use this name for an external procedure.

10.5.2.130 SnglQ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL SnglQ’ to use this name for an external procedure.

10.5.2.131 SymLnk Intrinsic (function)

SymLnk(Path1, Path2)

SymLnk: INTEGER(KIND=1) function.
Path1: CHARACTER; scalar; INTENT(IN).
Path2: CHARACTER; scalar; INTENT(IN).

240 Using and Porting GNU Fortran

Intrinsic groups: badu77.
Description:

Makes a symbolic link from file Path1 to Path2. A null character (‘CHAR(0)’) marks
the end of the names in Path1 and Path2—otherwise, trailing blanks in Path1 and Path2
are ignored. Returns 0 on success or a nonzero error code (ENOSYS if the system does not
provide symlink(2)).

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.240 [SymLnk

Intrinsic (subroutine)], page 187.

10.5.2.132 System Intrinsic (function)

System(Command)

System: INTEGER(KIND=1) function.
Command: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Passes the command Command to a shell (see system(3)). Returns the value returned
by system(3), presumably 0 if the shell command succeeded. Note that which shell is used
to invoke the command is system-dependent and environment-dependent.

Due to the side effects performed by this intrinsic, the function form is not recommended.
However, the function form can be valid in cases where the actual side effects performed by
the call are unimportant to the application.

For example, on a UNIX system, ‘SAME = SYSTEM(’cmp a b’)’ does not perform any
side effects likely to be important to the program, so the programmer would not care if
the actual system call (and invocation of cmp) was optimized away in a situation where the
return value could be determined otherwise, or was not actually needed (‘SAME’ not actually
referenced after the sample assignment statement).

For information on other intrinsics with the same name: See Section 8.11.9.241 [System
Intrinsic (subroutine)], page 187.

10.5.2.133 TanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL TanD’ to use this name for an external procedure.

10.5.2.134 Time Intrinsic (VXT)

CALL Time(Time)

Time: CHARACTER*8; scalar; INTENT(OUT).
Intrinsic groups: vxt.

Chapter 10: The GNU Fortran Compiler 241

Description:
Returns in Time a character representation of the current time as obtained from

ctime(3).
Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For

example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

See Section 8.11.9.101 [FDate Intrinsic (subroutine)], page 143, for an equivalent routine.
For information on other intrinsics with the same name: See Section 8.11.9.245 [Time

Intrinsic (UNIX)], page 189.

10.5.2.135 UMask Intrinsic (function)

UMask(Mask)

UMask: INTEGER(KIND=1) function.
Mask: INTEGER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Sets the file creation mask to Mask and returns the old value. See umask(2).
Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.254 [UMask

Intrinsic (subroutine)], page 191.

10.5.2.136 Unlink Intrinsic (function)

Unlink(File)

Unlink: INTEGER(KIND=1) function.
File: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Unlink the file File. A null character (‘CHAR(0)’) marks the end of the name in File—
otherwise, trailing blanks in File are ignored. Returns 0 on success or a nonzero error code.
See unlink(2).

Due to the side effects performed by this intrinsic, the function form is not recommended.
For information on other intrinsics with the same name: See Section 8.11.9.255 [Unlink

Intrinsic (subroutine)], page 191.

10.5.2.137 ZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic. Use
‘EXTERNAL ZExt’ to use this name for an external procedure.

242 Using and Porting GNU Fortran

Chapter 11: Other Compilers 243

11 Other Compilers

An individual Fortran source file can be compiled to an object (‘*.o’) file instead of to
the final program executable. This allows several portions of a program to be compiled
at different times and linked together whenever a new version of the program is needed.
However, it introduces the issue of object compatibility across the various object files (and
libraries, or ‘*.a’ files) that are linked together to produce any particular executable file.

Object compatibility is an issue when combining, in one program, Fortran code compiled
by more than one compiler (or more than one configuration of a compiler). If the compilers
disagree on how to transform the names of procedures, there will normally be errors when
linking such programs. Worse, if the compilers agree on naming, but disagree on issues like
how to pass parameters, return arguments, and lay out COMMON areas, the earliest detected
errors might be the incorrect results produced by the program (and that assumes these
errors are detected, which is not always the case).

Normally, g77 generates code that is object-compatible with code generated by a version
of f2c configured (with, for example, ‘f2c.h’ definitions) to be generally compatible with
g77 as built by gcc. (Normally, f2c will, by default, conform to the appropriate config-
uration, but it is possible that older or perhaps even newer versions of f2c, or versions
having certain configuration changes to f2c internals, will produce object files that are
incompatible with g77.)

For example, a Fortran string subroutine argument will become two arguments on the
C side: a char * and an int length.

Much of this compatibility results from the fact that g77 uses the same run-time library,
libf2c, used by f2c, though g77 gives its version the name libg2c so as to avoid conflicts
when linking, installing them in the same directories, and so on.

Other compilers might or might not generate code that is object-compatible with libg2c
and current g77, and some might offer such compatibility only when explicitly selected via
a command-line option to the compiler.

Note: This portion of the documentation definitely needs a lot of work!

11.1 Dropping f2c Compatibility

Specifying ‘-fno-f2c’ allows g77 to generate, in some cases, faster code, by not needing to
allow to the possibility of linking with code compiled by f2c.

For example, this affects how REAL(KIND=1), COMPLEX(KIND=1), and COMPLEX(KIND=2)
functions are called. With ‘-fno-f2c’, they are compiled as returning the appropriate gcc
type (float, __complex__ float, __complex__ double, in many configurations).

With ‘-ff2c’ in force, they are compiled differently (with perhaps slower run-time perfor-
mance) to accommodate the restrictions inherent in f2c’s use of K&R C as an intermediate
language—REAL(KIND=1) functions return C’s double type, while COMPLEX functions return
void and use an extra argument pointing to a place for the functions to return their values.

It is possible that, in some cases, leaving ‘-ff2c’ in force might produce faster code than
using ‘-fno-f2c’. Feel free to experiment, but remember to experiment with changing the
way entire programs and their Fortran libraries are compiled at a time, since this sort of

244 Using and Porting GNU Fortran

experimentation affects the interface of code generated for a Fortran source file—that is, it
affects object compatibility.

Note that f2c compatibility is a fairly static target to achieve, though not necessarily
perfectly so, since, like g77, it is still being improved. However, specifying ‘-fno-f2c’ causes
g77 to generate code that will probably be incompatible with code generated by future
versions of g77 when the same option is in force. You should make sure you are always able
to recompile complete programs from source code when upgrading to new versions of g77
or f2c, especially when using options such as ‘-fno-f2c’.

Therefore, if you are using g77 to compile libraries and other object files for possible
future use and you don’t want to require recompilation for future use with subsequent
versions of g77, you might want to stick with f2c compatibility for now, and carefully
watch for any announcements about changes to the f2c/libf2c interface that might affect
existing programs (thus requiring recompilation).

It is probable that a future version of g77 will not, by default, generate object files
compatible with f2c, and that version probably would no longer use libf2c. If you expect
to depend on this compatibility in the long term, use the options ‘-ff2c -ff2c-library’
when compiling all of the applicable code. This should cause future versions of g77 ei-
ther to produce compatible code (at the expense of the availability of some features and
performance), or at the very least, to produce diagnostics.

(The library g77 produces will no longer be named ‘libg2c’ when it is no longer generally
compatible with ‘libf2c’. It will likely be referred to, and, if installed as a distinct library,
named libg77, or some other as-yet-unused name.)

11.2 Compilers Other Than f2c

On systems with Fortran compilers other than f2c and g77, code compiled by g77 is not
expected to work well with code compiled by the native compiler. (This is true for f2c-
compiled objects as well.) Libraries compiled with the native compiler probably will have
to be recompiled with g77 to be used with g77-compiled code.

Reasons for such incompatibilities include:
• There might be differences in the way names of Fortran procedures are translated for

use in the system’s object-file format. For example, the statement ‘CALL FOO’ might be
compiled by g77 to call a procedure the linker ld sees given the name ‘_foo_’, while
the apparently corresponding statement ‘SUBROUTINE FOO’ might be compiled by the
native compiler to define the linker-visible name ‘_foo’, or ‘_FOO_’, and so on.

• There might be subtle type mismatches which cause subroutine arguments and function
return values to get corrupted.
This is why simply getting g77 to transform procedure names the same way a native
compiler does is not usually a good idea—unless some effort has been made to ensure
that, aside from the way the two compilers transform procedure names, everything else
about the way they generate code for procedure interfaces is identical.

• Native compilers use libraries of private I/O routines which will not be available at
link time unless you have the native compiler—and you would have to explicitly ask
for them.

Chapter 11: Other Compilers 245

For example, on the Sun you would have to add ‘-L/usr/lang/SCx.x -lF77 -lV77’ to
the link command.

246 Using and Porting GNU Fortran

Chapter 12: Other Languages 247

12 Other Languages

Note: This portion of the documentation definitely needs a lot of work!

12.1 Tools and advice for interoperating with C and C++

The following discussion assumes that you are running g77 in f2c compatibility mode,
i.e. not using ‘-fno-f2c’. It provides some advice about quick and simple techniques for
linking Fortran and C (or C++), the most common requirement. For the full story consult
the description of code generation. See Chapter 13 [Debugging and Interfacing], page 251.

When linking Fortran and C, it’s usually best to use g77 to do the linking so that the
correct libraries are included (including the maths one). If you’re linking with C++ you will
want to add ‘-lstdc++’, ‘-lg++’ or whatever. If you need to use another driver program
(or ld directly), you can find out what linkage options g77 passes by running ‘g77 -v’.

12.1.1 C Interfacing Tools

Even if you don’t actually use it as a compiler, f2c from ftp://ftp.netlib.org/f2c/src,
can be a useful tool when you’re interfacing (linking) Fortran and C. See Section 12.1.3
[Generating Skeletons and Prototypes with f2c], page 247.

To use f2c for this purpose you only need retrieve and build the ‘src’ directory from
the distribution, consult the ‘README’ instructions there for machine-specifics, and install
the f2c program on your path.

Something else that might be useful is ‘cfortran.h’ from ftp://zebra.desy.de/cfortran.
This is a fairly general tool which can be used to generate interfaces for calling in both
directions between Fortran and C. It can be used in f2c mode with g77—consult its
documentation for details.

12.1.2 Accessing Type Information in C

Generally, C code written to link with g77 code—calling and/or being called from Fortran—
should ‘#include <g2c.h>’ to define the C versions of the Fortran types. Don’t assume
Fortran INTEGER types correspond to C ints, for instance; instead, declare them as integer,
a type defined by ‘g2c.h’. ‘g2c.h’ is installed where gcc will find it by default, assuming
you use a copy of gcc compatible with g77, probably built at the same time as g77.

12.1.3 Generating Skeletons and Prototypes with f2c

A simple and foolproof way to write g77-callable C routines—e.g. to interface with an ex-
isting library—is to write a file (named, for example, ‘fred.f’) of dummy Fortran skeletons
comprising just the declaration of the routine(s) and dummy arguments plus END statements.
Then run f2c on file ‘fred.f’ to produce ‘fred.c’ into which you can edit useful code, con-
fident the calling sequence is correct, at least. (There are some errors otherwise commonly
made in generating C interfaces with f2c conventions, such as not using doublereal as the
return type of a REAL FUNCTION.)

248 Using and Porting GNU Fortran

f2c also can help with calling Fortran from C, using its ‘-P’ option to generate C pro-
totypes appropriate for calling the Fortran.1 If the Fortran code containing any routines
to be called from C is in file ‘joe.f’, use the command f2c -P joe.f to generate the file
‘joe.P’ containing prototype information. #include this in the C which has to call the
Fortran routines to make sure you get it right.

See Section 13.8 [Arrays (DIMENSION)], page 255, for information on the differences
between the way Fortran (including compilers like g77) and C handle arrays.

12.1.4 C++ Considerations

f2c can be used to generate suitable code for compilation with a C++ system using the
‘-C++’ option. The important thing about linking g77-compiled code with C++ is that the
prototypes for the g77 routines must specify C linkage to avoid name mangling. So, use
an ‘extern "C"’ declaration. f2c’s ‘-C++’ option will not take care of this when generating
skeletons or prototype files as above, however, it will avoid clashes with C++ reserved words
in addition to those in C.

12.1.5 Startup Code

Unlike with some runtime systems, it shouldn’t be necessary (unless there are bugs) to
use a Fortran main program unit to ensure the runtime—specifically the I/O system—is
initialized.

However, to use the g77 intrinsics GETARG and IARGC, either the main routine from the
‘libg2c’ library must be used, or the f_setarg routine (new as of egcs version 1.1 and
g77 version 0.5.23) must be called with the appropriate argc and argv arguments prior to
the program calling GETARG or IARGC.

To provide more flexibility for mixed-language programming involving g77 while allowing
for shared libraries, as of egcs version 1.1 and g77 version 0.5.23, g77’s main routine in
libg2c does the following, in order:

1. Calls f_setarg with the incoming argc and argv arguments, in the same order as for
main itself.

This sets up the command-line environment for GETARG and IARGC.

2. Calls f_setsig (with no arguments).

This sets up the signaling and exception environment.

3. Calls f_init (with no arguments).

This initializes the I/O environment, though that should not be necessary, as all I/O
functions in libf2c are believed to call f_init automatically, if necessary.

(A future version of g77 might skip this explicit step, to speed up normal exit of a
program.)

1 The files generated like this can also be used for inter-unit consistency checking of dummy
and actual arguments, although the ftnchek tool from ftp://ftp.netlib.org/fortran or
ftp://ftp.dsm.fordham.edu is probably better for this purpose.

Chapter 12: Other Languages 249

4. Arranges for f_exit to be called (with no arguments) when the program exits.
This ensures that the I/O environment is properly shut down before the program exits
normally. Otherwise, output buffers might not be fully flushed, scratch files might not
be deleted, and so on.
The simple way main does this is to call f_exit itself after calling MAIN__ (in the next
step).
However, this does not catch the cases where the program might call exit directly,
instead of using the EXIT intrinsic (implemented as exit_ in libf2c).
So, main attempts to use the operating environment’s onexit or atexit facility, if
available, to cause f_exit to be called automatically upon any invocation of exit.

5. Calls MAIN__ (with no arguments).
This starts executing the Fortran main program unit for the application. (Both g77
and f2c currently compile a main program unit so that its global name is MAIN__.)

6. If no onexit or atexit is provided by the system, calls f_exit.
7. Calls exit with a zero argument, to signal a successful program termination.
8. Returns a zero value to the caller, to signal a successful program termination, in case

exit doesn’t exit on the system.

All of the above names are C extern names, i.e. not mangled.
When using the main procedure provided by g77 without a Fortran main program unit,

you need to provide MAIN__ as the entry point for your C code. (Make sure you link the
object file that defines that entry point with the rest of your program.)

To provide your own main procedure in place of g77’s, make sure you specify the object
file defining that procedure before ‘-lg2c’ on the g77 command line. Since the ‘-lg2c’
option is implicitly provided, this is usually straightforward. (Use the ‘--verbose’ option
to see how and where g77 implicitly adds ‘-lg2c’ in a command line that will link the
program. Feel free to specify ‘-lg2c’ explicitly, as appropriate.)

However, when providing your own main, make sure you perform the appropriate tasks
in the appropriate order. For example, if your main does not call f_setarg, make sure the
rest of your application does not call GETARG or IARGC.

And, if your main fails to ensure that f_exit is called upon program exit, some files
might end up incompletely written, some scratch files might be left lying around, and some
existing files being written might be left with old data not properly truncated at the end.

Note that, generally, the g77 operating environment does not depend on a procedure
named MAIN__ actually being called prior to any other g77-compiled code. That is, MAIN__
does not, itself, set up any important operating-environment characteristics upon which
other code might depend. This might change in future versions of g77, with appropriate
notification in the release notes.

For more information, consult the source code for the above routines. These are
in ‘gcc/libf2c/libF77/’, named ‘main.c’, ‘setarg.c’, ‘setsig.c’, ‘getarg_.c’, and
‘iargc_.c’.

Also, the file ‘gcc/gcc/f/com.c’ contains the code g77 uses to open-code (inline) refer-
ences to IARGC.

250 Using and Porting GNU Fortran

Chapter 13: Debugging and Interfacing 251

13 Debugging and Interfacing

GNU Fortran currently generates code that is object-compatible with the f2c converter.
Also, it avoids limitations in the current GBE, such as the inability to generate a procedure
with multiple entry points, by generating code that is structured differently (in terms of
procedure names, scopes, arguments, and so on) than might be expected.

As a result, writing code in other languages that calls on, is called by, or shares in-
memory data with g77-compiled code generally requires some understanding of the way
g77 compiles code for various constructs.

Similarly, using a debugger to debug g77-compiled code, even if that debugger supports
native Fortran debugging, generally requires this sort of information.

This section describes some of the basic information on how g77 compiles code for
constructs involving interfaces to other languages and to debuggers.

Caution: Much or all of this information pertains to only the current release of g77,
sometimes even to using certain compiler options with g77 (such as ‘-fno-f2c’). Do not
write code that depends on this information without clearly marking said code as non-
portable and subject to review for every new release of g77. This information is provided
primarily to make debugging of code generated by this particular release of g77 easier for
the user, and partly to make writing (generally nonportable) interface code easier. Both of
these activities require tracking changes in new version of g77 as they are installed, because
new versions can change the behaviors described in this section.

13.1 Main Program Unit (PROGRAM)

When g77 compiles a main program unit, it gives it the public procedure name MAIN__.
The libg2c library has the actual main() procedure as is typical of C-based environments,
and it is this procedure that performs some initial start-up activity and then calls MAIN__.

Generally, g77 and libg2c are designed so that you need not include a main program
unit written in Fortran in your program—it can be written in C or some other language.
Especially for I/O handling, this is the case, although g77 version 0.5.16 includes a bug fix
for libg2c that solved a problem with using the OPEN statement as the first Fortran I/O
activity in a program without a Fortran main program unit.

However, if you don’t intend to use g77 (or f2c) to compile your main program
unit—that is, if you intend to compile a main() procedure using some other language—you
should carefully examine the code for main() in libg2c, found in the source file
‘gcc/libf2c/libF77/main.c’, to see what kinds of things might need to be done by your
main() in order to provide the Fortran environment your Fortran code is expecting.

For example, libg2c’s main() sets up the information used by the IARGC and GETARG
intrinsics. Bypassing libg2c’s main() without providing a substitute for this activity would
mean that invoking IARGC and GETARG would produce undefined results.

When debugging, one implication of the fact that main(), which is the place where the
debugged program “starts” from the debugger’s point of view, is in libg2c is that you
won’t be starting your Fortran program at a point you recognize as your Fortran code.

252 Using and Porting GNU Fortran

The standard way to get around this problem is to set a break point (a one-time, or
temporary, break point will do) at the entrance to MAIN__, and then run the program. A
convenient way to do so is to add the gdb command

tbreak MAIN__

to the file ‘.gdbinit’ in the directory in which you’re debugging (using gdb).
After doing this, the debugger will see the current execution point of the program as at

the beginning of the main program unit of your program.
Of course, if you really want to set a break point at some other place in your program

and just start the program running, without first breaking at MAIN__, that should work
fine.

13.2 Procedures (SUBROUTINE and FUNCTION)

Currently, g77 passes arguments via reference—specifically, by passing a pointer to the
location in memory of a variable, array, array element, a temporary location that holds the
result of evaluating an expression, or a temporary or permanent location that holds the
value of a constant.

Procedures that accept CHARACTER arguments are implemented by g77 so that each
CHARACTER argument has two actual arguments.

The first argument occupies the expected position in the argument list and has the
user-specified name. This argument is a pointer to an array of characters, passed by the
caller.

The second argument is appended to the end of the user-specified calling sequence and
is named ‘__g77_length_x ’, where x is the user-specified name. This argument is of the C
type ftnlen (see ‘gcc/libf2c/g2c.h.in’ for information on that type) and is the number
of characters the caller has allocated in the array pointed to by the first argument.

A procedure will ignore the length argument if ‘X’ is not declared CHARACTER*(*), be-
cause for other declarations, it knows the length. Not all callers necessarily “know” this,
however, which is why they all pass the extra argument.

The contents of the CHARACTER argument are specified by the address passed in the first
argument (named after it). The procedure can read or write these contents as appropriate.

When more than one CHARACTER argument is present in the argument list, the
length arguments are appended in the order the original arguments appear. So ‘CALL
FOO(’HI’,’THERE’)’ is implemented in C as ‘foo("hi","there",2,5);’, ignoring the
fact that g77 does not provide the trailing null bytes on the constant strings (f2c does
provide them, but they are unnecessary in a Fortran environment, and you should not
expect them to be there).

Note that the above information applies to CHARACTER variables and arrays only. It does
not apply to external CHARACTER functions or to intrinsic CHARACTER functions. That is, no
second length argument is passed to ‘FOO’ in this case:

CHARACTER X
EXTERNAL X
CALL FOO(X)

Nor does ‘FOO’ expect such an argument in this case:

Chapter 13: Debugging and Interfacing 253

SUBROUTINE FOO(X)
CHARACTER X
EXTERNAL X

Because of this implementation detail, if a program has a bug such that there is disagree-
ment as to whether an argument is a procedure, and the type of the argument is CHARACTER,
subtle symptoms might appear.

13.3 Functions (FUNCTION and RETURN)

g77 handles in a special way functions that return the following types:
• CHARACTER

• COMPLEX

• REAL(KIND=1)

For CHARACTER, g77 implements a subroutine (a C function returning void) with two
arguments prepended: ‘__g77_result’, which the caller passes as a pointer to a char
array expected to hold the return value, and ‘__g77_length’, which the caller passes as an
ftnlen value specifying the length of the return value as declared in the calling program.
For CHARACTER*(*), the called function uses ‘__g77_length’ to determine the size of the
array that ‘__g77_result’ points to; otherwise, it ignores that argument.

For COMPLEX, when ‘-ff2c’ is in force, g77 implements a subroutine with one argument
prepended: ‘__g77_result’, which the caller passes as a pointer to a variable of the type
of the function. The called function writes the return value into this variable instead of
returning it as a function value. When ‘-fno-f2c’ is in force, g77 implements a COMPLEX
function as gcc’s ‘__complex__ float’ or ‘__complex__ double’ function (or an emulation
thereof, when ‘-femulate-complex’ is in effect), returning the result of the function in the
same way as gcc would.

For REAL(KIND=1), when ‘-ff2c’ is in force, g77 implements a function that actu-
ally returns REAL(KIND=2) (typically C’s double type). When ‘-fno-f2c’ is in force,
REAL(KIND=1) functions return float.

13.4 Names

Fortran permits each implementation to decide how to represent names as far as how they’re
seen in other contexts, such as debuggers and when interfacing to other languages, and
especially as far as how casing is handled.

External names—names of entities that are public, or “accessible”, to all modules in
a program—normally have an underscore (‘_’) appended by g77, to generate code that
is compatible with f2c. External names include names of Fortran things like common
blocks, external procedures (subroutines and functions, but not including statement func-
tions, which are internal procedures), and entry point names.

However, use of the ‘-fno-underscoring’ option disables this kind of transformation
of external names (though inhibiting the transformation certainly improves the chances
of colliding with incompatible externals written in other languages—but that might be
intentional.

254 Using and Porting GNU Fortran

When ‘-funderscoring’ is in force, any name (external or local) that already has at
least one underscore in it is implemented by g77 by appending two underscores. (This
second underscore can be disabled via the ‘-fno-second-underscore’ option.) External
names are changed this way for f2c compatibility. Local names are changed this way to
avoid collisions with external names that are different in the source code—f2c does the same
thing, but there’s no compatibility issue there except for user expectations while debugging.

For example:
Max_Cost = 0

Here, a user would, in the debugger, refer to this variable using the name ‘max_cost__’ (or
‘MAX_COST__’ or ‘Max_Cost__’, as described below). (We hope to improve g77 in this regard
in the future—don’t write scripts depending on this behavior! Also, consider experimenting
with the ‘-fno-underscoring’ option to try out debugging without having to massage
names by hand like this.)

g77 provides a number of command-line options that allow the user to control how case
mapping is handled for source files. The default is the traditional UNIX model for Fortran
compilers—names are mapped to lower case. Other command-line options can be specified
to map names to upper case, or to leave them exactly as written in the source file.

For example:
Foo = 9.436

Here, it is normally the case that the variable assigned will be named ‘foo’. This would be
the name to enter when using a debugger to access the variable.

However, depending on the command-line options specified, the name implemented by
g77 might instead be ‘FOO’ or even ‘Foo’, thus affecting how debugging is done.

Also:
Call Foo

This would normally call a procedure that, if it were in a separate C program, be defined
starting with the line:

void foo_()

However, g77 command-line options could be used to change the casing of names, result-
ing in the name ‘FOO_’ or ‘Foo_’ being given to the procedure instead of ‘foo_’, and the
‘-fno-underscoring’ option could be used to inhibit the appending of the underscore to
the name.

13.5 Common Blocks (COMMON)

g77 names and lays out COMMON areas the same way f2c does, for compatibility with f2c.

13.6 Local Equivalence Areas (EQUIVALENCE)

g77 treats storage-associated areas involving a COMMON block as explained in the section on
common blocks.

A local EQUIVALENCE area is a collection of variables and arrays connected to each other
in any way via EQUIVALENCE, none of which are listed in a COMMON statement.

Chapter 13: Debugging and Interfacing 255

(Note: g77 version 0.5.18 and earlier chose the name for x using a different method
when more than one name was in the list of names of entities placed at the beginning of the
array. Though the documentation specified that the first name listed in the EQUIVALENCE
statements was chosen for x, g77 in fact chose the name using a method that was so
complicated, it seemed easier to change it to an alphabetical sort than to describe the
previous method in the documentation.)

13.7 Complex Variables (COMPLEX)

As of 0.5.20, g77 defaults to handling COMPLEX types (and related intrinsics, constants,
functions, and so on) in a manner that makes direct debugging involving these types in
Fortran language mode difficult.

Essentially, g77 implements these types using an internal construct similar to C’s struct,
at least as seen by the gcc back end.

Currently, the back end, when outputting debugging info with the compiled code for the
assembler to digest, does not detect these struct types as being substitutes for Fortran
complex. As a result, the Fortran language modes of debuggers such as gdb see these types
as C struct types, which they might or might not support.

Until this is fixed, switch to C language mode to work with entities of COMPLEX type and
then switch back to Fortran language mode afterward. (In gdb, this is accomplished via
‘set lang c’ and either ‘set lang fortran’ or ‘set lang auto’.)

13.8 Arrays (DIMENSION)

Fortran uses “column-major ordering” in its arrays. This differs from other languages,
such as C, which use “row-major ordering”. The difference is that, with Fortran, array
elements adjacent to each other in memory differ in the first subscript instead of the last;
‘A(5,10,20)’ immediately follows ‘A(4,10,20)’, whereas with row-major ordering it would
follow ‘A(5,10,19)’.

This consideration affects not only interfacing with and debugging Fortran code, it can
greatly affect how code is designed and written, especially when code speed and size is a
concern.

Fortran also differs from C, a popular language for interfacing and to support directly
in debuggers, in the way arrays are treated. In C, arrays are single-dimensional and have
interesting relationships to pointers, neither of which is true for Fortran. As a result, dealing
with Fortran arrays from within an environment limited to C concepts can be challenging.

For example, accessing the array element ‘A(5,10,20)’ is easy enough in Fortran (use
‘A(5,10,20)’), but in C some difficult machinations are needed. First, C would treat the
A array as a single-dimension array. Second, C does not understand low bounds for arrays
as does Fortran. Third, C assumes a low bound of zero (0), while Fortran defaults to a low
bound of one (1) and can supports an arbitrary low bound. Therefore, calculations must be
done to determine what the C equivalent of ‘A(5,10,20)’ would be, and these calculations
require knowing the dimensions of ‘A’.

For ‘DIMENSION A(2:11,21,0:29)’, the calculation of the offset of ‘A(5,10,20)’ would
be:

256 Using and Porting GNU Fortran

(5-2)
+ (10-1)*(11-2+1)
+ (20-0)*(11-2+1)*(21-1+1)
= 4293

So the C equivalent in this case would be ‘a[4293]’.
When using a debugger directly on Fortran code, the C equivalent might not work,

because some debuggers cannot understand the notion of low bounds other than zero.
However, unlike f2c, g77 does inform the GBE that a multi-dimensional array (like ‘A’ in
the above example) is really multi-dimensional, rather than a single-dimensional array, so
at least the dimensionality of the array is preserved.

Debuggers that understand Fortran should have no trouble with nonzero low bounds,
but for non-Fortran debuggers, especially C debuggers, the above example might have a
C equivalent of ‘a[4305]’. This calculation is arrived at by eliminating the subtraction
of the lower bound in the first parenthesized expression on each line—that is, for ‘(5-2)’
substitute ‘(5)’, for ‘(10-1)’ substitute ‘(10)’, and for ‘(20-0)’ substitute ‘(20)’. Actually,
the implication of this can be that the expression ‘*(&a[2][1][0] + 4293)’ works fine, but
that ‘a[20][10][5]’ produces the equivalent of ‘*(&a[0][0][0] + 4305)’ because of the
missing lower bounds.

Come to think of it, perhaps the behavior is due to the debugger internally compensating
for the lower bounds by offsetting the base address of ‘a’, leaving ‘&a’ set lower, in this case,
than ‘&a[2][1][0]’ (the address of its first element as identified by subscripts equal to the
corresponding lower bounds).

You know, maybe nobody really needs to use arrays.

13.9 Adjustable Arrays (DIMENSION)

Adjustable and automatic arrays in Fortran require the implementation (in this case, the g77
compiler) to “memorize” the expressions that dimension the arrays each time the procedure
is invoked. This is so that subsequent changes to variables used in those expressions, made
during execution of the procedure, do not have any effect on the dimensions of those arrays.

For example:
REAL ARRAY(5)
DATA ARRAY/5*2/
CALL X(ARRAY, 5)
END
SUBROUTINE X(A, N)
DIMENSION A(N)
N = 20
PRINT *, N, A
END

Here, the implementation should, when running the program, print something like:
20 2. 2. 2. 2. 2.

Note that this shows that while the value of ‘N’ was successfully changed, the size of the ‘A’
array remained at 5 elements.

Chapter 13: Debugging and Interfacing 257

To support this, g77 generates code that executes before any user code (and before the
internally generated computed GOTO to handle alternate entry points, as described below)
that evaluates each (nonconstant) expression in the list of subscripts for an array, and saves
the result of each such evaluation to be used when determining the size of the array (instead
of re-evaluating the expressions).

So, in the above example, when ‘X’ is first invoked, code is executed that copies the
value of ‘N’ to a temporary. And that same temporary serves as the actual high bound for
the single dimension of the ‘A’ array (the low bound being the constant 1). Since the user
program cannot (legitimately) change the value of the temporary during execution of the
procedure, the size of the array remains constant during each invocation.

For alternate entry points, the code g77 generates takes into account the possibility that
a dummy adjustable array is not actually passed to the actual entry point being invoked
at that time. In that case, the public procedure implementing the entry point passes to
the master private procedure implementing all the code for the entry points a NULL pointer
where a pointer to that adjustable array would be expected. The g77-generated code doesn’t
attempt to evaluate any of the expressions in the subscripts for an array if the pointer to that
array is NULL at run time in such cases. (Don’t depend on this particular implementation
by writing code that purposely passes NULL pointers where the callee expects adjustable
arrays, even if you know the callee won’t reference the arrays—nor should you pass NULL
pointers for any dummy arguments used in calculating the bounds of such arrays or leave
undefined any values used for that purpose in COMMON—because the way g77 implements
these things might change in the future!)

13.10 Alternate Entry Points (ENTRY)

The GBE does not understand the general concept of alternate entry points as Fortran
provides via the ENTRY statement. g77 gets around this by using an approach to compiling
procedures having at least one ENTRY statement that is almost identical to the approach
used by f2c. (An alternate approach could be used that would probably generate faster,
but larger, code that would also be a bit easier to debug.)

Information on how g77 implements ENTRY is provided for those trying to debug such
code. The choice of implementation seems unlikely to affect code (compiled in other lan-
guages) that interfaces to such code.

g77 compiles exactly one public procedure for the primary entry point of a procedure
plus each ENTRY point it specifies, as usual. That is, in terms of the public interface, there
is no difference between

SUBROUTINE X
END
SUBROUTINE Y
END

and:

SUBROUTINE X
ENTRY Y
END

258 Using and Porting GNU Fortran

The difference between the above two cases lies in the code compiled for the ‘X’ and ‘Y’
procedures themselves, plus the fact that, for the second case, an extra internal procedure
is compiled.

For every Fortran procedure with at least one ENTRY statement, g77 compiles an extra
procedure named ‘__g77_masterfun_x ’, where x is the name of the primary entry point
(which, in the above case, using the standard compiler options, would be ‘x_’ in C).

This extra procedure is compiled as a private procedure—that is, a procedure not ac-
cessible by name to separately compiled modules. It contains all the code in the program
unit, including the code for the primary entry point plus for every entry point. (The code
for each public procedure is quite short, and explained later.)

The extra procedure has some other interesting characteristics.
The argument list for this procedure is invented by g77. It contains a single integer

argument named ‘__g77_which_entrypoint’, passed by value (as in Fortran’s ‘%VAL()’
intrinsic), specifying the entry point index—0 for the primary entry point, 1 for the first
entry point (the first ENTRY statement encountered), 2 for the second entry point, and so
on.

It also contains, for functions returning CHARACTER and (when ‘-ff2c’ is in effect)
COMPLEX functions, and for functions returning different types among the ENTRY statements
(e.g. ‘REAL FUNCTION R()’ containing ‘ENTRY I()’), an argument named ‘__g77_result’
that is expected at run time to contain a pointer to where to store the result of the entry
point. For CHARACTER functions, this storage area is an array of the appropriate number
of characters; for COMPLEX functions, it is the appropriate area for the return type; for
multiple-return-type functions, it is a union of all the supported return types (which cannot
include CHARACTER, since combining CHARACTER and non-CHARACTER return types via ENTRY
in a single function is not supported by g77).

For CHARACTER functions, the ‘__g77_result’ argument is followed by yet another argu-
ment named ‘__g77_length’ that, at run time, specifies the caller’s expected length of the
returned value. Note that only CHARACTER*(*) functions and entry points actually make
use of this argument, even though it is always passed by all callers of public CHARACTER func-
tions (since the caller does not generally know whether such a function is CHARACTER*(*)
or whether there are any other callers that don’t have that information).

The rest of the argument list is the union of all the arguments specified for all the entry
points (in their usual forms, e.g. CHARACTER arguments have extra length arguments, all
appended at the end of this list). This is considered the “master list” of arguments.

The code for this procedure has, before the code for the first executable statement, code
much like that for the following Fortran statement:

GOTO (100000,100001,100002), __g77_which_entrypoint

100000 ...code for primary entry point...

100001 ...code immediately following first ENTRY statement...

100002 ...code immediately following second ENTRY statement...

(Note that invalid Fortran statement labels and variable names are used in the above ex-
ample to highlight the fact that it represents code generated by the g77 internals, not code
to be written by the user.)

It is this code that, when the procedure is called, picks which entry point to start
executing.

Chapter 13: Debugging and Interfacing 259

Getting back to the public procedures (‘x’ and ‘Y’ in the original example), those proce-
dures are fairly simple. Their interfaces are just like they would be if they were self-contained
procedures (without ENTRY), of course, since that is what the callers expect. Their code
consists of simply calling the private procedure, described above, with the appropriate extra
arguments (the entry point index, and perhaps a pointer to a multiple-type- return vari-
able, local to the public procedure, that contains all the supported returnable non-character
types). For arguments that are not listed for a given entry point that are listed for other en-
try points, and therefore that are in the “master list” for the private procedure, null pointers
(in C, the NULL macro) are passed. Also, for entry points that are part of a multiple-type-
returning function, code is compiled after the call of the private procedure to extract from
the multi-type union the appropriate result, depending on the type of the entry point in
question, returning that result to the original caller.

When debugging a procedure containing alternate entry points, you can either set a
break point on the public procedure itself (e.g. a break point on ‘X’ or ‘Y’) or on the private
procedure that contains most of the pertinent code (e.g. ‘__g77_masterfun_x ’). If you
do the former, you should use the debugger’s command to “step into” the called procedure
to get to the actual code; with the latter approach, the break point leaves you right at
the actual code, skipping over the public entry point and its call to the private procedure
(unless you have set a break point there as well, of course).

Further, the list of dummy arguments that is visible when the private procedure is active
is going to be the expanded version of the list for whichever particular entry point is active,
as explained above, and the way in which return values are handled might well be different
from how they would be handled for an equivalent single-entry function.

13.11 Alternate Returns (SUBROUTINE and RETURN)

Subroutines with alternate returns (e.g. ‘SUBROUTINE X(*)’ and ‘CALL X(*50)’) are imple-
mented by g77 as functions returning the C int type. The actual alternate-return argu-
ments are omitted from the calling sequence. Instead, the caller uses the return value to
do a rough equivalent of the Fortran computed-GOTO statement, as in ‘GOTO (50), X()’ in
the example above (where ‘X’ is quietly declared as an INTEGER(KIND=1) function), and the
callee just returns whatever integer is specified in the RETURN statement for the subroutine
For example, ‘RETURN 1’ is implemented as ‘X = 1’ followed by ‘RETURN’ in C, and ‘RETURN’
by itself is ‘X = 0’ and ‘RETURN’).

13.12 Assigned Statement Labels (ASSIGN and GOTO)

For portability to machines where a pointer (such as to a label, which is how g77 implements
ASSIGN and its relatives, the assigned-GOTO and assigned-FORMAT-I/O statements) is wider
(bitwise) than an INTEGER(KIND=1), g77 uses a different memory location to hold the
ASSIGNed value of a variable than it does the numerical value in that variable, unless the
variable is wide enough (can hold enough bits).

In particular, while g77 implements
I = 10

as, in C notation, ‘i = 10;’, it implements

260 Using and Porting GNU Fortran

ASSIGN 10 TO I

as, in GNU’s extended C notation (for the label syntax), ‘__g77_ASSIGN_I = &&L10;’ (where
‘L10’ is just a massaging of the Fortran label ‘10’ to make the syntax C-like; g77 doesn’t
actually generate the name ‘L10’ or any other name like that, since debuggers cannot access
labels anyway).

While this currently means that an ASSIGN statement does not overwrite the numeric
contents of its target variable, do not write any code depending on this feature. g77
has already changed this implementation across versions and might do so in the future.
This information is provided only to make debugging Fortran programs compiled with
the current version of g77 somewhat easier. If there’s no debugger-visible variable named
‘__g77_ASSIGN_I’ in a program unit that does ‘ASSIGN 10 TO I’, that probably means g77
has decided it can store the pointer to the label directly into ‘I’ itself.

See Section 9.9.7 [Ugly Assigned Labels], page 209, for information on a command-line
option to force g77 to use the same storage for both normal and assigned-label uses of a
variable.

13.13 Run-time Library Errors

The libg2c library currently has the following table to relate error code numbers, returned
in IOSTAT= variables, to messages. This information should, in future versions of this
document, be expanded upon to include detailed descriptions of each message.

In line with good coding practices, any of the numbers in the list below should not be
directly written into Fortran code you write. Instead, make a separate INCLUDE file that
defines PARAMETER names for them, and use those in your code, so you can more easily
change the actual numbers in the future.

The information below is culled from the definition of F_err in ‘f/runtime/libI77/err.c’
in the g77 source tree.

100: "error in format"

101: "illegal unit number"

102: "formatted io not allowed"

103: "unformatted io not allowed"

104: "direct io not allowed"

105: "sequential io not allowed"

106: "can’t backspace file"

107: "null file name"

108: "can’t stat file"

109: "unit not connected"

110: "off end of record"

111: "truncation failed in endfile"

112: "incomprehensible list input"

113: "out of free space"

114: "unit not connected"

115: "read unexpected character"

116: "bad logical input field"

117: "bad variable type"

118: "bad namelist name"

119: "variable not in namelist"

120: "no end record"

121: "variable count incorrect"

122: "subscript for scalar variable"

Chapter 13: Debugging and Interfacing 261

123: "invalid array section"

124: "substring out of bounds"

125: "subscript out of bounds"

126: "can’t read file"

127: "can’t write file"

128: "’new’ file exists"

129: "can’t append to file"

130: "non-positive record number"

131: "I/O started while already doing I/O"

262 Using and Porting GNU Fortran

Chapter 14: Collected Fortran Wisdom 263

14 Collected Fortran Wisdom

Most users of g77 can be divided into two camps:
• Those writing new Fortran code to be compiled by g77.
• Those using g77 to compile existing, “legacy” code.

Users writing new code generally understand most of the necessary aspects of Fortran
to write “mainstream” code, but often need help deciding how to handle problems, such as
the construction of libraries containing BLOCK DATA.

Users dealing with “legacy” code sometimes don’t have much experience with Fortran,
but believe that the code they’re compiling already works when compiled by other compilers
(and might not understand why, as is sometimes the case, it doesn’t work when compiled
by g77).

The following information is designed to help users do a better job coping with existing,
“legacy” Fortran code, and with writing new code as well.

14.1 Advantages Over f2c

Without f2c, g77 would have taken much longer to do and probably not been as good for
quite a while. Sometimes people who notice how much g77 depends on, and documents
encouragement to use, f2c ask why g77 was created if f2c already existed.

This section gives some basic answers to these questions, though it is not intended to be
comprehensive.

14.1.1 Language Extensions

g77 offers several extensions to FORTRAN 77 language that f2c doesn’t:
• Automatic arrays
• CYCLE and EXIT

• Construct names
• SELECT CASE

• KIND= and LEN= notation
• Semicolon as statement separator
• Constant expressions in FORMAT statements (such as ‘FORMAT(I<J>)’, where ‘J’ is a

PARAMETER named constant)
• MvBits intrinsic
• libU77 (Unix-compatibility) library, with routines known to compiler as intrinsics (so

they work even when compiler options are used to change the interfaces used by Fortran
routines)

g77 also implements iterative DO loops so that they work even in the presence of certain
“extreme” inputs, unlike f2c. See Section 14.3 [Loops], page 267.

However, f2c offers a few that g77 doesn’t, such as:
• Intrinsics in PARAMETER statements

264 Using and Porting GNU Fortran

• Array bounds expressions (such as ‘REAL M(N(2))’)
• AUTOMATIC statement

It is expected that g77 will offer some or all of these missing features at some time in
the future.

14.1.2 Diagnostic Abilities

g77 offers better diagnosis of problems in FORMAT statements. f2c doesn’t, for example,
emit any diagnostic for ‘FORMAT(XZFAJG10324)’, leaving that to be diagnosed, at run time,
by the libf2c run-time library.

14.1.3 Compiler Options

g77 offers compiler options that f2c doesn’t, most of which are designed to more easily
accommodate legacy code:
• Two that control the automatic appending of extra underscores to external names
• One that allows dollar signs (‘$’) in symbol names
• A variety that control acceptance of various “ugly” constructs
• Several that specify acceptable use of upper and lower case in the source code
• Many that enable, disable, delete, or hide groups of intrinsics
• One to specify the length of fixed-form source lines (normally 72)
• One to specify the the source code is written in Fortran-90-style free-form

However, f2c offers a few that g77 doesn’t, like an option to have REAL default to
REAL*8. It is expected that g77 will offer all of the missing options pertinent to being a
Fortran compiler at some time in the future.

14.1.4 Compiler Speed

Saving the steps of writing and then rereading C code is a big reason why g77 should be able
to compile code much faster than using f2c in conjunction with the equivalent invocation
of gcc.

However, due to g77’s youth, lots of self-checking is still being performed. As a result,
this improvement is as yet unrealized (though the potential seems to be there for quite a
big speedup in the future). It is possible that, as of version 0.5.18, g77 is noticeably faster
compiling many Fortran source files than using f2c in conjunction with gcc.

14.1.5 Program Speed

g77 has the potential to better optimize code than f2c, even when gcc is used to compile
the output of f2c, because f2c must necessarily translate Fortran into a somewhat lower-
level language (C) that cannot preserve all the information that is potentially useful for
optimization, while g77 can gather, preserve, and transmit that information directly to the
GBE.

Chapter 14: Collected Fortran Wisdom 265

For example, g77 implements ASSIGN and assigned GOTO using direct assignment of
pointers to labels and direct jumps to labels, whereas f2c maps the assigned labels to
integer values and then uses a C switch statement to encode the assigned GOTO statements.

However, as is typical, theory and reality don’t quite match, at least not in all cases, so
it is still the case that f2c plus gcc can generate code that is faster than g77.

Version 0.5.18 of g77 offered default settings and options, via patches to the gcc back
end, that allow for better program speed, though some of these improvements also affected
the performance of programs translated by f2c and then compiled by g77’s version of gcc.

Version 0.5.20 of g77 offers further performance improvements, at least one of which
(alias analysis) is not generally applicable to f2c (though f2c could presumably be changed
to also take advantage of this new capability of the gcc back end, assuming this is made
available in an upcoming release of gcc).

14.1.6 Ease of Debugging

Because g77 compiles directly to assembler code like gcc, instead of translating to an
intermediate language (C) as does f2c, support for debugging can be better for g77 than
f2c.

However, although g77 might be somewhat more “native” in terms of debugging support
than f2c plus gcc, there still are a lot of things “not quite right”. Many of the important
ones should be resolved in the near future.

For example, g77 doesn’t have to worry about reserved names like f2c does. Given
‘FOR = WHILE’, f2c must necessarily translate this to something other than ‘for = while;’,
because C reserves those words.

However, g77 does still uses things like an extra level of indirection for ENTRY-laden
procedures—in this case, because the back end doesn’t yet support multiple entry points.

Another example is that, given
COMMON A, B

EQUIVALENCE (B, C)

the g77 user should be able to access the variables directly, by name, without having to
traverse C-like structures and unions, while f2c is unlikely to ever offer this ability (due to
limitations in the C language).

However, due to apparent bugs in the back end, g77 currently doesn’t take advantage of
this facility at all—it doesn’t emit any debugging information for COMMON and EQUIVALENCE
areas, other than information on the array of char it creates (and, in the case of local
EQUIVALENCE, names) for each such area.

Yet another example is arrays. g77 represents them to the debugger using the same
“dimensionality” as in the source code, while f2c must necessarily convert them all to one-
dimensional arrays to fit into the confines of the C language. However, the level of support
offered by debuggers for interactive Fortran-style access to arrays as compiled by g77 can
vary widely. In some cases, it can actually be an advantage that f2c converts everything
to widely supported C semantics.

In fairness, g77 could do many of the things f2c does to get things working at least
as well as f2c—for now, the developers prefer making g77 work the way they think it is

266 Using and Porting GNU Fortran

supposed to, and finding help improving the other products (the back end of gcc; gdb; and
so on) to get things working properly.

14.1.7 Character and Hollerith Constants

To avoid the extensive hassle that would be needed to avoid this, f2c uses C character
constants to encode character and Hollerith constants. That means a constant like ‘’HELLO’’
is translated to ‘"hello"’ in C, which further means that an extra null byte is present at
the end of the constant. This null byte is superfluous.

g77 does not generate such null bytes. This represents significant savings of resources,
such as on systems where ‘/dev/null’ or ‘/dev/zero’ represent bottlenecks in the systems’
performance, because g77 simply asks for fewer zeros from the operating system than f2c.
(Avoiding spurious use of zero bytes, each byte typically have eight zero bits, also reduces
the liabilities in case Microsoft’s rumored patent on the digits 0 and 1 is upheld.)

14.2 Block Data and Libraries

To ensure that block data program units are linked, especially a concern when they are
put into libraries, give each one a name (as in ‘BLOCK DATA FOO’) and make sure there is
an ‘EXTERNAL FOO’ statement in every program unit that uses any common block initialized
by the corresponding BLOCK DATA. g77 currently compiles a BLOCK DATA as if it were a
SUBROUTINE, that is, it generates an actual procedure having the appropriate name. The
procedure does nothing but return immediately if it happens to be called. For ‘EXTERNAL
FOO’, where ‘FOO’ is not otherwise referenced in the same program unit, g77 assumes there
exists a ‘BLOCK DATA FOO’ in the program and ensures that by generating a reference to it
so the linker will make sure it is present. (Specifically, g77 outputs in the data section a
static pointer to the external name ‘FOO’.)

The implementation g77 currently uses to make this work is one of the few things not
compatible with f2c as currently shipped. f2c currently does nothing with ‘EXTERNAL FOO’
except issue a warning that ‘FOO’ is not otherwise referenced, and, for ‘BLOCK DATA FOO’, f2c
doesn’t generate a dummy procedure with the name ‘FOO’. The upshot is that you shouldn’t
mix f2c and g77 in this particular case. If you use f2c to compile ‘BLOCK DATA FOO’,
then any g77-compiled program unit that says ‘EXTERNAL FOO’ will result in an unresolved
reference when linked. If you do the opposite, then ‘FOO’ might not be linked in under
various circumstances (such as when ‘FOO’ is in a library, or you’re using a “clever” linker—
so clever, it produces a broken program with little or no warning by omitting initializations
of global data because they are contained in unreferenced procedures).

The changes you make to your code to make g77 handle this situation, however, appear to
be a widely portable way to handle it. That is, many systems permit it (as they should, since
the FORTRAN 77 standard permits ‘EXTERNAL FOO’ when ‘FOO’ is a block data program
unit), and of the ones that might not link ‘BLOCK DATA FOO’ under some circumstances, most
of them appear to do so once ‘EXTERNAL FOO’ is present in the appropriate program units.

Here is the recommended approach to modifying a program containing a program unit
such as the following:

Chapter 14: Collected Fortran Wisdom 267

BLOCK DATA FOO

COMMON /VARS/ X, Y, Z

DATA X, Y, Z / 3., 4., 5. /

END

If the above program unit might be placed in a library module, then ensure that every pro-
gram unit in every program that references that particular COMMON area uses the EXTERNAL
statement to force the area to be initialized.

For example, change a program unit that starts with
INTEGER FUNCTION CURX()

COMMON /VARS/ X, Y, Z

CURX = X

END

so that it uses the EXTERNAL statement, as in:
INTEGER FUNCTION CURX()

COMMON /VARS/ X, Y, Z

EXTERNAL FOO

CURX = X

END

That way, ‘CURX’ is compiled by g77 (and many other compilers) so that the linker knows it
must include ‘FOO’, the BLOCK DATA program unit that sets the initial values for the variables
in ‘VAR’, in the executable program.

14.3 Loops

The meaning of a DO loop in Fortran is precisely specified in the Fortran standard. . . and is
quite different from what many programmers might expect.

In particular, Fortran iterative DO loops are implemented as if the number of trips through
the loop is calculated before the loop is entered.

The number of trips for a loop is calculated from the start, end, and increment values
specified in a statement such as:

DO iter = start, end, increment

The trip count is evaluated using a fairly simple formula based on the three values following
the ‘=’ in the statement, and it is that trip count that is effectively decremented during
each iteration of the loop. If, at the beginning of an iteration of the loop, the trip count is
zero or negative, the loop terminates. The per-loop-iteration modifications to iter are not
related to determining whether to terminate the loop.

There are two important things to remember about the trip count:
• It can be negative, in which case it is treated as if it was zero—meaning the loop is not

executed at all.
• The type used to calculate the trip count is the same type as iter, but the final calcu-

lation, and thus the type of the trip count itself, always is INTEGER(KIND=1).

These two items mean that there are loops that cannot be written in straightforward
fashion using the Fortran DO.

For example, on a system with the canonical 32-bit two’s-complement implementation
of INTEGER(KIND=1), the following loop will not work:

268 Using and Porting GNU Fortran

DO I = -2000000000, 2000000000

Although the start and end values are well within the range of INTEGER(KIND=1), the
trip count is not. The expected trip count is 40000000001, which is outside the range of
INTEGER(KIND=1) on many systems.

Instead, the above loop should be constructed this way:
I = -2000000000

DO

IF (I .GT. 2000000000) EXIT

...

I = I + 1

END DO

The simple DO construct and the EXIT statement (used to leave the innermost loop) are F90
features that g77 supports.

Some Fortran compilers have buggy implementations of DO, in that they don’t follow
the standard. They implement DO as a straightforward translation to what, in C, would
be a for statement. Instead of creating a temporary variable to hold the trip count as
calculated at run time, these compilers use the iteration variable iter to control whether
the loop continues at each iteration.

The bug in such an implementation shows up when the trip count is within the range
of the type of iter, but the magnitude of ‘ABS(end) + ABS(incr)’ exceeds that range. For
example:

DO I = 2147483600, 2147483647

A loop started by the above statement will work as implemented by g77, but the use, by
some compilers, of a more C-like implementation akin to

for (i = 2147483600; i <= 2147483647; ++i)

produces a loop that does not terminate, because ‘i’ can never be greater than 2147483647,
since incrementing it beyond that value overflows ‘i’, setting it to -2147483648. This is a
large, negative number that still is less than 2147483647.

Another example of unexpected behavior of DO involves using a nonintegral iteration
variable iter, that is, a REAL variable. Consider the following program:

DATA BEGIN, END, STEP /.1, .31, .007/

DO 10 R = BEGIN, END, STEP

IF (R .GT. END) PRINT *, R, ’ .GT. ’, END, ’!!’

PRINT *,R

10 CONTINUE

PRINT *,’LAST = ’,R

IF (R .LE. END) PRINT *, R, ’ .LE. ’, END, ’!!’

END

A C-like view of DO would hold that the two “exclamatory” PRINT statements are never
executed. However, this is the output of running the above program as compiled by g77 on
a GNU/Linux ix86 system:

.100000001

.107000001

.114

.120999999

...

.289000005

.296000004

Chapter 14: Collected Fortran Wisdom 269

.303000003

LAST = .310000002

.310000002 .LE. .310000002!!

Note that one of the two checks in the program turned up an apparent violation of
the programmer’s expectation—yet, the loop is correctly implemented by g77, in that it
has 30 iterations. This trip count of 30 is correct when evaluated using the floating-point
representations for the begin, end, and incr values (.1, .31, .007) on GNU/Linux ix86 are
used. On other systems, an apparently more accurate trip count of 31 might result, but,
nevertheless, g77 is faithfully following the Fortran standard, and the result is not what
the author of the sample program above apparently expected. (Such other systems might,
for different values in the DATA statement, violate the other programmer’s expectation, for
example.)

Due to this combination of imprecise representation of floating-point values and the
often-misunderstood interpretation of DO by standard-conforming compilers such as g77,
use of DO loops with REAL iteration variables is not recommended. Such use can be caught
by specifying ‘-Wsurprising’. See Section 5.5 [Warning Options], page 40, for more infor-
mation on this option.

14.4 Working Programs

Getting Fortran programs to work in the first place can be quite a challenge—even when
the programs already work on other systems, or when using other compilers.

g77 offers some facilities that might be useful for tracking down bugs in such programs.

14.4.1 Not My Type

A fruitful source of bugs in Fortran source code is use, or mis-use, of Fortran’s implicit-
typing feature, whereby the type of a variable, array, or function is determined by the first
character of its name.

Simple cases of this include statements like ‘LOGX=9.227’, without a statement such as
‘REAL LOGX’. In this case, ‘LOGX’ is implicitly given INTEGER(KIND=1) type, with the result
of the assignment being that it is given the value ‘9’.

More involved cases include a function that is defined starting with a statement like
‘DOUBLE PRECISION FUNCTION IPS(...)’. Any caller of this function that does not also
declare ‘IPS’ as type DOUBLE PRECISION (or, in GNU Fortran, REAL(KIND=2)) is likely to
assume it returns INTEGER, or some other type, leading to invalid results or even program
crashes.

The ‘-Wimplicit’ option might catch failures to properly specify the types of variables,
arrays, and functions in the code.

However, in code that makes heavy use of Fortran’s implicit-typing facility, this option
might produce so many warnings about cases that are working, it would be hard to find
the one or two that represent bugs. This is why so many experienced Fortran programmers
strongly recommend widespread use of the IMPLICIT NONE statement, despite it not being
standard FORTRAN 77, to completely turn off implicit typing. (g77 supports IMPLICIT
NONE, as do almost all FORTRAN 77 compilers.)

270 Using and Porting GNU Fortran

Note that ‘-Wimplicit’ catches only implicit typing of names. It does not catch implicit
typing of expressions such as ‘X**(2/3)’. Such expressions can be buggy as well—in fact,
‘X**(2/3)’ is equivalent to ‘X**0’, due to the way Fortran expressions are given types and
then evaluated. (In this particular case, the programmer probably wanted ‘X**(2./3.)’.)

14.4.2 Variables Assumed To Be Zero

Many Fortran programs were developed on systems that provided automatic initialization
of all, or some, variables and arrays to zero. As a result, many of these programs depend,
sometimes inadvertently, on this behavior, though to do so violates the Fortran standards.

You can ask g77 for this behavior by specifying the ‘-finit-local-zero’ option when
compiling Fortran code. (You might want to specify ‘-fno-automatic’ as well, to avoid
code-size inflation for non-optimized compilations.)

Note that a program that works better when compiled with the ‘-finit-local-zero’
option is almost certainly depending on a particular system’s, or compiler’s, tendency to
initialize some variables to zero. It might be worthwhile finding such cases and fixing them,
using techniques such as compiling with the ‘-O -Wuninitialized’ options using g77.

14.4.3 Variables Assumed To Be Saved

Many Fortran programs were developed on systems that saved the values of all, or some,
variables and arrays across procedure calls. As a result, many of these programs depend,
sometimes inadvertently, on being able to assign a value to a variable, perform a RETURN
to a calling procedure, and, upon subsequent invocation, reference the previously assigned
variable to obtain the value.

They expect this despite not using the SAVE statement to specify that the value in a
variable is expected to survive procedure returns and calls. Depending on variables and
arrays to retain values across procedure calls without using SAVE to require it violates the
Fortran standards.

You can ask g77 to assume SAVE is specified for all relevant (local) variables and arrays
by using the ‘-fno-automatic’ option.

Note that a program that works better when compiled with the ‘-fno-automatic’ option
is almost certainly depending on not having to use the SAVE statement as required by
the Fortran standard. It might be worthwhile finding such cases and fixing them, using
techniques such as compiling with the ‘-O -Wuninitialized’ options using g77.

14.4.4 Unwanted Variables

The ‘-Wunused’ option can find bugs involving implicit typing, sometimes more easily than
using ‘-Wimplicit’ in code that makes heavy use of implicit typing. An unused variable or
array might indicate that the spelling for its declaration is different from that of its intended
uses.

Other than cases involving typos, unused variables rarely indicate actual bugs in a pro-
gram. However, investigating such cases thoroughly has, on occasion, led to the discovery
of code that had not been completely written—where the programmer wrote declarations

Chapter 14: Collected Fortran Wisdom 271

as needed for the whole algorithm, wrote some or even most of the code for that algorithm,
then got distracted and forgot that the job was not complete.

14.4.5 Unused Arguments

As with unused variables, It is possible that unused arguments to a procedure might indicate
a bug. Compile with ‘-W -Wunused’ option to catch cases of unused arguments.

Note that ‘-W’ also enables warnings regarding overflow of floating-point constants under
certain circumstances.

14.4.6 Surprising Interpretations of Code

The ‘-Wsurprising’ option can help find bugs involving expression evaluation or in the
way DO loops with non-integral iteration variables are handled. Cases found by this option
might indicate a difference of interpretation between the author of the code involved, and
a standard-conforming compiler such as g77. Such a difference might produce actual bugs.

In any case, changing the code to explicitly do what the programmer might have expected
it to do, so g77 and other compilers are more likely to follow the programmer’s expectations,
might be worthwhile, especially if such changes make the program work better.

14.4.7 Aliasing Assumed To Work

The ‘-falias-check’, ‘-fargument-alias’, ‘-fargument-noalias’, and
‘-fno-argument-noalias-global’ options, introduced in version 0.5.20 and
g77’s version 2.7.2.2.f.2 of gcc, were withdrawn as of g77 version 0.5.23 due to their not
being supported by gcc version 2.8.

These options control the assumptions regarding aliasing (overlapping) of writes and
reads to main memory (core) made by the gcc back end.

The information below still is useful, but applies to only those versions of g77 that
support the alias analysis implied by support for these options.

These options are effective only when compiling with ‘-O’ (specifying any level other
than ‘-O0’) or with ‘-falias-check’.

The default for Fortran code is ‘-fargument-noalias-global’. (The default for C code
and code written in other C-based languages is ‘-fargument-alias’. These defaults apply
regardless of whether you use g77 or gcc to compile your code.)

Note that, on some systems, compiling with ‘-fforce-addr’ in effect can produce more
optimal code when the default aliasing options are in effect (and when optimization is
enabled).

If your program is not working when compiled with optimization, it is possible it is
violating the Fortran standards (77 and 90) by relying on the ability to “safely” modify
variables and arrays that are aliased, via procedure calls, to other variables and arrays,
without using EQUIVALENCE to explicitly set up this kind of aliasing.

(The FORTRAN 77 standard’s prohibition of this sort of overlap, generally referred
to therein as “storage association”, appears in Sections 15.9.3.6. This prohibition allows

272 Using and Porting GNU Fortran

implementations, such as g77, to, for example, implement the passing of procedures and
even values in COMMON via copy operations into local, perhaps more efficiently accessed
temporaries at entry to a procedure, and, where appropriate, via copy operations back out
to their original locations in memory at exit from that procedure, without having to take
into consideration the order in which the local copies are updated by the code, among other
things.)

To test this hypothesis, try compiling your program with the ‘-fargument-alias’ option,
which causes the compiler to revert to assumptions essentially the same as made by versions
of g77 prior to 0.5.20.

If the program works using this option, that strongly suggests that the bug is in your
program. Finding and fixing the bug(s) should result in a program that is more standard-
conforming and that can be compiled by g77 in a way that results in a faster executable.

(You might want to try compiling with ‘-fargument-noalias’, a kind of half-way
point, to see if the problem is limited to aliasing between dummy arguments and COMMON
variables—this option assumes that such aliasing is not done, while still allowing aliasing
among dummy arguments.)

An example of aliasing that is invalid according to the standards is shown in the following
program, which might not produce the expected results when executed:

I = 1

CALL FOO(I, I)

PRINT *, I

END

SUBROUTINE FOO(J, K)

J = J + K

K = J * K

PRINT *, J, K

END

The above program attempts to use the temporary aliasing of the ‘J’ and ‘K’ arguments
in ‘FOO’ to effect a pathological behavior—the simultaneous changing of the values of both
‘J’ and ‘K’ when either one of them is written.

The programmer likely expects the program to print these values:
2 4
4

However, since the program is not standard-conforming, an implementation’s behavior
when running it is undefined, because subroutine ‘FOO’ modifies at least one of the argu-
ments, and they are aliased with each other. (Even if one of the assignment statements
was deleted, the program would still violate these rules. This kind of on-the-fly aliasing
is permitted by the standard only when none of the aliased items are defined, or written,
while the aliasing is in effect.)

As a practical example, an optimizing compiler might schedule the ‘J =’ part of the
second line of ‘FOO’ after the reading of ‘J’ and ‘K’ for the ‘J * K’ expression, resulting in
the following output:

2 2
2

Essentially, compilers are promised (by the standard and, therefore, by programmers
who write code they claim to be standard-conforming) that if they cannot detect aliasing

Chapter 14: Collected Fortran Wisdom 273

via static analysis of a single program unit’s EQUIVALENCE and COMMON statements, no such
aliasing exists. In such cases, compilers are free to assume that an assignment to one variable
will not change the value of another variable, allowing it to avoid generating code to re-read
the value of the other variable, to re-schedule reads and writes, and so on, to produce a
faster executable.

The same promise holds true for arrays (as seen by the called procedure)—an element of
one dummy array cannot be aliased with, or overlap, any element of another dummy array
or be in a COMMON area known to the procedure.

(These restrictions apply only when the procedure defines, or writes to, one of the aliased
variables or arrays.)

Unfortunately, there is no way to find all possible cases of violations of the prohibitions
against aliasing in Fortran code. Static analysis is certainly imperfect, as is run-time anal-
ysis, since neither can catch all violations. (Static analysis can catch all likely violations,
and some that might never actually happen, while run-time analysis can catch only those
violations that actually happen during a particular run. Neither approach can cope with
programs mixing Fortran code with routines written in other languages, however.)

Currently, g77 provides neither static nor run-time facilities to detect any cases of this
problem, although other products might. Run-time facilities are more likely to be offered
by future versions of g77, though patches improving g77 so that it provides either form of
detection are welcome.

14.4.8 Output Assumed To Flush

For several versions prior to 0.5.20, g77 configured its version of the libf2c run-time library
so that one of its configuration macros, ALWAYS_FLUSH, was defined.

This was done as a result of a belief that many programs expected output to be flushed
to the operating system (under UNIX, via the fflush() library call) with the result that
errors, such as disk full, would be immediately flagged via the relevant ERR= and IOSTAT=
mechanism.

Because of the adverse effects this approach had on the performance of many programs,
g77 no longer configures libf2c (now named libg2c in its g77 incarnation) to always flush
output.

If your program depends on this behavior, either insert the appropriate ‘CALL FLUSH’
statements, or modify the sources to the libg2c, rebuild and reinstall g77, and relink your
programs with the modified library.

(Ideally, libg2c would offer the choice at run-time, so that a compile-time option to g77
or f2c could result in generating the appropriate calls to flushing or non-flushing library
routines.)

Some Fortran programs require output (writes) to be flushed to the operating system
(under UNIX, via the fflush() library call) so that errors, such as disk full, are immediately
flagged via the relevant ERR= and IOSTAT= mechanism, instead of such errors being flagged
later as subsequent writes occur, forcing the previously written data to disk, or when the
file is closed.

274 Using and Porting GNU Fortran

Essentially, the difference can be viewed as synchronous error reporting (immediate
flagging of errors during writes) versus asynchronous, or, more precisely, buffered error
reporting (detection of errors might be delayed).

libg2c supports flagging write errors immediately when it is built with the ALWAYS_
FLUSH macro defined. This results in a libg2c that runs slower, sometimes quite a bit
slower, under certain circumstances—for example, accessing files via the networked file
system NFS—but the effect can be more reliable, robust file I/O.

If you know that Fortran programs requiring this level of precision of error reporting are
to be compiled using the version of g77 you are building, you might wish to modify the g77
source tree so that the version of libg2c is built with the ALWAYS_FLUSH macro defined,
enabling this behavior.

To do this, find this line in ‘gcc/libf2c/f2c.h’ in your g77 source tree:
/* #define ALWAYS_FLUSH */

Remove the leading ‘/* ’, so the line begins with ‘#define’, and the trailing ‘ */’.
Then build or rebuild g77 as appropriate.

14.4.9 Large File Unit Numbers

If your program crashes at run time with a message including the text ‘illegal unit
number’, that probably is a message from the run-time library, libg2c.

The message means that your program has attempted to use a file unit number that is
out of the range accepted by libg2c. Normally, this range is 0 through 99, and the high
end of the range is controlled by a libg2c source-file macro named MXUNIT.

If you can easily change your program to use unit numbers in the range 0 through 99,
you should do so.

As distributed, whether as part of f2c or g77, libf2c accepts file unit numbers only
in the range 0 through 99. For example, a statement such as ‘WRITE (UNIT=100)’ causes a
run-time crash in libf2c, because the unit number, 100, is out of range.

If you know that Fortran programs at your installation require the use of unit num-
bers higher than 99, you can change the value of the MXUNIT macro, which represents the
maximum unit number, to an appropriately higher value.

To do this, edit the file ‘gcc/libf2c/libI77/fio.h’ in your g77 source tree, changing
the following line:

#define MXUNIT 100

Change the line so that the value of MXUNIT is defined to be at least one greater than
the maximum unit number used by the Fortran programs on your system.

(For example, a program that does ‘WRITE (UNIT=255)’ would require MXUNIT set to at
least 256 to avoid crashing.)

Then build or rebuild g77 as appropriate.
Note: Changing this macro has no effect on other limits your system might place on

the number of files open at the same time. That is, the macro might allow a program
to do ‘WRITE (UNIT=100)’, but the library and operating system underlying libf2c might
disallow it if many other files have already been opened (via OPEN or implicitly via READ,

Chapter 14: Collected Fortran Wisdom 275

WRITE, and so on). Information on how to increase these other limits should be found in
your system’s documentation.

14.4.10 Floating-point precision

If your program depends on exact IEEE 754 floating-point handling it may help on some
systems—specifically x86 or m68k hardware—to use the ‘-ffloat-store’ option or to reset
the precision flag on the floating-point unit. See Section 5.7 [Optimize Options], page 44.

However, it might be better simply to put the FPU into double precision mode and
not take the performance hit of ‘-ffloat-store’. On x86 and m68k GNU systems you
can do this with a technique similar to that for turning on floating-point exceptions (see
Section 15.3.29 [Floating-point Exception Handling], page 297). The control word could be
set to double precision by some code like this one:

#include <fpu_control.h>

{

fpu_control_t cw = (_FPU_DEFAULT & ~_FPU_EXTENDED) | _FPU_DOUBLE;

_FPU_SETCW(cw);

}

(It is not clear whether this has any effect on the operation of the GNU maths library,
but we have no evidence of it causing trouble.)

Some targets (such as the Alpha) may need special options for full IEEE conformance.
See section “Hardware Models and Configurations” in Using the GNU Compiler Collection
(GCC).

14.4.11 Inconsistent Calling Sequences

Code containing inconsistent calling sequences in the same file is normally rejected—see
Section 22.5 [GLOBALS], page 356. (Use, say, ftnchek to ensure consistency across source
files. See Section 12.1.3 [Generating Skeletons and Prototypes with f2c], page 247.)

Mysterious errors, which may appear to be code generation problems, can appear specif-
ically on the x86 architecture with some such inconsistencies. On x86 hardware, floating-
point return values of functions are placed on the floating-point unit’s register stack, not
the normal stack. Thus calling a REAL or DOUBLE PRECISION FUNCTION as some other sort
of procedure, or vice versa, scrambles the floating-point stack. This may break unrelated
code executed later. Similarly if, say, external C routines are written incorrectly.

14.5 Overly Convenient Command-line Options

These options should be used only as a quick-and-dirty way to determine how well your
program will run under different compilation models without having to change the source.
Some are more problematic than others, depending on how portable and maintainable you
want the program to be (and, of course, whether you are allowed to change it at all is
crucial).

You should not continue to use these command-line options to compile a given program,
but rather should make changes to the source code:

276 Using and Porting GNU Fortran

-finit-local-zero
(This option specifies that any uninitialized local variables and arrays have
default initialization to binary zeros.)

Many other compilers do this automatically, which means lots of Fortran code
developed with those compilers depends on it.

It is safer (and probably would produce a faster program) to find the variables
and arrays that need such initialization and provide it explicitly via DATA, so
that ‘-finit-local-zero’ is not needed.

Consider using ‘-Wuninitialized’ (which requires ‘-O’) to find likely candi-
dates, but do not specify ‘-finit-local-zero’ or ‘-fno-automatic’, or this
technique won’t work.

-fno-automatic
(This option specifies that all local variables and arrays are to be treated as if
they were named in SAVE statements.)

Many other compilers do this automatically, which means lots of Fortran code
developed with those compilers depends on it.

The effect of this is that all non-automatic variables and arrays are made static,
that is, not placed on the stack or in heap storage. This might cause a buggy
program to appear to work better. If so, rather than relying on this command-
line option (and hoping all compilers provide the equivalent one), add SAVE
statements to some or all program unit sources, as appropriate. Consider us-
ing ‘-Wuninitialized’ (which requires ‘-O’) to find likely candidates, but do
not specify ‘-finit-local-zero’ or ‘-fno-automatic’, or this technique won’t
work.

The default is ‘-fautomatic’, which tells g77 to try and put variables and
arrays on the stack (or in fast registers) where possible and reasonable. This
tends to make programs faster.

Note: Automatic variables and arrays are not affected by this option. These are
variables and arrays that are necessarily automatic, either due to explicit state-
ments, or due to the way they are declared. Examples include local variables
and arrays not given the SAVE attribute in procedures declared RECURSIVE, and
local arrays declared with non-constant bounds (automatic arrays). Currently,
g77 supports only automatic arrays, not RECURSIVE procedures or other means
of explicitly specifying that variables or arrays are automatic.

-fgroup-intrinsics-hide
Change the source code to use EXTERNAL for any external procedure
that might be the name of an intrinsic. It is easy to find these using
‘-fgroup-intrinsics-disable’.

14.6 Faster Programs

Aside from the usual gcc options, such as ‘-O’, ‘-ffast-math’, and so on, consider trying
some of the following approaches to speed up your program (once you get it working).

Chapter 14: Collected Fortran Wisdom 277

14.6.1 Aligned Data

On some systems, such as those with Pentium Pro CPUs, programs that make heavy use
of REAL(KIND=2) (DOUBLE PRECISION) might run much slower than possible due to the
compiler not aligning these 64-bit values to 64-bit boundaries in memory. (The effect also
is present, though to a lesser extent, on the 586 (Pentium) architecture.)

The Intel x86 architecture generally ensures that these programs will work on all its
implementations, but particular implementations (such as Pentium Pro) perform better
with more strict alignment. (Such behavior isn’t unique to the Intel x86 architecture.)
Other architectures might demand 64-bit alignment of 64-bit data.

There are a variety of approaches to use to address this problem:
• Order your COMMON and EQUIVALENCE areas such that the variables and arrays with the

widest alignment guidelines come first.
For example, on most systems, this would mean placing COMPLEX(KIND=2),
REAL(KIND=2), and INTEGER(KIND=2) entities first, followed by REAL(KIND=1),
INTEGER(KIND=1), and LOGICAL(KIND=1) entities, then INTEGER(KIND=6) entities,
and finally CHARACTER and INTEGER(KIND=3) entities.
The reason to use such placement is it makes it more likely that your data will be aligned
properly, without requiring you to do detailed analysis of each aggregate (COMMON and
EQUIVALENCE) area.
Specifically, on systems where the above guidelines are appropriate, placing CHARACTER
entities before REAL(KIND=2) entities can work just as well, but only if the number of
bytes occupied by the CHARACTER entities is divisible by the recommended alignment
for REAL(KIND=2).
By ordering the placement of entities in aggregate areas according to the simple guide-
lines above, you avoid having to carefully count the number of bytes occupied by each
entity to determine whether the actual alignment of each subsequent entity meets the
alignment guidelines for the type of that entity.
If you don’t ensure correct alignment of COMMON elements, the compiler may be forced
by some systems to violate the Fortran semantics by adding padding to get DOUBLE
PRECISION data properly aligned. If the unfortunate practice is employed of overlaying
different types of data in the COMMON block, the different variants of this block may
become misaligned with respect to each other. Even if your platform doesn’t require
strict alignment, COMMON should be laid out as above for portability. (Unfortunately the
FORTRAN 77 standard didn’t anticipate this possible requirement, which is compiler-
independent on a given platform.)

• Use the (x86-specific) ‘-malign-double’ option when compiling programs for the Pen-
tium and Pentium Pro architectures (called 586 and 686 in the gcc configuration sub-
system). The warning about this in the gcc manual isn’t generally relevant to Fortran,
but using it will force COMMON to be padded if necessary to align DOUBLE PRECISION
data.
When DOUBLE PRECISION data is forcibly aligned in COMMON by g77 due to specifying
‘-malign-double’, g77 issues a warning about the need to insert padding.
In this case, each and every program unit that uses the same COMMON area must spec-
ify the same layout of variables and their types for that area and be compiled with

278 Using and Porting GNU Fortran

‘-malign-double’ as well. g77 will issue warnings in each case, but as long as ev-
ery program unit using that area is compiled with the same warnings, the resulting
object files should work when linked together unless the program makes additional as-
sumptions about COMMON area layouts that are outside the scope of the FORTRAN 77
standard, or uses EQUIVALENCE or different layouts in ways that assume no padding is
ever inserted by the compiler.

• Ensure that ‘crt0.o’ or ‘crt1.o’ on your system guarantees a 64-bit aligned stack
for main(). The recent one from GNU (glibc2) will do this on x86 systems, but
we don’t know of any other x86 setups where it will be right. Read your system’s
documentation to determine if it is appropriate to upgrade to a more recent version to
obtain the optimal alignment.

Progress is being made on making this work “out of the box” on future versions of g77,
gcc, and some of the relevant operating systems (such as GNU/Linux).

14.6.2 Prefer Automatic Uninitialized Variables

If you’re using ‘-fno-automatic’ already, you probably should change your code to allow
compilation with ‘-fautomatic’ (the default), to allow the program to run faster.

Similarly, you should be able to use ‘-fno-init-local-zero’ (the default) instead of
‘-finit-local-zero’. This is because it is rare that every variable affected by these options
in a given program actually needs to be so affected.

For example, ‘-fno-automatic’, which effectively SAVEs every local non-automatic vari-
able and array, affects even things like DO iteration variables, which rarely need to be SAVEd,
and this often reduces run-time performances. Similarly, ‘-fno-init-local-zero’ forces
such variables to be initialized to zero—when SAVEd (such as when ‘-fno-automatic’), this
by itself generally affects only startup time for a program, but when not SAVEd, it can slow
down the procedure every time it is called.

See Section 14.5 [Overly Convenient Command-Line Options], page 275, for information
on the ‘-fno-automatic’ and ‘-finit-local-zero’ options and how to convert their use
into selective changes in your own code.

14.6.3 Avoid f2c Compatibility

If you aren’t linking with any code compiled using f2c, try using the ‘-fno-f2c’ option
when compiling all the code in your program. (Note that libf2c is not an example of code
that is compiled using f2c—it is compiled by a C compiler, typically gcc.)

14.6.4 Use Submodel Options

Using an appropriate ‘-m’ option to generate specific code for your CPU may be worthwhile,
though it may mean the executable won’t run on other versions of the CPU that don’t
support the same instruction set. See section “Hardware Models and Configurations” in
Using the GNU Compiler Collection (GCC). For instance on an x86 system the compiler
might have been built—as shown by ‘g77 -v’—for the target ‘i386-pc-linux-gnu’, i.e. an

Chapter 14: Collected Fortran Wisdom 279

‘i386’ CPU. In that case to generate code best optimized for a Pentium you could use the
option ‘-march=pentium’.

For recent CPUs that don’t have explicit support in the released version of gcc, it might
still be possible to get improvements with certain ‘-m’ options.

‘-fomit-frame-pointer’ can help performance on x86 systems and others. It will,
however, inhibit debugging on the systems on which it is not turned on anyway by ‘-O’.

280 Using and Porting GNU Fortran

Chapter 15: Known Causes of Trouble with GNU Fortran 281

15 Known Causes of Trouble with GNU Fortran

This section describes known problems that affect users of GNU Fortran. Most of these are
not GNU Fortran bugs per se—if they were, we would fix them. But the result for a user
might be like the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people’s opinions differ as to what is
best.

(Note that some of this portion of the manual is lifted directly from the gcc manual,
with minor modifications to tailor it to users of g77. Anytime a bug seems to have more to
do with the gcc portion of g77, see section “Known Causes of Trouble with GCC” in Using
the GNU Compiler Collection (GCC).)

15.1 Bugs Not In GNU Fortran

These are bugs to which the maintainers often have to reply, “but that isn’t a bug in
g77. . . ”. Some of these already are fixed in new versions of other software; some still need
to be fixed; some are problems with how g77 is installed or is being used; some are the
result of bad hardware that causes software to misbehave in sometimes bizarre ways; some
just cannot be addressed at this time until more is known about the problem.

Please don’t re-report these bugs to the g77 maintainers—if you must remind someone
how important it is to you that the problem be fixed, talk to the people responsible for the
other products identified below, but preferably only after you’ve tried the latest versions
of those products. The g77 maintainers have their hands full working on just fixing and
improving g77, without serving as a clearinghouse for all bugs that happen to affect g77
users.

See Chapter 14 [Collected Fortran Wisdom], page 263, for information on behavior of
Fortran programs, and the programs that compile them, that might be thought to indicate
bugs.

15.1.1 Signal 11 and Friends

A whole variety of strange behaviors can occur when the software, or the way you are using
the software, stresses the hardware in a way that triggers hardware bugs. This might seem
hard to believe, but it happens frequently enough that there exist documents explaining in
detail what the various causes of the problems are, what typical symptoms look like, and
so on.

Generally these problems are referred to in this document as “signal 11” crashes, because
the Linux kernel, running on the most popular hardware (the Intel x86 line), often stresses
the hardware more than other popular operating systems. When hardware problems do
occur under GNU/Linux on x86 systems, these often manifest themselves as “signal 11”
problems, as illustrated by the following diagnostic:

sh# g77 myprog.f

gcc: Internal compiler error: program f771 got fatal signal 11

sh#

282 Using and Porting GNU Fortran

It is very important to remember that the above message is not the only one that
indicates a hardware problem, nor does it always indicate a hardware problem.

In particular, on systems other than those running the Linux kernel, the message might
appear somewhat or very different, as it will if the error manifests itself while running a
program other than the g77 compiler. For example, it will appear somewhat different when
running your program, when running Emacs, and so on.

How to cope with such problems is well beyond the scope of this manual.
However, users of Linux-based systems (such as GNU/Linux) should review

http://www.bitwizard.nl/sig11/, a source of detailed information on diagnosing
hardware problems, by recognizing their common symptoms.

Users of other operating systems and hardware might find this reference useful as well.
If you know of similar material for another hardware/software combination, please let us
know so we can consider including a reference to it in future versions of this manual.

15.1.2 Cannot Link Fortran Programs

On some systems, perhaps just those with out-of-date (shared?) libraries, unresolved-
reference errors happen when linking g77-compiled programs (which should be done using
g77).

If this happens to you, try appending ‘-lc’ to the command you use to link the program,
e.g. ‘g77 foo.f -lc’. g77 already specifies ‘-lg2c -lm’ when it calls the linker, but it cannot
also specify ‘-lc’ because not all systems have a file named ‘libc.a’.

It is unclear at this point whether there are legitimately installed systems where ‘-lg2c
-lm’ is insufficient to resolve code produced by g77.

If your program doesn’t link due to unresolved references to names like ‘_main’, make
sure you’re using the g77 command to do the link, since this command ensures that the
necessary libraries are loaded by specifying ‘-lg2c -lm’ when it invokes the gcc command
to do the actual link. (Use the ‘-v’ option to discover more about what actually happens
when you use the g77 and gcc commands.)

Also, try specifying ‘-lc’ as the last item on the g77 command line, in case that helps.

15.1.3 Large Common Blocks

On some older GNU/Linux systems, programs with common blocks larger than 16MB
cannot be linked without some kind of error message being produced.

This is a bug in older versions of ld, fixed in more recent versions of binutils, such as
version 2.6.

15.1.4 Debugger Problems

There are some known problems when using gdb on code compiled by g77. Inadequate
investigation as of the release of 0.5.16 results in not knowing which products are the
culprit, but ‘gdb-4.14’ definitely crashes when, for example, an attempt is made to print
the contents of a COMPLEX(KIND=2) dummy array, on at least some GNU/Linux machines,

Chapter 15: Known Causes of Trouble with GNU Fortran 283

plus some others. Attempts to access assumed-size arrays are also known to crash recent
versions of gdb. (gdb’s Fortran support was done for a different compiler and isn’t properly
compatible with g77.)

15.1.5 NeXTStep Problems

Developers of Fortran code on NeXTStep (all architectures) have to watch out for the
following problem when writing programs with large, statically allocated (i.e. non-stack
based) data structures (common blocks, saved arrays).

Due to the way the native loader (‘/bin/ld’) lays out data structures in virtual memory,
it is very easy to create an executable wherein the ‘__DATA’ segment overlaps (has addresses
in common) with the ‘UNIX STACK’ segment.

This leads to all sorts of trouble, from the executable simply not executing, to bus errors.
The NeXTStep command line tool ebadexec points to the problem as follows:

% /bin/ebadexec a.out

/bin/ebadexec: __LINKEDIT segment (truncated address = 0x3de000

rounded size = 0x2a000) of executable file: a.out overlaps with UNIX

STACK segment (truncated address = 0x400000 rounded size =

0x3c00000) of executable file: a.out

(In the above case, it is the ‘__LINKEDIT’ segment that overlaps the stack segment.)
This can be cured by assigning the ‘__DATA’ segment (virtual) addresses beyond the

stack segment. A conservative estimate for this is from address 6000000 (hexadecimal)
onwards—this has always worked for me [Toon Moene]:

% g77 -segaddr __DATA 6000000 test.f

% ebadexec a.out

ebadexec: file: a.out appears to be executable

%

Browsing through ‘gcc/gcc/f/Makefile.in’, you will find that the f771 program itself
also has to be linked with these flags—it has large statically allocated data structures.
(Version 0.5.18 reduces this somewhat, but probably not enough.)

(The above item was contributed by Toon Moene (toon@moene.indiv.nluug.nl).)

15.1.6 Stack Overflow

g77 code might fail at runtime (probably with a “segmentation violation”) due to over-
flowing the stack. This happens most often on systems with an environment that provides
substantially more heap space (for use when arbitrarily allocating and freeing memory) than
stack space.

Often this can be cured by increasing or removing your shell’s limit on stack usage, typi-
cally using limit stacksize (in csh and derivatives) or ulimit -s (in sh and derivatives).

Increasing the allowed stack size might, however, require changing some operating system
or system configuration parameters.

You might be able to work around the problem by compiling with the ‘-fno-automatic’
option to reduce stack usage, probably at the expense of speed.

g77, on most machines, puts many variables and arrays on the stack where possible,
and can be configured (by changing FFECOM_sizeMAXSTACKITEM in ‘gcc/gcc/f/com.c’) to

284 Using and Porting GNU Fortran

force smaller-sized entities into static storage (saving on stack space) or permit larger-sized
entities to be put on the stack (which can improve run-time performance, as it presents
more opportunities for the GBE to optimize the generated code).

Note: Putting more variables and arrays on the stack might cause problems due to
system-dependent limits on stack size. Also, the value of FFECOM_sizeMAXSTACKITEM has
no effect on automatic variables and arrays. See Section 15.1 [But-bugs], page 281, for more
information. Note: While libg2c places a limit on the range of Fortran file-unit numbers,
the underlying library and operating system might impose different kinds of limits. For
example, some systems limit the number of files simultaneously open by a running program.
Information on how to increase these limits should be found in your system’s documentation.

However, if your program uses large automatic arrays (for example, has declarations like
‘REAL A(N)’ where ‘A’ is a local array and ‘N’ is a dummy or COMMON variable that can have
a large value), neither use of ‘-fno-automatic’, nor changing the cut-off point for g77 for
using the stack, will solve the problem by changing the placement of these large arrays, as
they are necessarily automatic.

g77 currently provides no means to specify that automatic arrays are to be allocated on
the heap instead of the stack. So, other than increasing the stack size, your best bet is to
change your source code to avoid large automatic arrays. Methods for doing this currently
are outside the scope of this document.

(Note: If your system puts stack and heap space in the same memory area, such that
they are effectively combined, then a stack overflow probably indicates a program that is
either simply too large for the system, or buggy.)

15.1.7 Nothing Happens

It is occasionally reported that a “simple” program, such as a “Hello, World!” program, does
nothing when it is run, even though the compiler reported no errors, despite the program
containing nothing other than a simple PRINT statement.

This most often happens because the program has been compiled and linked on a UNIX
system and named test, though other names can lead to similarly unexpected run-time
behavior on various systems.

Essentially this problem boils down to giving your program a name that is already
known to the shell you are using to identify some other program, which the shell continues
to execute instead of your program when you invoke it via, for example:

sh# test

sh#

Under UNIX and many other system, a simple command name invokes a searching
mechanism that might well not choose the program located in the current working directory
if there is another alternative (such as the test command commonly installed on UNIX
systems).

The reliable way to invoke a program you just linked in the current directory under
UNIX is to specify it using an explicit pathname, as in:

sh# ./test

Hello, World!

sh#

Chapter 15: Known Causes of Trouble with GNU Fortran 285

Users who encounter this problem should take the time to read up on how their shell
searches for commands, how to set their search path, and so on. The relevant UNIX
commands to learn about include man, info (on GNU systems), setenv (or set and env),
which, and find.

15.1.8 Strange Behavior at Run Time

g77 code might fail at runtime with “segmentation violation”, “bus error”, or even some-
thing as subtle as a procedure call overwriting a variable or array element that it is not
supposed to touch.

These can be symptoms of a wide variety of actual bugs that occurred earlier during the
program’s run, but manifested themselves as visible problems some time later.

Overflowing the bounds of an array—usually by writing beyond the end of it—is one
of two kinds of bug that often occurs in Fortran code. (Compile your code with the
‘-fbounds-check’ option to catch many of these kinds of errors at program run time.)

The other kind of bug is a mismatch between the actual arguments passed to a procedure
and the dummy arguments as declared by that procedure.

Both of these kinds of bugs, and some others as well, can be difficult to track down, be-
cause the bug can change its behavior, or even appear to not occur, when using a debugger.

That is, these bugs can be quite sensitive to data, including data representing the place-
ment of other data in memory (that is, pointers, such as the placement of stack frames in
memory).

g77 now offers the ability to catch and report some of these problems at compile, link,
or run time, such as by generating code to detect references to beyond the bounds of most
arrays (except assumed-size arrays), and checking for agreement between calling and called
procedures. Future improvements are likely to be made in the procedure-mismatch area, at
least.

In the meantime, finding and fixing the programming bugs that lead to these behaviors
is, ultimately, the user’s responsibility, as difficult as that task can sometimes be.

One runtime problem that has been observed might have a simple solution. If a formatted
WRITE produces an endless stream of spaces, check that your program is linked against the
correct version of the C library. The configuration process takes care to account for your
system’s normal ‘libc’ not being ANSI-standard, which will otherwise cause this behavior.
If your system’s default library is ANSI-standard and you subsequently link against a non-
ANSI one, there might be problems such as this one.

Specifically, on Solaris2 systems, avoid picking up the BSD library from ‘/usr/ucblib’.

15.1.9 Floating-point Errors

Some programs appear to produce inconsistent floating-point results compiled by g77 versus
by other compilers.

Often the reason for this behavior is the fact that floating-point values are represented
on almost all Fortran systems by approximations, and these approximations are inexact
even for apparently simple values like 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1.1, and so on.

286 Using and Porting GNU Fortran

Most Fortran systems, including all current ports of g77, use binary arithmetic to represent
these approximations.

Therefore, the exact value of any floating-point approximation as manipulated by g77-
compiled code is representable by adding some combination of the values 1.0, 0.5, 0.25,
0.125, and so on (just keep dividing by two) through the precision of the fraction (typically
around 23 bits for REAL(KIND=1), 52 for REAL(KIND=2)), then multiplying the sum by a
integral power of two (in Fortran, by ‘2**N’) that typically is between -127 and +128 for
REAL(KIND=1) and -1023 and +1024 for REAL(KIND=2), then multiplying by -1 if the number
is negative.

So, a value like 0.2 is exactly represented in decimal—since it is a fraction, ‘2/10’, with
a denominator that is compatible with the base of the number system (base 10). However,
‘2/10’ cannot be represented by any finite number of sums of any of 1.0, 0.5, 0.25, and so
on, so 0.2 cannot be exactly represented in binary notation.

(On the other hand, decimal notation can represent any binary number in a finite number
of digits. Decimal notation cannot do so with ternary, or base-3, notation, which would
represent floating-point numbers as sums of any of ‘1/1’, ‘1/3’, ‘1/9’, and so on. After all,
no finite number of decimal digits can exactly represent ‘1/3’. Fortunately, few systems use
ternary notation.)

Moreover, differences in the way run-time I/O libraries convert between these approxi-
mations and the decimal representation often used by programmers and the programs they
write can result in apparent differences between results that do not actually exist, or exist
to such a small degree that they usually are not worth worrying about.

For example, consider the following program:
PRINT *, 0.2

END

When compiled by g77, the above program might output ‘0.20000003’, while another
compiler might produce a executable that outputs ‘0.2’.

This particular difference is due to the fact that, currently, conversion of floating-point
values by the libg2c library, used by g77, handles only double-precision values.

Since ‘0.2’ in the program is a single-precision value, it is converted to double precision
(still in binary notation) before being converted back to decimal. The conversion to binary
appends binary zero digits to the original value—which, again, is an inexact approximation
of 0.2—resulting in an approximation that is much less exact than is connoted by the use
of double precision.

(The appending of binary zero digits has essentially the same effect as taking a particular
decimal approximation of ‘1/3’, such as ‘0.3333333’, and appending decimal zeros to it,
producing ‘0.33333330000000000’. Treating the resulting decimal approximation as if it
really had 18 or so digits of valid precision would make it seem a very poor approximation
of ‘1/3’.)

As a result of converting the single-precision approximation to double precision by ap-
pending binary zeros, the conversion of the resulting double-precision value to decimal
produces what looks like an incorrect result, when in fact the result is inexact, and is prob-
ably no less inaccurate or imprecise an approximation of 0.2 than is produced by other
compilers that happen to output the converted value as “exactly” ‘0.2’. (Some compilers
behave in a way that can make them appear to retain more accuracy across a conversion

Chapter 15: Known Causes of Trouble with GNU Fortran 287

of a single-precision constant to double precision. See Section 15.5.4 [Context-Sensitive
Constants], page 306, to see why this practice is illusory and even dangerous.)

Note that a more exact approximation of the constant is computed when the program
is changed to specify a double-precision constant:

PRINT *, 0.2D0

END

Future versions of g77 and/or libg2c might convert single-precision values directly to
decimal, instead of converting them to double precision first. This would tend to result in
output that is more consistent with that produced by some other Fortran implementations.

A useful source of information on floating-point computation is David Goldberg, ‘What
Every Computer Scientist Should Know About Floating-Point Arithmetic’, Computing Sur-
veys, 23, March 1991, pp. 5-48. An online version is available at http://docs.sun.com/.

Information related to the IEEE 754 floating-point standard by a leading light can
be found at http://http.cs.berkeley.edu/%7Ewkahan/ieee754status/; see also slides
from the short course referenced from http://http.cs.berkeley.edu/%7Efateman/.

The supplement to the PostScript-formatted Goldberg document, referenced above, is
available in HTML format. See ‘Differences Among IEEE 754 Implementations’ by Doug
Priest. This document explores some of the issues surrounding computing of extended
(80-bit) results on processors such as the x86, especially when those results are arbitrarily
truncated to 32-bit or 64-bit values by the compiler as “spills”.

(Note: g77 specifically, and gcc generally, does arbitrarily truncate 80-bit results during
spills as of this writing. It is not yet clear whether a future version of the GNU compiler
suite will offer 80-bit spills as an option, or perhaps even as the default behavior.)

The GNU C library provides routines for controlling the FPU, and other documentation
about this.

See Section 14.4.10 [Floating-point precision], page 275, regarding IEEE 754 confor-
mance.

15.2 Known Bugs In GNU Fortran

This section identifies bugs that g77 users might run into in the GCC-3.3.6 version of g77.
This includes bugs that are actually in the gcc back end (GBE) or in libf2c, because those
sets of code are at least somewhat under the control of (and necessarily intertwined with)
g77, so it isn’t worth separating them out.

For information on bugs in other versions of g77, see Chapter 6 [News About GNU
Fortran], page 55. There, lists of bugs fixed in various versions of g77 can help determine
what bugs existed in prior versions.

An online, “live” version of this document (derived directly from the mainline, develop-
ment version of g77 within gcc) is available via http://gcc.gnu.org/onlinedocs/g77/Trouble.html.
Follow the “Known Bugs” link.

The following information was last updated on 2002-02-01:

• g77 fails to warn about use of a “live” iterative-DO variable as an implied-DO variable
in a WRITE or PRINT statement (although it does warn about this in a READ statement).

288 Using and Porting GNU Fortran

• Something about g77’s straightforward handling of label references and definitions
sometimes prevents the GBE from unrolling loops. Until this is solved, try inserting
or removing CONTINUE statements as the terminal statement, using the END DO form
instead, and so on.

• Some confusion in diagnostics concerning failing INCLUDE statements from within
INCLUDE’d or #include’d files.

• g77 assumes that INTEGER(KIND=1) constants range from ‘-2**31’ to ‘2**31-1’ (the
range for two’s-complement 32-bit values), instead of determining their range from the
actual range of the type for the configuration (and, someday, for the constant).

Further, it generally doesn’t implement the handling of constants very well in that it
makes assumptions about the configuration that it no longer makes regarding variables
(types).

Included with this item is the fact that g77 doesn’t recognize that, on IEEE-754/854-
compliant systems, ‘0./0.’ should produce a NaN and no warning instead of the value
‘0.’ and a warning.

• g77 uses way too much memory and CPU time to process large aggregate areas having
any initialized elements.

For example, ‘REAL A(1000000)’ followed by ‘DATA A(1)/1/’ takes up way too much
time and space, including the size of the generated assembler file.

Version 0.5.18 improves cases like this—specifically, cases of sparse initialization that
leave large, contiguous areas uninitialized—significantly. However, even with the im-
provements, these cases still require too much memory and CPU time.

(Version 0.5.18 also improves cases where the initial values are zero to a much greater
degree, so if the above example ends with ‘DATA A(1)/0/’, the compile-time perfor-
mance will be about as good as it will ever get, aside from unrelated improvements to
the compiler.)

Note that g77 does display a warning message to notify the user before the compiler
appears to hang. A warning message is issued when g77 sees code that provides initial
values (e.g. via DATA) to an aggregate area (COMMON or EQUIVALENCE, or even a large
enough array or CHARACTER variable) that is large enough to increase g77’s compile
time by roughly a factor of 10.

This size currently is quite small, since g77 currently has a known bug requiring too
much memory and time to handle such cases. In ‘gcc/gcc/f/data.c’, the macro
FFEDATA_sizeTOO_BIG_INIT_ is defined to the minimum size for the warning to appear.
The size is specified in storage units, which can be bytes, words, or whatever, on a case-
by-case basis.

After changing this macro definition, you must (of course) rebuild and reinstall g77 for
the change to take effect.

Note that, as of version 0.5.18, improvements have reduced the scope of the problem for
sparse initialization of large arrays, especially those with large, contiguous uninitialized
areas. However, the warning is issued at a point prior to when g77 knows whether the
initialization is sparse, and delaying the warning could mean it is produced too late to
be helpful.

Chapter 15: Known Causes of Trouble with GNU Fortran 289

Therefore, the macro definition should not be adjusted to reflect sparse cases. In-
stead, adjust it to generate the warning when densely initialized arrays begin to cause
responses noticeably slower than linear performance would suggest.

• When debugging, after starting up the debugger but before being able to see the source
code for the main program unit, the user must currently set a breakpoint at MAIN__
(or MAIN___ or MAIN_ if MAIN__ doesn’t exist) and run the program until it hits the
breakpoint. At that point, the main program unit is activated and about to execute
its first executable statement, but that’s the state in which the debugger should start
up, as is the case for languages like C.

• Debugging g77-compiled code using debuggers other than gdb is likely not to work.

Getting g77 and gdb to work together is a known problem—getting g77 to work prop-
erly with other debuggers, for which source code often is unavailable to g77 developers,
seems like a much larger, unknown problem, and is a lower priority than making g77
and gdb work together properly.

On the other hand, information about problems other debuggers have with g77 output
might make it easier to properly fix g77, and perhaps even improve gdb, so it is definitely
welcome. Such information might even lead to all relevant products working together
properly sooner.

• g77 doesn’t work perfectly on 64-bit configurations such as the Digital Semiconductor
(“DEC”) Alpha.

This problem is largely resolved as of version 0.5.23.

• g77 currently inserts needless padding for things like ‘COMMON A,IPAD’ where ‘A’ is
CHARACTER*1 and ‘IPAD’ is INTEGER(KIND=1) on machines like x86, because the back
end insists that ‘IPAD’ be aligned to a 4-byte boundary, but the processor has no such
requirement (though it is usually good for performance).

The gcc back end needs to provide a wider array of specifications of alignment require-
ments and preferences for targets, and front ends like g77 should take advantage of this
when it becomes available.

• The libf2c routines that perform some run-time arithmetic on COMPLEX operands were
modified circa version 0.5.20 of g77 to work properly even in the presence of aliased
operands.

While the g77 and netlib versions of libf2c differ on how this is accomplished, the
main differences are that we believe the g77 version works properly even in the presence
of partially aliased operands.

However, these modifications have reduced performance on targets such as x86, due to
the extra copies of operands involved.

15.3 Missing Features

This section lists features we know are missing from g77, and which we want to add someday.
(There is no priority implied in the ordering below.)

290 Using and Porting GNU Fortran

15.3.1 Better Source Model

g77 needs to provide, as the default source-line model, a “pure visual” mode, where the
interpretation of a source program in this mode can be accurately determined by a user
looking at a traditionally displayed rendition of the program (assuming the user knows
whether the program is fixed or free form).

The design should assume the user cannot tell tabs from spaces and cannot see trailing
spaces on lines, but has canonical tab stops and, for fixed-form source, has the ability to
always know exactly where column 72 is (since the Fortran standard itself requires this for
fixed-form source).

This would change the default treatment of fixed-form source to not treat lines with tabs
as if they were infinitely long—instead, they would end at column 72 just as if the tabs
were replaced by spaces in the canonical way.

As part of this, provide common alternate models (Digital, f2c, and so on) via command-
line options. This includes allowing arbitrarily long lines for free-form source as well as
fixed-form source and providing various limits and diagnostics as appropriate.

Also, g77 should offer, perhaps even default to, warnings when characters beyond the
last valid column are anything other than spaces. This would mean code with “sequence
numbers” in columns 73 through 80 would be rejected, and there’s a lot of that kind of code
around, but one of the most frequent bugs encountered by new users is accidentally writing
fixed-form source code into and beyond column 73. So, maybe the users of old code would
be able to more easily handle having to specify, say, a ‘-Wno-col73to80’ option.

15.3.2 Fortran 90 Support

g77 does not support many of the features that distinguish Fortran 90 (and, now, Fortran
95) from ANSI FORTRAN 77.

Some Fortran 90 features are supported, because they make sense to offer even to die-
hard users of F77. For example, many of them codify various ways F77 has been extended
to meet users’ needs during its tenure, so g77 might as well offer them as the primary way
to meet those same needs, even if it offers compatibility with one or more of the ways those
needs were met by other F77 compilers in the industry.

Still, many important F90 features are not supported, because no attempt has been
made to research each and every feature and assess its viability in g77. In the meantime,
users who need those features must use Fortran 90 compilers anyway, and the best approach
to adding some F90 features to GNU Fortran might well be to fund a comprehensive project
to create GNU Fortran 95.

15.3.3 Intrinsics in PARAMETER Statements

g77 doesn’t allow intrinsics in PARAMETER statements.

Related to this, g77 doesn’t allow non-integral exponentiation in PARAMETER statements,
such as ‘PARAMETER (R=2**.25)’. It is unlikely g77 will ever support this feature, as doing
it properly requires complete emulation of a target computer’s floating-point facilities when

Chapter 15: Known Causes of Trouble with GNU Fortran 291

building g77 as a cross-compiler. But, if the gcc back end is enhanced to provide such a
facility, g77 will likely use that facility in implementing this feature soon afterwards.

15.3.4 Arbitrary Concatenation

g77 doesn’t support arbitrary operands for concatenation in contexts where run-time allo-
cation is required. For example:

SUBROUTINE X(A)

CHARACTER*(*) A

CALL FOO(A // ’suffix’)

15.3.5 SELECT CASE on CHARACTER Type

Character-type selector/cases for SELECT CASE currently are not supported.

15.3.6 RECURSIVE Keyword

g77 doesn’t support the RECURSIVE keyword that F90 compilers do. Nor does it provide
any means for compiling procedures designed to do recursion.

All recursive code can be rewritten to not use recursion, but the result is not pretty.

15.3.7 Increasing Precision/Range

Some compilers, such as f2c, have an option (‘-r8’, ‘-qrealsize=8’ or similar) that provides
automatic treatment of REAL entities such that they have twice the storage size, and a corre-
sponding increase in the range and precision, of what would normally be the REAL(KIND=1)
(default REAL) type. (This affects COMPLEX the same way.)

They also typically offer another option (‘-i8’) to increase INTEGER entities so they are
twice as large (with roughly twice as much range).

(There are potential pitfalls in using these options.)
g77 does not yet offer any option that performs these kinds of transformations. Part of

the problem is the lack of detailed specifications regarding exactly how these options affect
the interpretation of constants, intrinsics, and so on.

Until g77 addresses this need, programmers could improve the portability of their code
by modifying it to not require compile-time options to produce correct results. Some free
tools are available which may help, specifically in Toolpack (which one would expect to be
sound) and the ‘fortran’ section of the Netlib repository.

Use of preprocessors can provide a fairly portable means to work around the lack of
widely portable methods in the Fortran language itself (though increasing acceptance of
Fortran 90 would alleviate this problem).

15.3.8 Popular Non-standard Types

g77 doesn’t fully support INTEGER*2, LOGICAL*1, and similar. In the meantime, version
0.5.18 provides rudimentary support for them.

292 Using and Porting GNU Fortran

15.3.9 Full Support for Compiler Types

g77 doesn’t support INTEGER, REAL, and COMPLEX equivalents for all applicable back-end-
supported types (char, short int, int, long int, long long int, and long double). This
means providing intrinsic support, and maybe constant support (using F90 syntax) as
well, and, for most machines will result in automatic support of INTEGER*1, INTEGER*2,
INTEGER*8, maybe even REAL*16, and so on.

15.3.10 Array Bounds Expressions

g77 doesn’t support more general expressions to dimension arrays, such as array element
references, function references, etc.

For example, g77 currently does not accept the following:
SUBROUTINE X(M, N)

INTEGER N(10), M(N(2), N(1))

15.3.11 POINTER Statements

g77 doesn’t support pointers or allocatable objects (other than automatic arrays). This set
of features is probably considered just behind intrinsics in PARAMETER statements on the list
of large, important things to add to g77.

In the meantime, consider using the INTEGER(KIND=7) declaration to specify that a
variable must be able to hold a pointer. This construct is not portable to other non-GNU
compilers, but it is portable to all machines GNU Fortran supports when g77 is used.

See Section 8.11 [Functions and Subroutines], page 107, for information on %VAL(),
%REF(), and %DESCR() constructs, which are useful for passing pointers to procedures writ-
ten in languages other than Fortran.

15.3.12 Sensible Non-standard Constructs

g77 rejects things other compilers accept, like ‘INTRINSIC SQRT,SQRT’. As time permits in
the future, some of these things that are easy for humans to read and write and unlikely to
be intended to mean something else will be accepted by g77 (though ‘-fpedantic’ should
trigger warnings about such non-standard constructs).

Until g77 no longer gratuitously rejects sensible code, you might as well fix your code to
be more standard-conforming and portable.

The kind of case that is important to except from the recommendation to change your
code is one where following good coding rules would force you to write non-standard code
that nevertheless has a clear meaning.

For example, when writing an INCLUDE file that defines a common block, it might be
appropriate to include a SAVE statement for the common block (such as ‘SAVE /CBLOCK/’),
so that variables defined in the common block retain their values even when all procedures
declaring the common block become inactive (return to their callers).

Chapter 15: Known Causes of Trouble with GNU Fortran 293

However, putting SAVE statements in an INCLUDE file would prevent otherwise standard-
conforming code from also specifying the SAVE statement, by itself, to indicate that all local
variables and arrays are to have the SAVE attribute.

For this reason, g77 already has been changed to allow this combination, because al-
though the general problem of gratuitously rejecting unambiguous and “safe” constructs
still exists in g77, this particular construct was deemed useful enough that it was worth
fixing g77 for just this case.

So, while there is no need to change your code to avoid using this particular construct,
there might be other, equally appropriate but non-standard constructs, that you shouldn’t
have to stop using just because g77 (or any other compiler) gratuitously rejects it.

Until the general problem is solved, if you have any such construct you believe is worth-
while using (e.g. not just an arbitrary, redundant specification of an attribute), please
submit a bug report with an explanation, so we can consider fixing g77 just for cases like
yours.

15.3.13 READONLY Keyword

Support for READONLY, in OPEN statements, requires libg2c support, to make sure that
‘CLOSE(...,STATUS=’DELETE’)’ does not delete a file opened on a unit with the READONLY
keyword, and perhaps to trigger a fatal diagnostic if a WRITE or PRINT to such a unit is
attempted.

Note: It is not sufficient for g77 and libg2c (its version of libf2c) to assume that
READONLY does not need some kind of explicit support at run time, due to UNIX systems
not (generally) needing it. g77 is not just a UNIX-based compiler!

Further, mounting of non-UNIX filesystems on UNIX systems (such as via NFS) might
require proper READONLY support.

(Similar issues might be involved with supporting the SHARED keyword.)

15.3.14 FLUSH Statement

g77 could perhaps use a FLUSH statement that does what ‘CALL FLUSH’ does, but that
supports ‘*’ as the unit designator (same unit as for PRINT) and accepts ERR= and/or
IOSTAT= specifiers.

15.3.15 Expressions in FORMAT Statements

g77 doesn’t support ‘FORMAT(I<J>)’ and the like. Supporting this requires a significant
redesign or replacement of libg2c.

However, g77 does support this construct when the expression is constant (as of version
0.5.22). For example:

PARAMETER (IWIDTH = 12)

10 FORMAT (I<IWIDTH>)

Otherwise, at least for output (PRINT and WRITE), Fortran code making use of this feature
can be rewritten to avoid it by constructing the FORMAT string in a CHARACTER variable or

294 Using and Porting GNU Fortran

array, then using that variable or array in place of the FORMAT statement label to do the
original PRINT or WRITE.

Many uses of this feature on input can be rewritten this way as well, but not all can.
For example, this can be rewritten:

READ 20, I

20 FORMAT (I<J>)

However, this cannot, in general, be rewritten, especially when ERR= and END= constructs
are employed:

READ 30, J, I

30 FORMAT (I<J>)

15.3.16 Explicit Assembler Code

g77 needs to provide some way, a la gcc, for g77 code to specify explicit assembler code.

15.3.17 Q Edit Descriptor

The Q edit descriptor in FORMATs isn’t supported. (This is meant to get the number of
characters remaining in an input record.) Supporting this requires a significant redesign or
replacement of libg2c.

A workaround might be using internal I/O or the stream-based intrinsics. See Sec-
tion 8.11.9.104 [FGetC Intrinsic (subroutine)], page 145.

15.3.18 Old-style PARAMETER Statements

g77 doesn’t accept ‘PARAMETER I=1’. Supporting this obsolete form of the PARAMETER state-
ment would not be particularly hard, as most of the parsing code is already in place and
working.

Until time/money is spent implementing it, you might as well fix your code to use the
standard form, ‘PARAMETER (I=1)’ (possibly needing ‘INTEGER I’ preceding the PARAMETER
statement as well, otherwise, in the obsolete form of PARAMETER, the type of the variable is
set from the type of the constant being assigned to it).

15.3.19 TYPE and ACCEPT I/O Statements

g77 doesn’t support the I/O statements TYPE and ACCEPT. These are common extensions
that should be easy to support, but also are fairly easy to work around in user code.

Generally, any ‘TYPE fmt,list’ I/O statement can be replaced by ‘PRINT fmt,list’.
And, any ‘ACCEPT fmt,list’ statement can be replaced by ‘READ fmt,list’.

15.3.20 STRUCTURE, UNION, RECORD, MAP

g77 doesn’t support STRUCTURE, UNION, RECORD, MAP. This set of extensions is quite a bit
lower on the list of large, important things to add to g77, partly because it requires a great
deal of work either upgrading or replacing libg2c.

Chapter 15: Known Causes of Trouble with GNU Fortran 295

15.3.21 OPEN, CLOSE, and INQUIRE Keywords

g77 doesn’t have support for keywords such as DISP=’DELETE’ in the OPEN, CLOSE, and
INQUIRE statements. These extensions are easy to add to g77 itself, but require much more
work on libg2c.

g77 doesn’t support FORM=’PRINT’ or an equivalent to translate the traditional ‘car-
riage control’ characters in column 1 of output to use backspaces, carriage returns and
the like. However programs exist to translate them in output files (or standard out-
put). These are typically called either fpr or asa. You can get a version of asa from
ftp://sunsite.unc.edu/pub/Linux/devel/lang/fortran for GNU systems which will
probably build easily on other systems. Alternatively, fpr is in BSD distributions in vari-
ous archive sites.

15.3.22 ENCODE and DECODE

g77 doesn’t support ENCODE or DECODE.
These statements are best replaced by READ and WRITE statements involving internal

files (CHARACTER variables and arrays).
For example, replace a code fragment like

INTEGER*1 LINE(80)

...

DECODE (80, 9000, LINE) A, B, C

...

9000 FORMAT (1X, 3(F10.5))

with:
CHARACTER*80 LINE

...

READ (UNIT=LINE, FMT=9000) A, B, C

...

9000 FORMAT (1X, 3(F10.5))

Similarly, replace a code fragment like
INTEGER*1 LINE(80)

...

ENCODE (80, 9000, LINE) A, B, C

...

9000 FORMAT (1X, ’OUTPUT IS ’, 3(F10.5))

with:
CHARACTER*80 LINE

...

WRITE (UNIT=LINE, FMT=9000) A, B, C

...

9000 FORMAT (1X, ’OUTPUT IS ’, 3(F10.5))

It is entirely possible that ENCODE and DECODE will be supported by a future version of
g77.

15.3.23 AUTOMATIC Statement

g77 doesn’t support the AUTOMATIC statement that f2c does.

296 Using and Porting GNU Fortran

AUTOMATIC would identify a variable or array as not being SAVE’d, which is normally the
default, but which would be especially useful for code that, generally, needed to be compiled
with the ‘-fno-automatic’ option.

AUTOMATIC also would serve as a hint to the compiler that placing the variable or array—
even a very large array–on the stack is acceptable.

AUTOMATIC would not, by itself, designate the containing procedure as recursive.
AUTOMATIC should work syntactically like SAVE, in that AUTOMATIC with no variables

listed should apply to all pertinent variables and arrays (which would not include common
blocks or their members).

Variables and arrays denoted as AUTOMATIC would not be permitted to be initialized via
DATA or other specification of any initial values, requiring explicit initialization, such as via
assignment statements.

Perhaps UNSAVE and STATIC, as strict semantic opposites to SAVE and AUTOMATIC, should
be provided as well.

15.3.24 Suppressing Space Padding of Source Lines

g77 should offer VXT-Fortran-style suppression of virtual spaces at the end of a source line
if an appropriate command-line option is specified.

This affects cases where a character constant is continued onto the next line in a fixed-
form source file, as in the following example:

10 PRINT *,’HOW MANY

1 SPACES?’

g77, and many other compilers, virtually extend the continued line through column 72 with
spaces that become part of the character constant, but Digital Fortran normally didn’t,
leaving only one space between ‘MANY’ and ‘SPACES?’ in the output of the above statement.

Fairly recently, at least one version of Digital Fortran was enhanced to provide the other
behavior when a command-line option is specified, apparently due to demand from readers of
the USENET group ‘comp.lang.fortran’ to offer conformance to this widespread practice
in the industry. g77 should return the favor by offering conformance to Digital’s approach
to handling the above example.

15.3.25 Fortran Preprocessor

g77 should offer a preprocessor designed specifically for Fortran to replace ‘cpp
-traditional’. There are several out there worth evaluating, at least.

Such a preprocessor would recognize Hollerith constants, properly parse comments and
character constants, and so on. It might also recognize, process, and thus preprocess files
included via the INCLUDE directive.

15.3.26 Bit Operations on Floating-point Data

g77 does not allow REAL and other non-integral types for arguments to intrinsics like And,
Or, and Shift.

Chapter 15: Known Causes of Trouble with GNU Fortran 297

For example, this program is rejected by g77, because the intrinsic Iand does not accept
REAL arguments:

DATA A/7.54/, B/9.112/

PRINT *, IAND(A, B)

END

15.3.27 Really Ugly Character Assignments

An option such as ‘-fugly-char’ should be provided to allow
REAL*8 A1

DATA A1 / ’12345678’ /

and:
REAL*8 A1

A1 = ’ABCDEFGH’

15.3.28 POSIX Standard

g77 should support the POSIX standard for Fortran.

15.3.29 Floating-point Exception Handling

The gcc backend and, consequently, g77, currently provides no general control over whether
or not floating-point exceptions are trapped or ignored. (Ignoring them typically results
in NaN values being propagated in systems that conform to IEEE 754.) The behavior is
normally inherited from the system-dependent startup code, though some targets, such as
the Alpha, have code generation options which change the behavior.

Most systems provide some C-callable mechanism to change this; this can be invoked
at startup using gcc’s constructor attribute. For example, just compiling and linking
the following C code with your program will turn on exception trapping for the “common”
exceptions on a GNU system using glibc 2.2 or newer:

#define _GNU_SOURCE 1

#include <fenv.h>

static void __attribute__ ((constructor))

trapfpe ()

{

/* Enable some exceptions. At startup all exceptions are masked. */

feenableexcept (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW);

}

A convenient trick is to compile this something like:
gcc -o libtrapfpe.a trapfpe.c

and then use it by adding ‘-trapfpe’ to the g77 command line when linking.

15.3.30 Nonportable Conversions

g77 doesn’t accept some particularly nonportable, silent data-type conversions such as
LOGICAL to REAL (as in ‘A=.FALSE.’, where ‘A’ is type REAL), that other compilers might
quietly accept.

298 Using and Porting GNU Fortran

Some of these conversions are accepted by g77 when the ‘-fugly-logint’ option is
specified. Perhaps it should accept more or all of them.

15.3.31 Large Automatic Arrays

Currently, automatic arrays always are allocated on the stack. For situations where the stack
cannot be made large enough, g77 should offer a compiler option that specifies allocation
of automatic arrays in heap storage.

15.3.32 Support for Threads

Neither the code produced by g77 nor the libg2c library are thread-safe, nor does g77
have support for parallel processing (other than the instruction-level parallelism available
on some processors). A package such as PVM might help here.

15.3.33 Enabling Debug Lines

An option such as ‘-fdebug-lines’ should be provided to turn fixed-form lines beginning
with ‘D’ to be treated as if they began with a space, instead of as if they began with a ‘C’
(as comment lines).

15.3.34 Better Warnings

Because of how g77 generates code via the back end, it doesn’t always provide warnings
the user wants. Consider:

PROGRAM X

PRINT *, A

END

Currently, the above is not flagged as a case of using an uninitialized variable, because
g77 generates a run-time library call that looks, to the GBE, like it might actually modify
‘A’ at run time. (And, in fact, depending on the previous run-time library call, it would!)

Fixing this requires one of the following:
• Switch to new library, libg77, that provides a more “clean” interface, vis-a-vis input,

output, and modified arguments, so the GBE can tell what’s going on.
This would provide a pretty big performance improvement, at least theoretically, and,
ultimately, in practice, for some types of code.

• Have g77 pass a pointer to a temporary containing a copy of ‘A’, instead of to ‘A’
itself. The GBE would then complain about the copy operation involving a potentially
uninitialized variable.
This might also provide a performance boost for some code, because ‘A’ might then
end up living in a register, which could help with inner loops.

• Have g77 use a GBE construct similar to ADDR_EXPR but with extra information on the
fact that the item pointed to won’t be modified (a la const in C).
Probably the best solution for now, but not quite trivial to implement in the general
case.

Chapter 15: Known Causes of Trouble with GNU Fortran 299

15.3.35 Gracefully Handle Sensible Bad Code

g77 generally should continue processing for warnings and recoverable (user) errors when-
ever possible—that is, it shouldn’t gratuitously make bad or useless code.

For example:
INTRINSIC ZABS

CALL FOO(ZABS)

END

When compiling the above with ‘-ff2c-intrinsics-disable’, g77 should indeed com-
plain about passing ZABS, but it still should compile, instead of rejecting the entire CALL
statement. (Some of this is related to improving the compiler internals to improve how
statements are analyzed.)

15.3.36 Non-standard Conversions

‘-Wconversion’ and related should flag places where non-standard conversions are found.
Perhaps much of this would be part of ‘-Wugly*’.

15.3.37 Non-standard Intrinsics

g77 needs a new option, like ‘-Wintrinsics’, to warn about use of non-standard intrinsics
without explicit INTRINSIC statements for them. This would help find code that might fail
silently when ported to another compiler.

15.3.38 Modifying DO Variable

g77 should warn about modifying DO variables via EQUIVALENCE. (The internal information
gathered to produce this warning might also be useful in setting the internal “doiter” flag
for a variable or even array reference within a loop, since that might produce faster code
someday.)

For example, this code is invalid, so g77 should warn about the invalid assignment to
‘NOTHER’:

EQUIVALENCE (I, NOTHER)

DO I = 1, 100

IF (I.EQ. 10) NOTHER = 20

END DO

15.3.39 Better Pedantic Compilation

g77 needs to support ‘-fpedantic’ more thoroughly, and use it only to generate warnings
instead of rejecting constructs outright. Have it warn: if a variable that dimensions an
array is not a dummy or placed explicitly in COMMON (F77 does not allow it to be placed in
COMMON via EQUIVALENCE); if specification statements follow statement-function-definition
statements; about all sorts of syntactic extensions.

300 Using and Porting GNU Fortran

15.3.40 Warn About Implicit Conversions

g77 needs a ‘-Wpromotions’ option to warn if source code appears to expect automatic,
silent, and somewhat dangerous compiler-assisted conversion of REAL(KIND=1) constants to
REAL(KIND=2) based on context.

For example, it would warn about cases like this:
DOUBLE PRECISION FOO

PARAMETER (TZPHI = 9.435784839284958)

FOO = TZPHI * 3D0

15.3.41 Invalid Use of Hollerith Constant

g77 should disallow statements like ‘RETURN 2HAB’, which are invalid in both source forms
(unlike ‘RETURN (2HAB)’, which probably still makes no sense but at least can be reliably
parsed). Fixed-form processing rejects it, but not free-form, except in a way that is a bit
difficult to understand.

15.3.42 Dummy Array Without Dimensioning Dummy

g77 should complain when a list of dummy arguments containing an adjustable dummy
array does not also contain every variable listed in the dimension list of the adjustable
array.

Currently, g77 does complain about a variable that dimensions an array but doesn’t
appear in any dummy list or COMMON area, but this needs to be extended to catch cases
where it doesn’t appear in every dummy list that also lists any arrays it dimensions.

For example, g77 should warn about the entry point ‘ALT’ below, since it includes ‘ARRAY’
but not ‘ISIZE’ in its list of arguments:

SUBROUTINE PRIMARY(ARRAY, ISIZE)

REAL ARRAY(ISIZE)

ENTRY ALT(ARRAY)

15.3.43 Invalid FORMAT Specifiers

g77 should check FORMAT specifiers for validity as it does FORMAT statements.
For example, a diagnostic would be produced for:

PRINT ’HI THERE!’ !User meant PRINT *, ’HI THERE!’

15.3.44 Ambiguous Dialects

g77 needs a set of options such as ‘-Wugly*’, ‘-Wautomatic’, ‘-Wvxt’, ‘-Wf90’, and so on.
These would warn about places in the user’s source where ambiguities are found, helpful in
resolving ambiguities in the program’s dialect or dialects.

15.3.45 Unused Labels

g77 should warn about unused labels when ‘-Wunused’ is in effect.

Chapter 15: Known Causes of Trouble with GNU Fortran 301

15.3.46 Informational Messages

g77 needs an option to suppress information messages (notes). ‘-w’ does this but also
suppresses warnings. The default should be to suppress info messages.

Perhaps info messages should simply be eliminated.

15.3.47 Uninitialized Variables at Run Time

g77 needs an option to initialize everything (not otherwise explicitly initialized) to “weird”
(machine-dependent) values, e.g. NaNs, bad (non-NULL) pointers, and largest-magnitude
integers, would help track down references to some kinds of uninitialized variables at run
time.

Note that use of the options ‘-O -Wuninitialized’ can catch many such bugs at compile
time.

15.3.48 Portable Unformatted Files

g77 has no facility for exchanging unformatted files with systems using different number
formats—even differing only in endianness (byte order)—or written by other compilers.
Some compilers provide facilities at least for doing byte-swapping during unformatted I/O.

It is unrealistic to expect to cope with exchanging unformatted files with arbitrary other
compiler runtimes, but the g77 runtime should at least be able to read files written by g77
on systems with different number formats, particularly if they differ only in byte order.

In case you do need to write a program to translate to or from g77 (libf2c) unformatted
files, they are written as follows:

Sequential Unformatted sequential records consist of
1. A number giving the length of the record contents;
2. the length of record contents again (for backspace).

The record length is of C type long; this means that it is 8 bytes on 64-bit
systems such as Alpha GNU/Linux and 4 bytes on other systems, such as x86
GNU/Linux. Consequently such files cannot be exchanged between 64-bit and
32-bit systems, even with the same basic number format.

Direct access
Unformatted direct access files form a byte stream of length records*recl bytes,
where records is the maximum record number (REC=records) written and recl
is the record length in bytes specified in the OPEN statement (RECL=recl). Data
appear in the records as determined by the relevant WRITE statement. Dummy
records with arbitrary contents appear in the file in place of records which
haven’t been written.

Thus for exchanging a sequential or direct access unformatted file between big- and
little-endian 32-bit systems using IEEE 754 floating point it would be sufficient to reverse
the bytes in consecutive words in the file if, and only if, only REAL*4, COMPLEX, INTEGER*4
and/or LOGICAL*4 data have been written to it by g77.

302 Using and Porting GNU Fortran

If necessary, it is possible to do byte-oriented i/o with g77’s FGETC and FPUTC intrin-
sics. Byte-swapping can be done in Fortran by equivalencing larger sized variables to an
INTEGER*1 array or a set of scalars.

If you need to exchange binary data between arbitrary system and compiler variations,
we recommend using a portable binary format with Fortran bindings, such as NCSA’s
HDF (http://hdf.ncsa.uiuc.edu/) or PACT’s PDB1 (http://www.llnl.gov/def_
sci/pact/pact_homepage.html). (Unlike, say, CDF or XDR, HDF-like systems write in
the native number formats and only incur overhead when they are read on a system with
a different format.) A future g77 runtime library should use such techniques.

15.3.49 Better List-directed I/O

Values output using list-directed I/O (‘PRINT *, R, D’) should be written with a field width,
precision, and so on appropriate for the type (precision) of each value.

(Currently, no distinction is made between single-precision and double-precision values
by libf2c.)

It is likely this item will require the libg77 project to be undertaken.

In the meantime, use of formatted I/O is recommended. While it might be of little
consolation, g77 does support ‘FORMAT(F<WIDTH>.4)’, for example, as long as ‘WIDTH’ is
defined as a named constant (via PARAMETER). That at least allows some compile-time
specification of the precision of a data type, perhaps controlled by preprocessing directives.

15.3.50 Default to Console I/O

The default I/O units, specified by ‘READ fmt ’, ‘READ (UNIT=*)’, ‘WRITE (UNIT=*)’, and
‘PRINT fmt ’, should not be units 5 (input) and 6 (output), but, rather, unit numbers not
normally available for use in statements such as OPEN and CLOSE.

Changing this would allow a program to connect units 5 and 6 to files via OPEN, but still
use ‘READ (UNIT=*)’ and ‘PRINT’ to do I/O to the “console”.

This change probably requires the libg77 project.

15.3.51 Labels Visible to Debugger

g77 should output debugging information for statements labels, for use by debuggers that
know how to support them. Same with weirder things like construct names. It is not yet
known if any debug formats or debuggers support these.

15.4 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around them
for now.

1 No, not that one.

Chapter 15: Known Causes of Trouble with GNU Fortran 303

15.4.1 Mangling of Names in Source Code

The current external-interface design, which includes naming of external procedures, COM-
MON blocks, and the library interface, has various usability problems, including things
like adding underscores where not really necessary (and preventing easier inter-language
operability) and yet not providing complete namespace freedom for user C code linked with
Fortran apps (due to the naming of functions in the library, among other things).

Project GNU should at least get all this “right” for systems it fully controls, such as
the Hurd, and provide defaults and options for compatibility with existing systems and
interoperability with popular existing compilers.

15.4.2 Multiple Definitions of External Names

g77 doesn’t allow a common block and an external procedure or BLOCK DATA to have the
same name. Some systems allow this, but g77 does not, to be compatible with f2c.

g77 could special-case the way it handles BLOCK DATA, since it is not compatible with
f2c in this particular area (necessarily, since g77 offers an important feature here), but
it is likely that such special-casing would be very annoying to people with programs that
use ‘EXTERNAL FOO’, with no other mention of ‘FOO’ in the same program unit, to refer to
external procedures, since the result would be that g77 would treat these references as
requests to force-load BLOCK DATA program units.

In that case, if g77 modified names of BLOCK DATA so they could have the same names
as COMMON, users would find that their programs wouldn’t link because the ‘FOO’ procedure
didn’t have its name translated the same way.

(Strictly speaking, g77 could emit a null-but-externally-satisfying definition of ‘FOO’ with
its name transformed as if it had been a BLOCK DATA, but that probably invites more trouble
than it’s worth.)

15.4.3 Limitation on Implicit Declarations

g77 disallows IMPLICIT CHARACTER*(*). This is not standard-conforming.

15.5 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make because
we think GNU Fortran is better without them.

15.5.1 Backslash in Constants

In the opinion of many experienced Fortran users, ‘-fno-backslash’ should be the default,
not ‘-fbackslash’, as currently set by g77.

First of all, you can always specify ‘-fno-backslash’ to turn off this processing.
Despite not being within the spirit (though apparently within the letter) of the ANSI

FORTRAN 77 standard, g77 defaults to ‘-fbackslash’ because that is what most UNIX
f77 commands default to, and apparently lots of code depends on this feature.

304 Using and Porting GNU Fortran

This is a particularly troubling issue. The use of a C construct in the midst of For-
tran code is bad enough, worse when it makes existing Fortran programs stop working (as
happens when programs written for non-UNIX systems are ported to UNIX systems with
compilers that provide the ‘-fbackslash’ feature as the default—sometimes with no option
to turn it off).

The author of GNU Fortran wished, for reasons of linguistic purity, to make
‘-fno-backslash’ the default for GNU Fortran and thus require users of UNIX f77 and
f2c to specify ‘-fbackslash’ to get the UNIX behavior.

However, the realization that g77 is intended as a replacement for UNIX f77, caused
the author to choose to make g77 as compatible with f77 as feasible, which meant making
‘-fbackslash’ the default.

The primary focus on compatibility is at the source-code level, and the question became
“What will users expect a replacement for f77 to do, by default?” Although at least one
UNIX f77 does not provide ‘-fbackslash’ as a default, it appears that the majority of
them do, which suggests that the majority of code that is compiled by UNIX f77 compilers
expects ‘-fbackslash’ to be the default.

It is probably the case that more code exists that would not work with ‘-fbackslash’
in force than code that requires it be in force.

However, most of that code is not being compiled with f77, and when it is, new build
procedures (shell scripts, makefiles, and so on) must be set up anyway so that they work
under UNIX. That makes a much more natural and safe opportunity for non-UNIX users
to adapt their build procedures for g77’s default of ‘-fbackslash’ than would exist for the
majority of UNIX f77 users who would have to modify existing, working build procedures
to explicitly specify ‘-fbackslash’ if that was not the default.

One suggestion has been to configure the default for ‘-fbackslash’ (and perhaps other
options as well) based on the configuration of g77.

This is technically quite straightforward, but will be avoided even in cases where not
configuring defaults to be dependent on a particular configuration greatly inconveniences
some users of legacy code.

Many users appreciate the GNU compilers because they provide an environment that
is uniform across machines. These users would be inconvenienced if the compiler treated
things like the format of the source code differently on certain machines.

Occasionally users write programs intended only for a particular machine type. On these
occasions, the users would benefit if the GNU Fortran compiler were to support by default
the same dialect as the other compilers on that machine. But such applications are rare.
And users writing a program to run on more than one type of machine cannot possibly
benefit from this kind of compatibility. (This is consistent with the design goals for gcc.
To change them for g77, you must first change them for gcc. Do not ask the maintainers
of g77 to do this for you, or to disassociate g77 from the widely understood, if not widely
agreed-upon, goals for GNU compilers in general.)

This is why GNU Fortran does and will treat backslashes in the same fashion on all types
of machines (by default). See Section 8.1 [Direction of Language Development], page 87, for
more information on this overall philosophy guiding the development of the GNU Fortran
language.

Chapter 15: Known Causes of Trouble with GNU Fortran 305

Of course, users strongly concerned about portability should indicate explicitly in their
build procedures which options are expected by their source code, or write source code that
has as few such expectations as possible.

For example, avoid writing code that depends on backslash (‘\’) being interpreted either
way in particular, such as by starting a program unit with:

CHARACTER BACKSL

PARAMETER (BACKSL = ’\\’)

Then, use concatenation of ‘BACKSL’ anyplace a backslash is desired. In this way, users can
write programs which have the same meaning in many Fortran dialects.

(However, this technique does not work for Hollerith constants—which is just as well,
since the only generally portable uses for Hollerith constants are in places where character
constants can and should be used instead, for readability.)

15.5.2 Initializing Before Specifying

g77 does not allow ‘DATA VAR/1/’ to appear in the source code before ‘COMMON VAR’,
‘DIMENSION VAR(10)’, ‘INTEGER VAR’, and so on. In general, g77 requires initialization of
a variable or array to be specified after all other specifications of attributes (type, size,
placement, and so on) of that variable or array are specified (though confirmation of data
type is permitted).

It is possible g77 will someday allow all of this, even though it is not allowed by the
FORTRAN 77 standard.

Then again, maybe it is better to have g77 always require placement of DATA so that it
can possibly immediately write constants to the output file, thus saving time and space.

That is, ‘DATA A/1000000*1/’ should perhaps always be immediately writable to canoni-
cal assembler, unless it’s already known to be in a COMMON area following as-yet-uninitialized
stuff, and to do this it cannot be followed by ‘COMMON A’.

15.5.3 Context-Sensitive Intrinsicness

g77 treats procedure references to possible intrinsic names as always enabling their intrinsic
nature, regardless of whether the form of the reference is valid for that intrinsic.

For example, ‘CALL SQRT’ is interpreted by g77 as an invalid reference to the SQRT in-
trinsic function, because the reference is a subroutine invocation.

First, g77 recognizes the statement ‘CALL SQRT’ as a reference to a procedure named
‘SQRT’, not to a variable with that name (as it would for a statement such as ‘V = SQRT’).

Next, g77 establishes that, in the program unit being compiled, SQRT is an intrinsic—not
a subroutine that happens to have the same name as an intrinsic (as would be the case if,
for example, ‘EXTERNAL SQRT’ was present).

Finally, g77 recognizes that the form of the reference is invalid for that particular in-
trinsic. That is, it recognizes that it is invalid for an intrinsic function, such as SQRT, to be
invoked as a subroutine.

At that point, g77 issues a diagnostic.

306 Using and Porting GNU Fortran

Some users claim that it is “obvious” that ‘CALL SQRT’ references an external subroutine
of their own, not an intrinsic function.

However, g77 knows about intrinsic subroutines, not just functions, and is able to support
both having the same names, for example.

As a result of this, g77 rejects calls to intrinsics that are not subroutines, and function
invocations of intrinsics that are not functions, just as it (and most compilers) rejects
invocations of intrinsics with the wrong number (or types) of arguments.

So, use the ‘EXTERNAL SQRT’ statement in a program unit that calls a user-written sub-
routine named ‘SQRT’.

15.5.4 Context-Sensitive Constants

g77 does not use context to determine the types of constants or named constants
(PARAMETER), except for (non-standard) typeless constants such as ‘’123’O’.

For example, consider the following statement:
PRINT *, 9.435784839284958 * 2D0

g77 will interpret the (truncated) constant ‘9.435784839284958’ as a REAL(KIND=1), not
REAL(KIND=2), constant, because the suffix D0 is not specified.

As a result, the output of the above statement when compiled by g77 will appear to
have “less precision” than when compiled by other compilers.

In these and other cases, some compilers detect the fact that a single-precision constant
is used in a double-precision context and therefore interpret the single-precision constant
as if it was explicitly specified as a double-precision constant. (This has the effect of ap-
pending decimal, not binary, zeros to the fractional part of the number—producing different
computational results.)

The reason this misfeature is dangerous is that a slight, apparently innocuous change to
the source code can change the computational results. Consider:

REAL ALMOST, CLOSE

DOUBLE PRECISION FIVE

PARAMETER (ALMOST = 5.000000000001)

FIVE = 5

CLOSE = 5.000000000001

PRINT *, 5.000000000001 - FIVE

PRINT *, ALMOST - FIVE

PRINT *, CLOSE - FIVE

END

Running the above program should result in the same value being printed three times. With
g77 as the compiler, it does.

However, compiled by many other compilers, running the above program would print
two or three distinct values, because in two or three of the statements, the constant
‘5.000000000001’, which on most systems is exactly equal to ‘5.’ when interpreted as
a single-precision constant, is instead interpreted as a double-precision constant, preserving
the represented precision. However, this “clever” promotion of type does not extend to
variables or, in some compilers, to named constants.

Since programmers often are encouraged to replace manifest constants or permanently-
assigned variables with named constants (PARAMETER in Fortran), and might need to replace

Chapter 15: Known Causes of Trouble with GNU Fortran 307

some constants with variables having the same values for pertinent portions of code, it is
important that compilers treat code so modified in the same way so that the results of such
programs are the same. g77 helps in this regard by treating constants just the same as
variables in terms of determining their types in a context-independent way.

Still, there is a lot of existing Fortran code that has been written to depend on the way
other compilers freely interpret constants’ types based on context, so anything g77 can do
to help flag cases of this in such code could be very helpful.

15.5.5 Equivalence Versus Equality

Use of .EQ. and .NE. on LOGICAL operands is not supported, except via ‘-fugly-logint’,
which is not recommended except for legacy code (where the behavior expected by the code
is assumed).

Legacy code should be changed, as resources permit, to use .EQV. and .NEQV. instead,
as these are permitted by the various Fortran standards.

New code should never be written expecting .EQ. or .NE. to work if either of its operands
is LOGICAL.

The problem with supporting this “feature” is that there is unlikely to be consensus on
how it works, as illustrated by the following sample program:

LOGICAL L,M,N

DATA L,M,N /3*.FALSE./

IF (L.AND.M.EQ.N) PRINT *,’L.AND.M.EQ.N’

END

The issue raised by the above sample program is: what is the precedence of .EQ. (and
.NE.) when applied to LOGICAL operands?

Some programmers will argue that it is the same as the precedence for .EQ. when applied
to numeric (such as INTEGER) operands. By this interpretation, the subexpression ‘M.EQ.N’
must be evaluated first in the above program, resulting in a program that, when run, does
not execute the PRINT statement.

Other programmers will argue that the precedence is the same as the precedence for
.EQV., which is restricted by the standards to LOGICAL operands. By this interpretation, the
subexpression ‘L.AND.M’ must be evaluated first, resulting in a program that does execute
the PRINT statement.

Assigning arbitrary semantic interpretations to syntactic expressions that might legiti-
mately have more than one “obvious” interpretation is generally unwise.

The creators of the various Fortran standards have done a good job in this case, requiring
a distinct set of operators (which have their own distinct precedence) to compare LOGICAL
operands. This requirement results in expression syntax with more certain precedence
(without requiring substantial context), making it easier for programmers to read existing
code. g77 will avoid muddying up elements of the Fortran language that were well-designed
in the first place.

(Ask C programmers about the precedence of expressions such as ‘(a) & (b)’ and ‘(a)
- (b)’—they cannot even tell you, without knowing more context, whether the ‘&’ and ‘-’
operators are infix (binary) or unary!)

308 Using and Porting GNU Fortran

Most dangerous of all is the fact that, even assuming consensus on its meaning, an
expression like ‘L.AND.M.EQ.N’, if it is the result of a typographical error, doesn’t look like
it has such a typo. Even experienced Fortran programmers would not likely notice that
‘L.AND.M.EQV.N’ was, in fact, intended.

So, this is a prime example of a circumstance in which a quality compiler diagnoses the
code, instead of leaving it up to someone debugging it to know to turn on special compiler
options that might diagnose it.

15.5.6 Order of Side Effects

g77 does not necessarily produce code that, when run, performs side effects (such as those
performed by function invocations) in the same order as in some other compiler—or even
in the same order as another version, port, or invocation (using different command-line
options) of g77.

It is never safe to depend on the order of evaluation of side effects. For example, an
expression like this may very well behave differently from one compiler to another:

J = IFUNC() - IFUNC()

There is no guarantee that ‘IFUNC’ will be evaluated in any particular order. Either invo-
cation might happen first. If ‘IFUNC’ returns 5 the first time it is invoked, and returns 12
the second time, ‘J’ might end up with the value ‘7’, or it might end up with ‘-7’.

Generally, in Fortran, procedures with side-effects intended to be visible to the caller are
best designed as subroutines, not functions. Examples of such side-effects include:

• The generation of random numbers that are intended to influence return values.

• Performing I/O (other than internal I/O to local variables).

• Updating information in common blocks.

An example of a side-effect that is not intended to be visible to the caller is a function
that maintains a cache of recently calculated results, intended solely to speed repeated
invocations of the function with identical arguments. Such a function can be safely used
in expressions, because if the compiler optimizes away one or more calls to the function,
operation of the program is unaffected (aside from being speeded up).

15.6 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind
has a different purpose:

Errors report problems that make it impossible to compile your program. GNU Fortran
reports errors with the source file name, line number, and column within the line where
the problem is apparent.

Warnings report other unusual conditions in your code that might indicate a problem,
although compilation can (and does) proceed. Warning messages also report the source
file name, line number, and column information, but include the text ‘warning:’ to
distinguish them from error messages.

Chapter 15: Known Causes of Trouble with GNU Fortran 309

Warnings might indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of nonstan-
dard features of GNU Fortran. Many warnings are issued only if you ask for them, with
one of the ‘-W’ options (for instance, ‘-Wall’ requests a variety of useful warnings).

Note: Currently, the text of the line and a pointer to the column is printed in most g77
diagnostics.

See Section 5.5 [Options to Request or Suppress Warnings], page 40, for more detail on
these and related command-line options.

310 Using and Porting GNU Fortran

Chapter 16: Open Questions 311

16 Open Questions

Please consider offering useful answers to these questions!
• LOC() and other intrinsics are probably somewhat misclassified. Is the a need for more

precise classification of intrinsics, and if so, what are the appropriate groupings? Is
there a need to individually enable/disable/delete/hide intrinsics from the command
line?

312 Using and Porting GNU Fortran

Chapter 17: Reporting Bugs 313

17 Reporting Bugs

Your bug reports play an essential role in making GNU Fortran reliable.
When you encounter a problem, the first thing to do is to see if it is already known. See

Chapter 15 [Trouble], page 281. If it isn’t known, then you should report the problem.
See Chapter 15 [Known Causes of Trouble with GNU Fortran], page 281, for information

on problems we already know about.
See Chapter 18 [How To Get Help with GNU Fortran], page 317, for information on

where to ask for help.

17.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the compiler gets a fatal signal, for any input whatever, that is a compiler bug.
Reliable compilers never crash—they just remain obsolete.

• If the compiler produces invalid assembly code, for any input whatever, that is a com-
piler bug, unless the compiler reports errors (not just warnings) which would ordinarily
prevent the assembler from being run.

• If the compiler produces valid assembly code that does not correctly execute the input
source code, that is a compiler bug.
However, you must double-check to make sure, because you might have run into an
incompatibility between GNU Fortran and traditional Fortran. These incompatibilities
might be considered bugs, but they are inescapable consequences of valuable features.
Or you might have a program whose behavior is undefined, which happened by chance
to give the desired results with another Fortran compiler. It is best to check the relevant
Fortran standard thoroughly if it is possible that the program indeed does something
undefined.
After you have localized the error to a single source line, it should be easy to check for
these things. If your program is correct and well defined, you have found a compiler
bug.
It might help if, in your submission, you identified the specific language in the relevant
Fortran standard that specifies the desired behavior, if it isn’t likely to be obvious and
agreed-upon by all Fortran users.

• If the compiler produces an error message for valid input, that is a compiler bug.
• If the compiler does not produce an error message for invalid input, that is a compiler

bug. However, you should note that your idea of “invalid input” might be someone
else’s idea of “an extension” or “support for traditional practice”.

• If you are an experienced user of Fortran compilers, your suggestions for improvement
of GNU Fortran are welcome in any case.

Many, perhaps most, bug reports against g77 turn out to be bugs in the user’s code.
While we find such bug reports educational, they sometimes take a considerable amount
of time to track down or at least respond to—time we could be spending making g77, not
some user’s code, better.

314 Using and Porting GNU Fortran

Some steps you can take to verify that the bug is not certainly in the code you’re
compiling with g77:
• Compile your code using the g77 options ‘-W -Wall -O’. These options enable many

useful warning; the ‘-O’ option enables flow analysis that enables the uninitialized-
variable warning.
If you investigate the warnings and find evidence of possible bugs in your code, fix
them first and retry g77.

• Compile your code using the g77 options ‘-finit-local-zero’, ‘-fno-automatic’,
‘-ffloat-store’, and various combinations thereof.
If your code works with any of these combinations, that is not proof that the bug isn’t
in g77—a g77 bug exposed by your code might simply be avoided, or have a different,
more subtle effect, when different options are used—but it can be a strong indicator
that your code is making unwarranted assumptions about the Fortran dialect and/or
underlying machine it is being compiled and run on.
See Section 14.5 [Overly Convenient Command-Line Options], page 275, for information
on the ‘-fno-automatic’ and ‘-finit-local-zero’ options and how to convert their
use into selective changes in your own code.

• Validate your code with ftnchek or a similar code-checking tool. ftnchek can be found
at ftp://ftp.netlib.org/fortran or ftp://ftp.dsm.fordham.edu.
Here are some sample ‘Makefile’ rules using ftnchek “project” files to do cross-file
checking and sfmakedepend (from ftp://ahab.rutgers.edu/pub/perl/sfmakedepend)
to maintain dependencies automatically. These assume the use of GNU make.

Dummy suffix for ftnchek targets:

.SUFFIXES: .chek

.PHONY: chekall

How to compile .f files (for implicit rule):

FC = g77

Assume ‘include’ directory:

FFLAGS = -Iinclude -g -O -Wall

Flags for ftnchek:

CHEK1 = -array=0 -include=includes -noarray

CHEK2 = -nonovice -usage=1 -notruncation

CHEKFLAGS = $(CHEK1) $(CHEK2)

Run ftnchek with all the .prj files except the one corresponding

to the target’s root:

%.chek : %.f ; \

ftnchek $(filter-out $*.prj,$(PRJS)) $(CHEKFLAGS) \

-noextern -library $<

Derive a project file from a source file:

%.prj : %.f ; \

ftnchek $(CHEKFLAGS) -noextern -project -library $<

The list of objects is assumed to be in variable OBJS.

Sources corresponding to the objects:

SRCS = $(OBJS:%.o=%.f)

ftnchek project files:

PRJS = $(OBJS:%.o=%.prj)

Chapter 17: Reporting Bugs 315

Build the program

prog: $(OBJS) ; \

$(FC) -o $ $(OBJS)

chekall: $(PRJS) ; \

ftnchek $(CHEKFLAGS) $(PRJS)

prjs: $(PRJS)

For Emacs M-x find-tag:

TAGS: $(SRCS) ; \

etags $(SRCS)

Rebuild dependencies:

depend: ; \

sfmakedepend -I $(PLTLIBDIR) -I includes -a prj $(SRCS1)

• Try your code out using other Fortran compilers, such as f2c. If it does not work on at
least one other compiler (assuming the compiler supports the features the code needs),
that is a strong indicator of a bug in the code.
However, even if your code works on many compilers except g77, that does not mean
the bug is in g77. It might mean the bug is in your code, and that g77 simply exposes
it more readily than other compilers.

17.2 How to Report Bugs

Bugs should be reported to our bug database. Please refer to http://gcc.gnu.org/bugs.html
for up-to-date instructions how to submit bug reports. Copies of this file in HTML
(‘bugs.html’) and plain text (‘BUGS’) are also part of GCC releases.

316 Using and Porting GNU Fortran

Chapter 18: How To Get Help with GNU Fortran 317

18 How To Get Help with GNU Fortran

If you need help installing, using or changing GNU Fortran, there are two ways to find it:
• Look in the service directory for someone who might help you for a fee. The service

directory is found in the file named ‘SERVICE’ in the GNU CC distribution.
• Send a message to gcc-help@gcc.gnu.org.

318 Using and Porting GNU Fortran

Chapter 19: Adding Options 319

19 Adding Options

To add a new command-line option to g77, first decide what kind of option you wish to
add. Search the g77 and gcc documentation for one or more options that is most closely
like the one you want to add (in terms of what kind of effect it has, and so on) to help
clarify its nature.
• Fortran options are options that apply only when compiling Fortran programs. They

are accepted by g77 and gcc, but they apply only when compiling Fortran programs.
• Compiler options are options that apply when compiling most any kind of program.

Fortran options are listed in the file ‘gcc/gcc/f/lang-options.h’, which is used during
the build of gcc to build a list of all options that are accepted by at least one language’s
compiler. This list goes into the documented_lang_options array in ‘gcc/toplev.c’,
which uses this array to determine whether a particular option should be offered to the
linked-in front end for processing by calling lang_option_decode, which, for g77, is in
‘gcc/gcc/f/com.c’ and just calls ffe_decode_option.

If the linked-in front end “rejects” a particular option passed to it, ‘toplev.c’ just
ignores the option, because some language’s compiler is willing to accept it.

This allows commands like ‘gcc -fno-asm foo.c bar.f’ to work, even though Fortran
compilation does not currently support the ‘-fno-asm’ option; even though the f771 ver-
sion of lang_decode_option rejects ‘-fno-asm’, ‘toplev.c’ doesn’t produce a diagnostic
because some other language (C) does accept it.

This also means that commands like ‘g77 -fno-asm foo.f’ yield no diagnostics, despite
the fact that no phase of the command was able to recognize and process ‘-fno-asm’—
perhaps a warning about this would be helpful if it were possible.

Code that processes Fortran options is found in ‘gcc/gcc/f/top.c’, function ffe_
decode_option. This code needs to check positive and negative forms of each option.

The defaults for Fortran options are set in their global definitions, also found
in ‘gcc/gcc/f/top.c’. Many of these defaults are actually macros defined in
‘gcc/gcc/f/target.h’, since they might be machine-specific. However, since, in practice,
GNU compilers should behave the same way on all configurations (especially when it
comes to language constructs), the practice of setting defaults in ‘target.h’ is likely to be
deprecated and, ultimately, stopped in future versions of g77.

Accessor macros for Fortran options, used by code in the g77 FFE, are defined in
‘gcc/gcc/f/top.h’.

Compiler options are listed in ‘gcc/toplev.c’ in the array f_options. An option not
listed in lang_options is looked up in f_options and handled from there.

The defaults for compiler options are set in the global definitions for the corresponding
variables, some of which are in ‘gcc/toplev.c’.

You can set different defaults for Fortran-oriented or Fortran-reticent compiler options
by changing the source code of g77 and rebuilding. How to do this depends on the version
of g77:

G77 0.5.24 (EGCS 1.1)
G77 0.5.25 (EGCS 1.2 - which became GCC 2.95)

Change the lang_init_options routine in ‘gcc/gcc/f/com.c’.

320 Using and Porting GNU Fortran

(Note that these versions of g77 perform internal consistency checking auto-
matically when the ‘-fversion’ option is specified.)

G77 0.5.23
G77 0.5.24 (EGCS 1.0)

Change the way f771 handles the ‘-fset-g77-defaults’ option, which is al-
ways provided as the first option when called by g77 or gcc.
This code is in ffe_decode_options in ‘gcc/gcc/f/top.c’. Have it change
just the variables that you want to default to a different setting for Fortran
compiles compared to compiles of other languages.
The ‘-fset-g77-defaults’ option is passed to f771 automatically because of
the specification information kept in ‘gcc/gcc/f/lang-specs.h’. This file tells
the gcc command how to recognize, in this case, Fortran source files (those
to be preprocessed, and those that are not), and further, how to invoke the
appropriate programs (including f771) to process those source files.
It is in ‘gcc/gcc/f/lang-specs.h’ that ‘-fset-g77-defaults’, ‘-fversion’,
and other options are passed, as appropriate, even when the user has not explic-
itly specified them. Other “internal” options such as ‘-quiet’ also are passed
via this mechanism.

Chapter 20: Projects 321

20 Projects

If you want to contribute to g77 by doing research, design, specification, documentation,
coding, or testing, the following information should give you some ideas.

20.1 Improve Efficiency

Don’t bother doing any performance analysis until most of the following items are taken
care of, because there’s no question they represent serious space/time problems, although
some of them show up only given certain kinds of (popular) input.

• Improve malloc package and its uses to specify more info about memory pools and,
where feasible, use obstacks to implement them.

• Skip over uninitialized portions of aggregate areas (arrays, COMMON areas, EQUIVALENCE
areas) so zeros need not be output. This would reduce memory usage for large initialized
aggregate areas, even ones with only one initialized element.

As of version 0.5.18, a portion of this item has already been accomplished.

• Prescan the statement (in ‘sta.c’) so that the nature of the statement is determined
as much as possible by looking entirely at its form, and not looking at any context
(previous statements, including types of symbols). This would allow ripping out of
the statement-confirmation, symbol retraction/confirmation, and diagnostic inhibition
mechanisms. Plus, it would result in much-improved diagnostics. For example, ‘CALL
some-intrinsic(...)’, where the intrinsic is not a subroutine intrinsic, would result
actual error instead of the unimplemented-statement catch-all.

• Throughout g77, don’t pass line/column pairs where a simple ffewhere type, which
points to the error as much as is desired by the configuration, will do, and don’t pass
ffelexToken types where a simple ffewhere type will do. Then, allow new default
configuration of ffewhere such that the source line text is not preserved, and leave
it to things like Emacs’ next-error function to point to them (now that ‘next-error’
supports column, or, perhaps, character-offset, numbers). The change in calling se-
quences should improve performance somewhat, as should not having to save source
lines. (Whether this whole item will improve performance is questionable, but it should
improve maintainability.)

• Handle ‘DATA (A(I),I=1,1000000)/1000000*2/’ more efficiently, especially as regards
the assembly output. Some of this might require improving the back end, but lots of
improvement in space/time required in g77 itself can be fairly easily obtained without
touching the back end. Maybe type-conversion, where necessary, can be speeded up as
well in cases like the one shown (converting the ‘2’ into ‘2.’).

• If analysis shows it to be worthwhile, optimize ‘lex.c’.

• Consider redesigning ‘lex.c’ to not need any feedback during tokenization, by keeping
track of enough parse state on its own.

322 Using and Porting GNU Fortran

20.2 Better Optimization

Much of this work should be put off until after g77 has all the features necessary for its
widespread acceptance as a useful F77 compiler. However, perhaps this work can be done
in parallel during the feature-adding work.
• Do the equivalent of the trick of putting ‘extern inline’ in front of every function

definition in libg2c and #include’ing the resulting file in f2c+gcc—that is, inline all
run-time-library functions that are at all worth inlining. (Some of this has already been
done, such as for integral exponentiation.)

• When doing ‘CHAR_VAR = CHAR_FUNC(...)’, and it’s clear that types line up and
‘CHAR_VAR’ is addressable or not a VAR_DECL, make ‘CHAR_VAR’, not a temporary, be
the receiver for ‘CHAR_FUNC’. (This is now done for COMPLEX variables.)

• Design and implement Fortran-specific optimizations that don’t really belong in the
back end, or where the front end needs to give the back end more info than it currently
does.

• Design and implement a new run-time library interface, with the code going into libgcc
so no special linking is required to link Fortran programs using standard language fea-
tures. This library would speed up lots of things, from I/O (using precompiled formats,
doing just one, or, at most, very few, calls for arrays or array sections, and so on) to gen-
eral computing (array/section implementations of various intrinsics, implementation of
commonly performed loops that aren’t likely to be optimally compiled otherwise, etc.).
Among the important things the library would do are:
• Be a one-stop-shop-type library, hence shareable and usable by all, in that what

are now library-build-time options in libg2c would be moved at least to the g77
compile phase, if not to finer grains (such as choosing how list-directed I/O for-
matting is done by default at OPEN time, for preconnected units via options or
even statements in the main program unit, maybe even on a per-I/O basis with
appropriate pragma-like devices).

• Probably requiring the new library design, change interface to normally have COMPLEX
functions return their values in the way gcc would if they were declared __complex_
_ float, rather than using the mechanism currently used by CHARACTER functions
(whereby the functions are compiled as returning void and their first arg is a pointer to
where to store the result). (Don’t append underscores to external names for COMPLEX
functions in some cases once g77 uses gcc rather than f2c calling conventions.)

• Do something useful with doiter references where possible. For example, ‘CALL
FOO(I)’ cannot modify ‘I’ if within a DO loop that uses ‘I’ as the iteration variable,
and the back end might find that info useful in determining whether it needs to read
‘I’ back into a register after the call. (It normally has to do that, unless it knows
‘FOO’ never modifies its passed-by-reference argument, which is rarely the case for
Fortran-77 code.)

20.3 Simplify Porting

Making g77 easier to configure, port, build, and install, either as a single-system compiler
or as a cross-compiler, would be very useful.

Chapter 20: Projects 323

• A new library (replacing libg2c) should improve portability as well as produce
more optimal code. Further, g77 and the new library should conspire to simplify
naming of externals, such as by removing unnecessarily added underscores, and to
reduce/eliminate the possibility of naming conflicts, while making debugger more
straightforward.
Also, it should make multi-language applications more feasible, such as by providing
Fortran intrinsics that get Fortran unit numbers given C FILE * descriptors.

• Possibly related to a new library, g77 should produce the equivalent of a gcc
‘main(argc, argv)’ function when it compiles a main program unit, instead of
compiling something that must be called by a library implementation of main().
This would do many useful things such as provide more flexibility in terms of setting up
exception handling, not requiring programmers to start their debugging sessions with
breakpoint MAIN__ followed by run, and so on.

• The GBE needs to understand the difference between alignment requirements and de-
sires. For example, on Intel x86 machines, g77 currently imposes overly strict alignment
requirements, due to the back end, but it would be useful for Fortran and C program-
mers to be able to override these recommendations as long as they don’t violate the
actual processor requirements.

20.4 More Extensions

These extensions are not the sort of things users ask for “by name”, but they might improve
the usability of g77, and Fortran in general, in the long run. Some of these items really
pertain to improving g77 internals so that some popular extensions can be more easily
supported.
• Look through all the documentation on the GNU Fortran language, dialects, compiler,

missing features, bugs, and so on. Many mentions of incomplete or missing features
are sprinkled throughout. It is not worth repeating them here.

• Consider adding a NUMERIC type to designate typeless numeric constants, named and
unnamed. The idea is to provide a forward-looking, effective replacement for things like
the old-style PARAMETER statement when people really need typelessness in a maintain-
able, portable, clearly documented way. Maybe TYPELESS would include CHARACTER,
POINTER, and whatever else might come along. (This is not really a call for polymor-
phism per se, just an ability to express limited, syntactic polymorphism.)

• Support ‘OPEN(...,KEY=(...),...)’.
• Support arbitrary file unit numbers, instead of limiting them to 0 through ‘MXUNIT-1’.

(This is a libg2c issue.)
• ‘OPEN(NOSPANBLOCKS,...)’ is treated as ‘OPEN(UNIT=NOSPANBLOCKS,...)’, so a later

UNIT= in the first example is invalid. Make sure this is what users of this feature would
expect.

• Currently g77 disallows ‘READ(1’10)’ since it is an obnoxious syntax, but supporting
it might be pretty easy if needed. More details are needed, such as whether general
expressions separated by an apostrophe are supported, or maybe the record number
can be a general expression, and so on.

324 Using and Porting GNU Fortran

• Support STRUCTURE, UNION, MAP, and RECORD fully. Currently there is no support at all
for %FILL in STRUCTURE and related syntax, whereas the rest of the stuff has at least
some parsing support. This requires either major changes to libg2c or its replacement.

• F90 and g77 probably disagree about label scoping relative to INTERFACE and END
INTERFACE, and their contained procedure interface bodies (blocks?).

• ENTRY doesn’t support F90 RESULT() yet, since that was added after S8.112.
• Empty-statement handling (10 ;;CONTINUE;;) probably isn’t consistent with the final

form of the standard (it was vague at S8.112).
• It seems to be an “open” question whether a file, immediately after being OPENed,is

positioned at the beginning, the end, or wherever—it might be nice to offer an option
of opening to “undefined” status, requiring an explicit absolute-positioning operation
to be performed before any other (besides CLOSE) to assist in making applications port
to systems (some IBM?) that OPEN to the end of a file or some such thing.

20.5 Machine Model

This items pertain to generalizing g77’s view of the machine model to more fully accept
whatever the GBE provides it via its configuration.
• Switch to using REAL_VALUE_TYPE to represent floating-point constants exclusively so

the target float format need not be required. This means changing the way g77 handles
initialization of aggregate areas having more than one type, such as REAL and INTEGER,
because currently it initializes them as if they were arrays of char and uses the bit
patterns of the constants of the various types in them to determine what to stuff in
elements of the arrays.

• Rely more and more on back-end info and capabilities, especially in the area of constants
(where having the g77 front-end’s IL just store the appropriate tree nodes containing
constants might be best).

• Suite of C and Fortran programs that a user/administrator can run on a machine to
help determine the configuration for g77 before building and help determine if the
compiler works (especially with whatever libraries are installed) after building.

20.6 Internals Documentation

Better info on how g77 works and how to port it is needed.
See Chapter 21 [Front End], page 327, which contains some information on g77 internals.

20.7 Internals Improvements

Some more items that would make g77 more reliable and easier to maintain:
• Generally make expression handling focus more on critical syntax stuff, leaving seman-

tics to callers. For example, anything a caller can check, semantically, let it do so,
rather than having ‘expr.c’ do it. (Exceptions might include things like diagnosing
‘FOO(I--K:)=BAR’ where ‘FOO’ is a PARAMETER—if it seems important to preserve the
left-to-right-in-source order of production of diagnostics.)

Chapter 20: Projects 325

• Come up with better naming conventions for ‘-D’ to establish requirements to achieve
desired implementation dialect via ‘proj.h’.

• Clean up used tokens and ffewheres in ffeglobal_terminate_1.
• Replace ‘sta.c’ outpooldisp mechanism with malloc_pool_use.
• Check for opANY in more places in ‘com.c’, ‘std.c’, and ‘ste.c’, and get rid of the

‘opCONVERT(opANY)’ kludge (after determining if there is indeed no real need for it).
• Utility to read and check ‘bad.def’ messages and their references in the code, to make

sure calls are consistent with message templates.
• Search and fix ‘&ffe...’ and similar so that ‘ffe...ptr...’ macros are available in-

stead (a good argument for wishing this could have written all this stuff in C++, per-
haps). On the other hand, it’s questionable whether this sort of improvement is really
necessary, given the availability of tools such as Emacs and Perl, which make finding
any address-taking of structure members easy enough?

• Some modules truly export the member names of their structures (and the structures
themselves), maybe fix this, and fix other modules that just appear to as well (by
appending ‘_’, though it’d be ugly and probably not worth the time).

• Implement C macros ‘RETURNS(value)’ and ‘SETS(something,value)’ in ‘proj.h’ and
use them throughout g77 source code (especially in the definitions of access macros in
‘.h’ files) so they can be tailored to catch code writing into a ‘RETURNS()’ or reading
from a ‘SETS()’.

• Decorate throughout with const and other such stuff.
• All F90 notational derivations in the source code are still based on the S8.112 ver-

sion of the draft standard. Probably should update to the official standard, or put
documentation of the rules as used in the code. . .uh. . . in the code.

• Some ffebld_new calls (those outside of ‘ffeexpr.c’ or inside but invoked via paths
not involving ffeexpr_lhs or ffeexpr_rhs) might be creating things in improper
pools, leading to such things staying around too long or (doubtful, but possible and
dangerous) not long enough.

• Some ffebld_list_new (or whatever) calls might not be matched by ffebld_list_
bottom (or whatever) calls, which might someday matter. (It definitely is not a problem
just yet.)

• Probably not doing clean things when we fail to EQUIVALENCE something due to align-
ment/mismatch or other problems—they end up without ffestorag objects, so maybe
the backend (and other parts of the front end) can notice that and handle like an opANY
(do what it wants, just don’t complain or crash). Most of this seems to have been ad-
dressed by now, but a code review wouldn’t hurt.

20.8 Better Diagnostics

These are things users might not ask about, or that need to be looked into, before worrying
about. Also here are items that involve reducing unnecessary diagnostic clutter.

• When FUNCTION and ENTRY point types disagree (CHARACTER lengths, type classes, and
so on), ANY-ize the offending ENTRY point and any new dummies it specifies.

326 Using and Porting GNU Fortran

• Speed up and improve error handling for data when repeat-count is specified. For
example, don’t output 20 unnecessary messages after the first necessary one for:

INTEGER X(20)

CONTINUE

DATA (X(I), J= 1, 20) /20*5/

END

(The CONTINUE statement ensures the DATA statement is processed in the context of
executable, not specification, statements.)

Chapter 21: Front End 327

21 Front End

This chapter describes some aspects of the design and implementation of the g77 front end.
To find about things that are “To Be Determined” or “To Be Done”, search for

the string TBD. If you want to help by working on one or more of these items, email
gcc@gcc.gnu.org. If you’re planning to do more than just research issues and offer
comments, see http://gcc.gnu.org/contribute.html for steps you might need to take
first.

21.1 Overview of Sources

The current directory layout includes the following:

‘[No value for ‘‘srcdir’’]/gcc/’
Non-g77 files in gcc

‘[No value for ‘‘srcdir’’]/gcc/f/’
GNU Fortran front end sources

‘[No value for ‘‘srcdir’’]/libf2c/’
libg2c configuration and g2c.h file generation

‘[No value for ‘‘srcdir’’]/libf2c/libF77/’
General support and math portion of libg2c

‘[No value for ‘‘srcdir’’]/libf2c/libI77/’
I/O portion of libg2c

‘[No value for ‘‘srcdir’’]/libf2c/libU77/’
Additional interfaces to Unix libc for libg2c

Components of note in g77 are described below.
‘f/’ as a whole contains the source for g77, while ‘libf2c/’ contains a portion of the

separate program f2c. Note that the libf2c code is not part of the program g77, just
distributed with it.

‘f/’ contains text files that document the Fortran compiler, source files for the GNU
Fortran Front End (FFE), and some other stuff. The g77 compiler code is placed in ‘f/’
because it, along with its contents, is designed to be a subdirectory of a gcc source directory,
‘gcc/’, which is structured so that language-specific front ends can be “dropped in” as
subdirectories. The C++ front end (g++), is an example of this—it resides in the ‘cp/’
subdirectory. Note that the C front end (also referred to as gcc) is an exception to this, as
its source files reside in the ‘gcc/’ directory itself.

‘libf2c/’ contains the run-time libraries for the f2c program, also used by g77. These
libraries normally referred to collectively as libf2c. When built as part of g77, libf2c is
installed under the name libg2c to avoid conflict with any existing version of libf2c, and
thus is often referred to as libg2c when the g77 version is specifically being referred to.

The netlib version of libf2c/ contains two distinct libraries, libF77 and libI77, each
in their own subdirectories. In g77, this distinction is not made, beyond maintaining the
subdirectory structure in the source-code tree.

328 Using and Porting GNU Fortran

‘libf2c/’ is not part of the program g77, just distributed with it. It contains files not
present in the official (netlib) version of libf2c, and also contains some minor changes
made from libf2c, to fix some bugs, and to facilitate automatic configuration, building,
and installation of libf2c (as libg2c) for use by g77 users. See ‘libf2c/README’ for more
information, including licensing conditions governing distribution of programs containing
code from libg2c.

libg2c, g77’s version of libf2c, adds Dave Love’s implementation of libU77, in the
‘libf2c/libU77/’ directory. This library is distributed under the GNU Library General
Public License (LGPL)—see the file ‘libf2c/libU77/COPYING.LIB’ for more information,
as this license governs distribution conditions for programs containing code from this portion
of the library.

Files of note in ‘f/’ and ‘libf2c/’ are described below:

‘f/BUGS’ Lists some important bugs known to be in g77. Or use Info (or GNU Emacs
Info mode) to read the “Actual Bugs” node of the g77 documentation:

info -f f/g77.info -n "Actual Bugs"

‘f/ChangeLog’
Lists recent changes to g77 internals.

‘libf2c/ChangeLog’
Lists recent changes to libg2c internals.

‘f/NEWS’ Contains the per-release changes. These include the user-visible changes de-
scribed in the node “Changes” in the g77 documentation, plus internal changes
of import. Or use:

info -f f/g77.info -n News

‘f/g77.info*’
The g77 documentation, in Info format, produced by building g77.
All users of g77 (not just installers) should read this, using the more command
if neither the info command, nor GNU Emacs (with its Info mode), are avail-
able, or if users aren’t yet accustomed to using these tools. All of these files
are readable as “plain text” files, though they’re easier to navigate using Info
readers such as info and GNU Emacs Info mode.

If you want to explore the FFE code, which lives entirely in ‘f/’, here are a few clues.
The file ‘g77spec.c’ contains the g77-specific source code for the g77 command only—this
just forms a variant of the gcc command, so, just as the gcc command itself does not
contain the C front end, the g77 command does not contain the Fortran front end (FFE).
The FFE code ends up in an executable named ‘f771’, which does the actual compiling, so
it contains the FFE plus the gcc back end (GBE), the latter to do most of the optimization,
and the code generation.

The file ‘parse.c’ is the source file for yyparse(), which is invoked by the GBE to start
the compilation process, for ‘f771’.

The file ‘top.c’ contains the top-level FFE function ffe_file and it (along with top.h)
define all ‘ffe_[a-z].*’, ‘ffe[A-Z].*’, and ‘FFE_[A-Za-z].*’ symbols.

The file ‘fini.c’ is a main() program that is used when building the FFE to generate C
header and source files for recognizing keywords. The files ‘malloc.c’ and ‘malloc.h’

Chapter 21: Front End 329

comprise a memory manager that defines all ‘malloc_[a-z].*’, ‘malloc[A-Z].*’, and
‘MALLOC_[A-Za-z].*’ symbols.

All other modules named xyz are comprised of all files named ‘xyz*.ext ’ and define
all ‘ffexyz_[a-z].*’, ‘ffexyz[A-Z].*’, and ‘FFEXYZ_[A-Za-z].*’ symbols. If you un-
derstand all this, congratulations—it’s easier for me to remember how it works than to
type in these regular expressions. But it does make it easy to find where a symbol is de-
fined. For example, the symbol ‘ffexyz_set_something’ would be defined in ‘xyz.h’ and
implemented there (if it’s a macro) or in ‘xyz.c’.

The “porting” files of note currently are:

‘proj.c’
‘proj.h’ This defines the “language” used by all the other source files, the language

being Standard C plus some useful things like ARRAY_SIZE and such.

‘target.c’
‘target.h’

These describe the target machine in terms of what data types are supported,
how they are denoted (to what C type does an INTEGER*8 map, for example),
how to convert between them, and so on. Over time, versions of g77 rely less
on this file and more on run-time configuration based on GBE info in ‘com.c’.

‘com.c’
‘com.h’ These are the primary interface to the GBE.

‘ste.c’
‘ste.h’ This contains code for implementing recognized executable statements in the

GBE.

‘src.c’
‘src.h’ These contain information on the format(s) of source files (such as whether they

are never to be processed as case-insensitive with regard to Fortran keywords).

If you want to debug the ‘f771’ executable, for example if it crashes, note that the global
variables lineno and input_filename are usually set to reflect the current line being read
by the lexer during the first-pass analysis of a program unit and to reflect the current line
being processed during the second-pass compilation of a program unit.

If an invocation of the function ffestd_exec_end is on the stack, the compiler is in the
second pass, otherwise it is in the first.

(This information might help you reduce a test case and/or work around a bug in g77
until a fix is available.)

21.2 Overview of Translation Process

The order of phases translating source code to the form accepted by the GBE is:
1. Stripping punched-card sources (‘g77stripcard.c’)
2. Lexing (‘lex.c’)
3. Stand-alone statement identification (‘sta.c’)
4. INCLUDE handling (‘sti.c’)

330 Using and Porting GNU Fortran

5. Order-dependent statement identification (‘stq.c’)
6. Parsing (‘stb.c’ and ‘expr.c’)
7. Constructing (‘stc.c’)
8. Collecting (‘std.c’)
9. Expanding (‘ste.c’)

To get a rough idea of how a particularly twisted Fortran statement gets treated by the
passes, consider:

FORMAT(I2 4H)=(J/

& I3)

The job of ‘lex.c’ is to know enough about Fortran syntax rules to break the statement
up into distinct lexemes without requiring any feedback from subsequent phases:

‘FORMAT’

‘(’

‘I24H’

‘)’

‘=’

‘(’

‘J’

‘/’

‘I3’

‘)’

The job of ‘sta.c’ is to figure out the kind of statement, or, at least, statement form,
that sequence of lexemes represent.

The sooner it can do this (in terms of using the smallest number of lexemes, starting
with the first for each statement), the better, because that leaves diagnostics for problems
beyond the recognition of the statement form to subsequent phases, which can usually better
describe the nature of the problem.

In this case, the ‘=’ at “level zero” (not nested within parentheses) tells ‘sta.c’ that this
is an assignment-form, not FORMAT, statement.

An assignment-form statement might be a statement-function definition or an executable
assignment statement.

To make that determination, ‘sta.c’ looks at the first two lexemes.
Since the second lexeme is ‘(’, the first must represent an array for this to be an assign-

ment statement, else it’s a statement function.
Either way, ‘sta.c’ hands off the statement to ‘stq.c’ (via ‘sti.c’, which expands

INCLUDE files). ‘stq.c’ figures out what a statement that is, on its own, ambiguous, must
actually be based on the context established by previous statements.

So, ‘stq.c’ watches the statement stream for executable statements, END statements,
and so on, so it knows whether ‘A(B)=C’ is (intended as) a statement-function definition or
an assignment statement.

After establishing the context-aware statement info, ‘stq.c’ passes the original sample
statement on to ‘stb.c’ (either its statement-function parser or its assignment-statement
parser).

‘stb.c’ forms a statement-specific record containing the pertinent information. That
information includes a source expression and, for an assignment statement, a destination
expression. Expressions are parsed by ‘expr.c’.

Chapter 21: Front End 331

This record is passed to ‘stc.c’, which copes with the implications of the statement
within the context established by previous statements.

For example, if it’s the first statement in the file or after an END statement, ‘stc.c’
recognizes that, first of all, a main program unit is now being lexed (and tells that to
‘std.c’ before telling it about the current statement).

‘stc.c’ attaches whatever information it can, usually derived from the context estab-
lished by the preceding statements, and passes the information to ‘std.c’.

‘std.c’ saves this information away, since the GBE cannot cope with information that
might be incomplete at this stage.

For example, ‘I3’ might later be determined to be an argument to an alternate ENTRY
point.

When ‘std.c’ is told about the end of an external (top-level) program unit, it passes all
the information it has saved away on statements in that program unit to ‘ste.c’.

‘ste.c’ “expands” each statement, in sequence, by constructing the appropriate GBE
information and calling the appropriate GBE routines.

Details on the transformational phases follow. Keep in mind that Fortran numbering is
used, so the first character on a line is column 1, decimal numbering is used, and so on.

21.2.1 g77stripcard

The g77stripcard program handles removing content beyond column 72 (adjustable via a
command-line option), optionally warning about that content being something other than
trailing whitespace or Fortran commentary.

This program is needed because lex.c doesn’t pay attention to maximum line lengths
at all, to make it easier to maintain, as well as faster (for sources that don’t depend on the
maximum column length vis-a-vis trailing non-blank non-commentary content).

Just how this program will be run—whether automatically for old source (perhaps as
the default for ‘.f’ files?)—is not yet determined.

In the meantime, it might as well be implemented as a typical UNIX pipe.
It should accept a ‘-fline-length-n ’ option, with the default line length set to 72.
When the text it strips off the end of a line is not blank (not spaces and tabs), it should

insert an additional comment line (beginning with ‘!’, so it works for both fixed-form and
free-form files) containing the text, following the stripped line. The inserted comment
should have a prefix of some kind, TBD, that distinguishes the comment as representing
stripped text. Users could use that to sed out such lines, if they wished—it seems silly to
provide a command-line option to delete information when it can be so easily filtered out
by another program.

(This inserted comment should be designed to “fit in” well with whatever the Fortran
community is using these days for preprocessor, translator, and other such products, like
OpenMP. What that’s all about, and how g77 can elegantly fit its special comment conven-
tions into it all, is TBD as well. We don’t want to reinvent the wheel here, but if there turn
out to be too many conflicting conventions, we might have to invent one that looks nothing
like the others, but which offers their host products a better infrastructure in which to fit
and coexist peacefully.)

332 Using and Porting GNU Fortran

g77stripcard probably shouldn’t do any tab expansion or other fancy stuff. People
can use expand or other pre-filtering if they like. The idea here is to keep each stage quite
simple, while providing excellent performance for “normal” code.

(Code with junk beyond column 73 is not really “normal”, as it comes from a card-punch
heritage, and will be increasingly hard for tomorrow’s Fortran programmers to read.)

21.2.2 lex.c

To help make the lexer simple, fast, and easy to maintain, while also having g77 generally
encourage Fortran programmers to write simple, maintainable, portable code by maximizing
the performance of compiling that kind of code:

• There’ll be just one lexer, for both fixed-form and free-form source.
• It’ll care about the form only when handling the first 7 columns of text, stuff like spaces

between strings of alphanumerics, and how lines are continued.
Some other distinctions will be handled by subsequent phases, so at least one of them
will have to know which form is involved.
For example, ‘I = 2 . 4’ is acceptable in fixed form, and works in free form as well
given the implementation g77 presently uses. But the standard requires a diagnostic
for it in free form, so the parser has to be able to recognize that the lexemes aren’t
contiguous (information the lexer does have to provide) and that free-form source is
being parsed, so it can provide the diagnostic.
The g77 lexer doesn’t try to gather ‘2 . 4’ into a single lexeme. Otherwise, it’d have
to know a whole lot more about how to parse Fortran, or subsequent phases (mainly
parsing) would have two paths through lots of critical code—one to handle the lexeme
‘2’, ‘.’, and ‘4’ in sequence, another to handle the lexeme ‘2.4’.

• It won’t worry about line lengths (beyond the first 7 columns for fixed-form source).
That is, once it starts parsing the “statement” part of a line (column 7 for fixed-form,
column 1 for free-form), it’ll keep going until it finds a newline, rather than ignoring
everything past a particular column (72 or 132).
The implication here is that there shouldn’t be anything past that last column, other
than whitespace or commentary, because users using typical editors (or viewing output
as typically printed) won’t necessarily know just where the last column is.
Code that has “garbage” beyond the last column (almost certainly only fixed-form code
with a punched-card legacy, such as code using columns 73-80 for “sequence numbers”)
will have to be run through g77stripcard first.
Also, keeping track of the maximum column position while also watching out for the
end of a line and while reading from a file just makes things slower. Since a file must
be read, and watching for the end of the line is necessary (unless the typical input
file was preprocessed to include the necessary number of trailing spaces), dropping the
tracking of the maximum column position is the only way to reduce the complexity of
the pertinent code while maintaining high performance.

• ASCII encoding is assumed for the input file.
Code written in other character sets will have to be converted first.

Chapter 21: Front End 333

• Tabs (ASCII code 9) will be converted to spaces via the straightforward approach.
Specifically, a tab is converted to between one and eight spaces as necessary to reach
column n, where dividing ‘(n - 1)’ by eight results in a remainder of zero.
That saves having to pass most source files through expand.

• Linefeeds (ASCII code 10) mark the ends of lines.
• A carriage return (ASCII code 13) is accept if it immediately precedes a linefeed, in

which case it is ignored.
Otherwise, it is rejected (with a diagnostic).

• Any other characters other than the above that are not part of the GNU Fortran
Character Set (see Section 8.6.1 [Character Set], page 93) are rejected with a diagnostic.
This includes backspaces, form feeds, and the like.
(It might make sense to allow a form feed in column 1 as long as that’s the only
character on a line. It certainly wouldn’t seem to cost much in terms of performance.)

• The end of the input stream (EOF) ends the current line.
• The distinction between uppercase and lowercase letters will be preserved.

It will be up to subsequent phases to decide to fold case.
Current plans are to permit any casing for Fortran (reserved) keywords while preserving
casing for user-defined names. (This might not be made the default for ‘.f’ files,
though.)
Preserving case seems necessary to provide more direct access to facilities outside of
g77, such as to C or Pascal code.
Names of intrinsics will probably be matchable in any case,
(How ‘external SiN; r = sin(x)’ would be handled is TBD. I think old g77 might
already handle that pretty elegantly, but whether we can cope with allowing the same
fragment to reference a different procedure, even with the same interface, via ‘s =
SiN(r)’, needs to be determined. If it can’t, we need to make sure that when code in-
troduces a user-defined name, any intrinsic matching that name using a case-insensitive
comparison is “turned off”.)

• Backslashes in CHARACTER and Hollerith constants are not allowed.
This avoids the confusion introduced by some Fortran compiler vendors providing C-like
interpretation of backslashes, while others provide straight-through interpretation.
Some kind of lexical construct (TBD) will be provided to allow flagging of a CHARACTER
(but probably not a Hollerith) constant that permits backslashes. It’ll necessarily be a
prefix, such as:

PRINT *, C’This line has a backspace \b here.’

PRINT *, F’This line has a straight backslash \ here.’

Further, command-line options might be provided to specify that one prefix or the
other is to be assumed as the default for CHARACTER constants.
However, it seems more helpful for g77 to provide a program that converts prefix
all constants (or just those containing backslashes) with the desired designation, so
printouts of code can be read without knowing the compile-time options used when
compiling it.

334 Using and Porting GNU Fortran

If such a program is provided (let’s name it g77slash for now), then a command-line
option to g77 should not be provided. (Though, given that it’ll be easy to implement,
it might be hard to resist user requests for it “to compile faster than if we have to
invoke another filter”.)
This program would take a command-line option to specify the default interpretation
of slashes, affecting which prefix it uses for constants.
g77slash probably should automatically convert Hollerith constants that contain
slashes to the appropriate CHARACTER constants. Then g77 wouldn’t have to define
a prefix syntax for Hollerith constants specifying whether they want C-style or
straight-through backslashes.

• To allow for form-neutral INCLUDE files without requiring them to be preprocessed,
the fixed-form lexer should offer an extension (if possible) allowing a trailing ‘&’ to be
ignored, especially if after column 72, as it would be using the traditional Unix Fortran
source model (which ignores everything after column 72).

The above implements nearly exactly what is specified by Section 8.6.1 [Character Set],
page 93, and Section 8.6.2 [Lines], page 94, except it also provides automatic conversion
of tabs and ignoring of newline-related carriage returns, as well as accommodating form-
neutral INCLUDE files.

It also implements the “pure visual” model, by which is meant that a user viewing his
code in a typical text editor (assuming it’s not preprocessed via g77stripcard or similar)
doesn’t need any special knowledge of whether spaces on the screen are really tabs, whether
lines end immediately after the last visible non-space character or after a number of spaces
and tabs that follow it, or whether the last line in the file is ended by a newline.

Most editors don’t make these distinctions, the ANSI FORTRAN 77 standard doesn’t
require them to, and it permits a standard-conforming compiler to define a method for
transforming source code to “standard form” however it wants.

So, GNU Fortran defines it such that users have the best chance of having the code be
interpreted the way it looks on the screen of the typical editor.

(Fancy editors should never be required to correctly read code written in classic two-
dimensional-plaintext form. By correct reading I mean ability to read it, book-like, without
mistaking text ignored by the compiler for program code and vice versa, and without having
to count beyond the first several columns. The vague meaning of ASCII TAB, among other
things, complicates this somewhat, but as long as “everyone”, including the editor, other
tools, and printer, agrees about the every-eighth-column convention, the GNU Fortran
“pure visual” model meets these requirements. Any language or user-visible source form
requiring special tagging of tabs, the ends of lines after spaces/tabs, and so on, fails to meet
this fairly straightforward specification. Fortunately, Fortran itself does not mandate such
a failure, though most vendor-supplied defaults for their Fortran compilers do fail to meet
this specification for readability.)

Further, this model provides a clean interface to whatever preprocessors or
code-generators are used to produce input to this phase of g77. Mainly, they need not
worry about long lines.

21.2.3 sta.c

Chapter 21: Front End 335

21.2.4 sti.c

21.2.5 stq.c

21.2.6 stb.c

21.2.7 expr.c

21.2.8 stc.c

21.2.9 std.c

21.2.10 ste.c

21.2.11 Gotchas (Transforming)

This section is not about transforming “gotchas” into something else. It is about the weirder
aspects of transforming Fortran, however that’s defined, into a more modern, canonical form.

21.2.11.1 Multi-character Lexemes

Each lexeme carries with it a pointer to where it appears in the source.
To provide the ability for diagnostics to point to column numbers, in addition to line

numbers and names, lexemes that represent more than one (significant) character in the
source code need, generally, to provide pointers to where each character appears in the
source.

This provides the ability to properly identify the precise location of the problem in code
like

SUBROUTINE X

END

BLOCK DATA X

END

which, in fixed-form source, would result in single lexemes consisting of the strings
‘SUBROUTINEX’ and ‘BLOCKDATAX’. (The problem is that ‘X’ is defined twice, so a pointer to
the ‘X’ in the second definition, as well as a follow-up pointer to the corresponding pointer
in the first, would be preferable to pointing to the beginnings of the statements.)

This need also arises when parsing (and diagnosing) FORMAT statements.
Further, it arises when diagnosing FMT= specifiers that contain constants (or partial

constants, or even propagated constants!) in I/O statements, as in:

336 Using and Porting GNU Fortran

PRINT ’(I2, 3HAB)’, J

(A pointer to the beginning of the prematurely-terminated Hollerith constant, and/or
to the close parenthese, is preferable to a pointer to the open-parenthese or the apostrophe
that precedes it.)

Multi-character lexemes, which would seem to naturally include at least digit strings,
alphanumeric strings, CHARACTER constants, and Hollerith constants, therefore need to pro-
vide location information on each character. (Maybe Hollerith constants don’t, but it’s
unnecessary to except them.)

The question then arises, what about other multi-character lexemes, such as ‘**’ and
‘//’, and Fortran 90’s ‘(/’, ‘/)’, ‘::’, and so on?

Turns out there’s a need to identify the location of the second character of these two-
character lexemes. For example, in ‘I(/J) = K’, the slash needs to be diagnosed as the
problem, not the open parenthese. Similarly, it is preferable to diagnose the second slash in
‘I = J // K’ rather than the first, given the implicit typing rules, which would result in the
compiler disallowing the attempted concatenation of two integers. (Though, since that’s
more of a semantic issue, it’s not that much preferable.)

Even sequences that could be parsed as digit strings could use location info, for example,
to diagnose the ‘9’ in the octal constant ‘O’129’’. (This probably will be parsed as a
character string, to be consistent with the parsing of ‘Z’129A’’.)

To avoid the hassle of recording the location of the second character, while also preserving
the general rule that each significant character is distinctly pointed to by the lexeme that
contains it, it’s best to simply not have any fixed-size lexemes larger than one character.

This new design is expected to make checking for two ‘*’ lexemes in a row much easier
than the old design, so this is not much of a sacrifice. It probably makes the lexer much
easier to implement than it makes the parser harder.

21.2.11.2 Space-padding Lexemes

Certain lexemes need to be padded with virtual spaces when the end of the line (or file) is
encountered.

This is necessary in fixed form, to handle lines that don’t extend to column 72, assuming
that’s the line length in effect.

21.2.11.3 Bizarre Free-form Hollerith Constants

Last I checked, the Fortran 90 standard actually required the compiler to silently accept
something like

FORMAT (1 2 Htwelve chars)

as a valid FORMAT statement specifying a twelve-character Hollerith constant.
The implication here is that, since the new lexer is a zero-feedback one, it won’t know

that the special case of a FORMAT statement being parsed requires apparently distinct lexemes
‘1’ and ‘2’ to be treated as a single lexeme.

(This is a horrible misfeature of the Fortran 90 language. It’s one of many such mis-
features that almost make me want to not support them, and forge ahead with designing

Chapter 21: Front End 337

a new “GNU Fortran” language that has the features, but not the misfeatures, of Fortran
90, and provide utility programs to do the conversion automatically.)

So, the lexer must gather distinct chunks of decimal strings into a single lexeme in
contexts where a single decimal lexeme might start a Hollerith constant.

(Which probably means it might as well do that all the time for all multi-character
lexemes, even in free-form mode, leaving it to subsequent phases to pull them apart as they
see fit.)

Compare the treatment of this to how
CHARACTER * 4 5 HEY

and
CHARACTER * 12 HEY

must be treated—the former must be diagnosed, due to the separation between lexemes,
the latter must be accepted as a proper declaration.

21.2.11.4 Hollerith Constants

Recognizing a Hollerith constant—specifically, that an ‘H’ or ‘h’ after a digit string begins
such a constant—requires some knowledge of context.

Hollerith constants (such as ‘2HAB’) can appear after:
• ‘(’
• ‘,’
• ‘=’
• ‘+’, ‘-’, ‘/’
• ‘*’, except as noted below

Hollerith constants don’t appear after:
• ‘CHARACTER*’, which can be treated generally as any ‘*’ that is the second lexeme of a

statement

21.2.11.5 Confusing Function Keyword

While
REAL FUNCTION FOO ()

must be a FUNCTION statement and
REAL FUNCTION FOO (5)

must be a type-definition statement,
REAL FUNCTION FOO (names)

where names is a comma-separated list of names, can be one or the other.
The only way to disambiguate that statement (short of mandating free-form source or

a short maximum length for name for external procedures) is based on the context of the
statement.

In particular, the statement is known to be within an already-started program unit (but
not at the outer level of the CONTAINS block), it is a type-declaration statement.

Otherwise, the statement is a FUNCTION statement, in that it begins a function program
unit (external, or, within CONTAINS, nested).

338 Using and Porting GNU Fortran

21.2.11.6 Weird READ

The statement
READ (N)

is equivalent to either
READ (UNIT=(N))

or
READ (FMT=(N))

depending on which would be valid in context.

Specifically, if ‘N’ is type INTEGER, ‘READ (FMT=(N))’ would not be valid, because paren-
theses may not be used around ‘N’, whereas they may around it in ‘READ (UNIT=(N))’.

Further, if ‘N’ is type CHARACTER, the opposite is true—‘READ (UNIT=(N))’ is not valid,
but ‘READ (FMT=(N))’ is.

Strictly speaking, if anything follows
READ (N)

in the statement, whether the first lexeme after the close parenthese is a comma could be
used to disambiguate the two cases, without looking at the type of ‘N’, because the comma is
required for the ‘READ (FMT=(N))’ interpretation and disallowed for the ‘READ (UNIT=(N))’
interpretation.

However, in practice, many Fortran compilers allow the comma for the ‘READ
(UNIT=(N))’ interpretation anyway (in that they generally allow a leading comma before
an I/O list in an I/O statement), and much code takes advantage of this allowance.

(This is quite a reasonable allowance, since the juxtaposition of a comma-separated list
immediately after an I/O control-specification list, which is also comma-separated, without
an intervening comma, looks sufficiently “wrong” to programmers that they can’t resist the
itch to insert the comma. ‘READ (I, J), K, L’ simply looks cleaner than ‘READ (I, J) K,
L’.)

So, type-based disambiguation is needed unless strict adherence to the standard is always
assumed, and we’re not going to assume that.

21.2.12 TBD (Transforming)

Continue researching gotchas, designing the transformational process, and implementing it.

Specific issues to resolve:

• Just where should (if it was implemented) USE processing take place?
This gets into the whole issue of how g77 should handle the concept of modules. I
think GNAT already takes on this issue, but don’t know more than that. Jim Giles has
written extensively on comp.lang.fortran about his opinions on module handling, as
have others. Jim’s views should be taken into account.
Actually, Richard M. Stallman (RMS) also has written up some guidelines for
implementing such things, but I’m not sure where I read them. Perhaps the old
gcc2@cygnus.com list.

Chapter 21: Front End 339

If someone could dig references to these up and get them to me, that would be much
appreciated! Even though modules are not on the short-term list for implementation,
it’d be helpful to know now how to avoid making them harder to implement them later.

• Should the g77 command become just a script that invokes all the various preprocessing
that might be needed, thus making it seem slower than necessary for legacy code that
people are unwilling to convert, or should we provide a separate script for that, thus
encouraging people to convert their code once and for all?
At least, a separate script to behave as old g77 did, perhaps named g77old, might
ease the transition, as might a corresponding one that converts source codes named
g77oldnew.
These scripts would take all the pertinent options g77 used to take and run the appro-
priate filters, passing the results to g77 or just making new sources out of them (in a
subdirectory, leaving the user to do the dirty deed of moving or copying them over the
old sources).

• Do other Fortran compilers provide a prefix syntax to govern the treatment of back-
slashes in CHARACTER (or Hollerith) constants?
Knowing what other compilers provide would help.

• Is it okay to drop support for the ‘-fintrin-case-initcap’, ‘-fmatch-case-initcap’,
‘-fsymbol-case-initcap’, and ‘-fcase-initcap’ options?
I’ve asked info-gnu-fortran@gnu.org for input on this. Not having to support these
makes it easier to write the new front end, and might also avoid complicated its design.
The consensus to date (1999-11-17) has been to drop this support. Can’t recall anybody
saying they’re using it, in fact.

21.3 Philosophy of Code Generation

Don’t poke the bear.

The g77 front end generates code via the gcc back end.

The gcc back end (GBE) is a large, complex labyrinth of intricate code written in a
combination of the C language and specialized languages internal to gcc.

While the code that implements the GBE is written in a combination of languages, the
GBE itself is, to the front end for a language like Fortran, best viewed as a compiler that
compiles its own, unique, language.

The GBE’s “source”, then, is written in this language, which consists primarily of a
combination of calls to GBE functions and tree nodes (which are, themselves, created by
calling GBE functions).

So, the g77 generates code by, in effect, translating the Fortran code it reads into a form
“written” in the “language” of the gcc back end.

This language will heretofore be referred to as GBEL, for GNU Back End Language.

GBEL is an evolving language, not fully specified in any published form as of this writing.
It offers many facilities, but its “core” facilities are those that corresponding most directly
to those needed to support gcc (compiling code written in GNU C).

340 Using and Porting GNU Fortran

The g77 Fortran Front End (FFE) is designed and implemented to navigate the currents
and eddies of ongoing GBEL and gcc development while also delivering on the potential of
an integrated FFE (as compared to using a converter like f2c and feeding the output into
gcc).

Goals of the FFE’s code-generation strategy include:

• High likelihood of generation of correct code, or, failing that, producing a fatal diag-
nostic or crashing.

• Generation of highly optimized code, as directed by the user via GBE-specific (versus
g77-specific) constructs, such as command-line options.

• Fast overall (FFE plus GBE) compilation.

• Preservation of source-level debugging information.

The strategies historically, and currently, used by the FFE to achieve these goals include:

• Use of GBEL constructs that most faithfully encapsulate the semantics of Fortran.

• Avoidance of GBEL constructs that are so rarely used, or limited to use in specialized
situations not related to Fortran, that their reliability and performance has not yet
been established as sufficient for use by the FFE.

• Flexible design, to readily accommodate changes to specific code-generation strategies,
perhaps governed by command-line options.

“Don’t poke the bear” somewhat summarizes the above strategies. The GBE is the bear.
The FFE is designed and implemented to avoid poking it in ways that are likely to just
annoy it. The FFE usually either tackles it head-on, or avoids treating it in ways dissimilar
to how the gcc front end treats it.

For example, the FFE uses the native array facility in the back end instead of the lower-
level pointer-arithmetic facility used by gcc when compiling f2c output). Theoretically,
this presents more opportunities for optimization, faster compile times, and the production
of more faithful debugging information. These benefits were not, however, immediately
realized, mainly because gcc itself makes little or no use of the native array facility.

Complex arithmetic is a case study of the evolution of this strategy. When originally
implemented, the GBEL had just evolved its own native complex-arithmetic facility, so the
FFE took advantage of that.

When porting g77 to 64-bit systems, it was discovered that the GBE didn’t really im-
plement its native complex-arithmetic facility properly.

The short-term solution was to rewrite the FFE to instead use the lower-level facilities
that’d be used by gcc-compiled code (assuming that code, itself, didn’t use the native
complex type provided, as an extension, by gcc), since these were known to work, and, in
any case, if shown to not work, would likely be rapidly fixed (since they’d likely not work
for vanilla C code in similar circumstances).

However, the rewrite accommodated the original, native approach as well by offering
a command-line option to select it over the emulated approach. This allowed users, and
especially GBE maintainers, to try out fixes to complex-arithmetic support in the GBE
while g77 continued to default to compiling more code correctly, albeit producing (typically)
slower executables.

Chapter 21: Front End 341

As of April 1999, it appeared that the last few bugs in the GBE’s support of its native
complex-arithmetic facility were worked out. The FFE was changed back to default to using
that native facility, leaving emulation as an option.

Later during the release cycle (which was called EGCS 1.2, but soon became GCC 2.95),
bugs in the native facility were found. Reactions among various people included “the last
thing we should do is change the default back”, “we must change the default back”, and
“let’s figure out whether we can narrow down the bugs to few enough cases to allow the now-
months-long-tested default to remain the same”. The latter viewpoint won that particular
time. The bugs exposed other concerns regarding ABI compliance when the ABI specified
treatment of complex data as different from treatment of what Fortran and GNU C consider
the equivalent aggregation (structure) of real (or float) pairs.

Other Fortran constructs—arrays, character strings, complex division, COMMON and
EQUIVALENCE aggregates, and so on—involve issues similar to those pertaining to complex
arithmetic.

So, it is possible that the history of how the FFE handled complex arithmetic will be
repeated, probably in modified form (and hopefully over shorter timeframes), for some of
these other facilities.

21.4 Two-pass Design

The FFE does not tell the GBE anything about a program unit until after the last statement
in that unit has been parsed. (A program unit is a Fortran concept that corresponds, in the
C world, mostly closely to functions definitions in ISO C. That is, a program unit in Fortran
is like a top-level function in C. Nested functions, found among the extensions offered by
GNU C, correspond roughly to Fortran’s statement functions.)

So, while parsing the code in a program unit, the FFE saves up all the information on
statements, expressions, names, and so on, until it has seen the last statement.

At that point, the FFE revisits the saved information (in what amounts to a second pass
over the program unit) to perform the actual translation of the program unit into GBEL,
ultimating in the generation of assembly code for it.

Some lookahead is performed during this second pass, so the FFE could be viewed as a
“two-plus-pass” design.

21.4.1 Two-pass Code

Most of the code that turns the first pass (parsing) into a second pass for code generation
is in ‘gcc/gcc/f/std.c’.

It has external functions, called mainly by siblings in ‘gcc/gcc/f/stc.c’, that record
the information on statements and expressions in the order they are seen in the source code.
These functions save that information.

It also has an external function that revisits that information, calling the siblings in
‘gcc/gcc/f/ste.c’, which handles the actual code generation (by generating GBEL code,
that is, by calling GBE routines to represent and specify expressions, statements, and so
on).

342 Using and Porting GNU Fortran

21.4.2 Why Two Passes

The need for two passes was not immediately evident during the design and implementation
of the code in the FFE that was to produce GBEL. Only after a few kludges, to handle
things like incorrectly-guessed ASSIGN label nature, had been implemented, did enough
evidence pile up to make it clear that ‘std.c’ had to be introduced to intercept, save, then
revisit as part of a second pass, the digested contents of a program unit.

Other such missteps have occurred during the evolution of the FFE, because of the
different goals of the FFE and the GBE.

Because the GBE’s original, and still primary, goal was to directly support the GNU
C language, the GBEL, and the GBE itself, requires more complexity on the part of most
front ends than it requires of gcc’s.

For example, the GBEL offers an interface that permits the gcc front end to implement
most, or all, of the language features it supports, without the front end having to make
use of non-user-defined variables. (It’s almost certainly the case that all of K&R C, and
probably ANSI C as well, is handled by the gcc front end without declaring such variables.)

The FFE, on the other hand, must resort to a variety of “tricks” to achieve its goals.
Consider the following C code:

int

foo (int a, int b)

{

int c = 0;

if ((c = bar (c)) == 0)

goto done;

quux (c << 1);

done:

return c;

}

Note what kinds of objects are declared, or defined, before their use, and before any
actual code generation involving them would normally take place:
• Return type of function
• Entry point(s) of function
• Dummy arguments
• Variables
• Initial values for variables

Whereas, the following items can, and do, suddenly appear “out of the blue” in C:
• Label references
• Function references

Not surprisingly, the GBE faithfully permits the latter set of items to be “discovered”
partway through GBEL “programs”, just as they are permitted to in C.

Yet, the GBE has tended, at least in the past, to be reticent to fully support similar
“late” discovery of items in the former set.

This makes Fortran a poor fit for the “safe” subset of GBEL. Consider:

Chapter 21: Front End 343

FUNCTION X (A, ARRAY, ID1)

CHARACTER*(*) A

DOUBLE PRECISION X, Y, Z, TMP, EE, PI

REAL ARRAY(ID1*ID2)

COMMON ID2

EXTERNAL FRED

ASSIGN 100 TO J

CALL FOO (I)

IF (I .EQ. 0) PRINT *, A(0)

GOTO 200

ENTRY Y (Z)

ASSIGN 101 TO J

200 PRINT *, A(1)

READ *, TMP

GOTO J

100 X = TMP * EE

RETURN

101 Y = TMP * PI

CALL FRED

DATA EE, PI /2.71D0, 3.14D0/

END

Here are some observations about the above code, which, while somewhat contrived,
conforms to the FORTRAN 77 and Fortran 90 standards:
• The return type of function ‘X’ is not known until the ‘DOUBLE PRECISION’ line has

been parsed.
• Whether ‘A’ is a function or a variable is not known until the ‘PRINT *, A(0)’ statement

has been parsed.
• The bounds of the array of argument ‘ARRAY’ depend on a computation involving the

subsequent argument ‘ID1’ and the blank-common member ‘ID2’.
• Whether ‘Y’ and ‘Z’ are local variables, additional function entry points, or dummy

arguments to additional entry points is not known until the ENTRY statement is parsed.
• Similarly, whether ‘TMP’ is a local variable is not known until the ‘READ *, TMP’ state-

ment is parsed.
• The initial values for ‘EE’ and ‘PI’ are not known until after the DATA statement is

parsed.
• Whether ‘FRED’ is a function returning type REAL or a subroutine (which can be thought

of as returning type void or, to support alternate returns in a simple way, type int)
is not known until the ‘CALL FRED’ statement is parsed.

• Whether ‘100’ is a FORMAT label or the label of an executable statement is not known
until the ‘X =’ statement is parsed. (These two types of labels get very different treat-
ment, especially when ASSIGN’ed.)

• That ‘J’ is a local variable is not known until the first ASSIGN statement is parsed.
(This happens after executable code has been seen.)

Very few of these “discoveries” can be accommodated by the GBE as it has evolved
over the years. The GBEL doesn’t support several of them, and those it might appear to
support don’t always work properly, especially in combination with other GBEL and GBE
features, as implemented in the GBE.

344 Using and Porting GNU Fortran

(Had the GBE and its GBEL originally evolved to support g77, the shoe would be on
the other foot, so to speak—most, if not all, of the above would be directly supported by
the GBEL, and a few C constructs would probably not, as they are in reality, be supported.
Both this mythical, and today’s real, GBE caters to its GBEL by, sometimes, scrambling
around, cleaning up after itself—after discovering that assumptions it made earlier during
code generation are incorrect. That’s not a great design, since it indicates significant code
paths that might be rarely tested but used in some key production environments.)

So, the FFE handles these discrepancies—between the order in which it discovers facts
about the code it is compiling, and the order in which the GBEL and GBE support such
discoveries—by performing what amounts to two passes over each program unit.

(A few ambiguities can remain at that point, such as whether, given ‘EXTERNAL BAZ’ and
no other reference to ‘BAZ’ in the program unit, it is a subroutine, a function, or a block-
data—which, in C-speak, governs its declared return type. Fortunately, these distinctions
are easily finessed for the procedure, library, and object-file interfaces supported by g77.)

21.5 Challenges Posed

Consider the following Fortran code, which uses various extensions (including some to For-
tran 90):

SUBROUTINE X(A)

CHARACTER*(*) A

COMPLEX CFUNC

INTEGER*2 CLOCKS(200)

INTEGER IFUNC

CALL SYSTEM_CLOCK (CLOCKS (IFUNC (CFUNC (’(’//A//’)’))))

The above poses the following challenges to any Fortran compiler that uses run-time
interfaces, and a run-time library, roughly similar to those used by g77:
• Assuming the library routine that supports SYSTEM_CLOCK expects to set an INTEGER*4

variable via its COUNT argument, the compiler must make available to it a temporary
variable of that type.

• Further, after the SYSTEM_CLOCK library routine returns, the compiler must ensure that
the temporary variable it wrote is copied into the appropriate element of the ‘CLOCKS’
array. (This assumes the compiler doesn’t just reject the code, which it should if it is
compiling under some kind of a “strict” option.)

• To determine the correct index into the ‘CLOCKS’ array, (putting aside the fact that
the index, in this particular case, need not be computed until after the SYSTEM_CLOCK
library routine returns), the compiler must ensure that the IFUNC function is called.
That requires evaluating its argument, which requires, for g77 (assuming -ff2c is in
force), reserving a temporary variable of type COMPLEX for use as a repository for the
return value being computed by ‘CFUNC’.

• Before invoking ‘CFUNC’, is argument must be evaluated, which requires allocating, at
run time, a temporary large enough to hold the result of the concatenation, as well as
actually performing the concatenation.

• The large temporary needed during invocation of CFUNC should, ideally, be deallocated
(or, at least, left to the GBE to dispose of, as it sees fit) as soon as CFUNC returns,

Chapter 21: Front End 345

which means before IFUNC is called (as it might need a lot of dynamically allocated
memory).

g77 currently doesn’t support all of the above, but, so that it might someday, it has
evolved to handle at least some of the above requirements.

Meeting the above requirements is made more challenging by conforming to the require-
ments of the GBEL/GBE combination.

21.6 Transforming Statements

Most Fortran statements are given their own block, and, for temporary variables they might
need, their own scope. (A block is what distinguishes ‘{ foo (); }’ from just ‘foo ();’ in
C. A scope is included with every such block, providing a distinct name space for local
variables.)

Label definitions for the statement precede this block, so ‘10 PRINT *, I’ is handled
more like ‘fl10: { ... }’ than ‘{ fl10: ... }’ (where ‘fl10’ is just a notation meaning
“Fortran Label 10” for the purposes of this document).

21.6.1 Statements Needing Temporaries

Any temporaries needed during, but not beyond, execution of a Fortran statement, are
made local to the scope of that statement’s block.

This allows the GBE to share storage for these temporaries among the various statements
without the FFE having to manage that itself.

(The GBE could, of course, decide to optimize management of these temporaries. For
example, it could, theoretically, schedule some of the computations involving these tempo-
raries to occur in parallel. More practically, it might leave the storage for some temporaries
“live” beyond their scopes, to reduce the number of manipulations of the stack pointer at
run time.)

Temporaries needed across distinct statement boundaries usually are associated with
Fortran blocks (such as DO/END DO). (Also, there might be temporaries not associated with
blocks at all—these would be in the scope of the entire program unit.)

Each Fortran block should get its own block/scope in the GBE. This is best, because it
allows temporaries to be more naturally handled. However, it might pose problems when
handling labels (in particular, when they’re the targets of GOTOs outside the Fortran block),
and generally just hassling with replicating parts of the gcc front end (because the FFE
needs to support an arbitrary number of nested back-end blocks if each Fortran block gets
one).

So, there might still be a need for top-level temporaries, whose “owning” scope is that
of the containing procedure.

Also, there seems to be problems declaring new variables after generating code (within
a block) in the back end, leading to, e.g., ‘label not defined before binding contour’
or similar messages, when compiling with ‘-fstack-check’ or when compiling for certain
targets.

346 Using and Porting GNU Fortran

Because of that, and because sometimes these temporaries are not discovered until in the
middle of of generating code for an expression statement (as in the case of the optimization
for ‘X**I’), it seems best to always pre-scan all the expressions that’ll be expanded for a
block before generating any of the code for that block.

This pre-scan then handles discovering and declaring, to the back end, the temporaries
needed for that block.

It’s also important to treat distinct items in an I/O list as distinct statements deserving
their own blocks. That’s because there’s a requirement that each I/O item be fully processed
before the next one, which matters in cases like ‘READ (*,*), I, A(I)’—the element of ‘A’
read in the second item must be determined from the value of ‘I’ read in the first item.

21.6.2 Transforming DO WHILE

‘DO WHILE(expr)’ must be implemented so that temporaries needed to evaluate ‘expr’ are
generated just for the test, each time.

Consider how ‘DO WHILE (A//B .NE. ’END’); ...; END DO’ is transformed:
for (;;)

{

int temp0;

{

char temp1[large];

libg77_catenate (temp1, a, b);

temp0 = libg77_ne (temp1, ’END’);

}

if (! temp0)

break;

...

}

In this case, it seems like a time/space tradeoff between allocating and deallocating
‘temp1’ for each iteration and allocating it just once for the entire loop.

However, if ‘temp1’ is allocated just once for the entire loop, it could be the wrong size
for subsequent iterations of that loop in cases like ‘DO WHILE (A(I:J)//B .NE. ’END’)’,
because the body of the loop might modify ‘I’ or ‘J’.

So, the above implementation is used, though a more optimal one can be used in specific
circumstances.

21.6.3 Transforming Iterative DO

An iterative DO loop (one that specifies an iteration variable) is required by the Fortran
standards to be implemented as though an iteration count is computed before entering the
loop body, and that iteration count used to determine the number of times the loop body
is to be performed (assuming the loop isn’t cut short via GOTO or EXIT).

The FFE handles this by allocating a temporary variable to contain the computed num-
ber of iterations. Since this variable must be in a scope that includes the entire loop, a

Chapter 21: Front End 347

GBEL block is created for that loop, and the variable declared as belonging to the scope of
that block.

21.6.4 Transforming Block IF

Consider:
SUBROUTINE X(A,B,C)

CHARACTER*(*) A, B, C

LOGICAL LFUNC

IF (LFUNC (A//B)) THEN

CALL SUBR1

ELSE IF (LFUNC (A//C)) THEN

CALL SUBR2

ELSE

CALL SUBR3

END

The arguments to the two calls to ‘LFUNC’ require dynamic allocation (at run time), but
are not required during execution of the CALL statements.

So, the scopes of those temporaries must be within blocks inside the block corresponding
to the Fortran IF block.

This cannot be represented “naturally” in vanilla C, nor in GBEL. The if, elseif,
else, and endif constructs provided by both languages must, for a given if block, share
the same C/GBE block.

Therefore, any temporaries needed during evaluation of ‘expr’ while executing ‘ELSE
IF(expr)’ must either have been predeclared at the top of the corresponding IF block, or
declared within a new block for that ELSE IF—a block that, since it cannot contain the
else or else if itself (due to the above requirement), actually implements the rest of the
IF block’s ELSE IF and ELSE statements within an inner block.

The FFE takes the latter approach.

21.6.5 Transforming SELECT CASE

SELECT CASE poses a few interesting problems for code generation, if efficiency and frugal
stack management are important.

Consider ‘SELECT CASE (I(’PREFIX’//A))’, where ‘A’ is CHARACTER*(*). In a case
like this—basically, in any case where largish temporaries are needed to evaluate the
expression—those temporaries should not be “live” during execution of any of the CASE
blocks.

So, evaluation of the expression is best done within its own block, which in turn is within
the SELECT CASE block itself (which contains the code for the CASE blocks as well, though
each within their own block).

Otherwise, we’d have the rough equivalent of this pseudo-code:
{

char temp[large];

libg77_catenate (temp, ’prefix’, a);

348 Using and Porting GNU Fortran

switch (i (temp))

{

case 0:

...

}

}

And that would leave temp[large] in scope during the CASE blocks (although a clever
back end *could* see that it isn’t referenced in them, and thus free that temp before
executing the blocks).

So this approach is used instead:
{

int temp0;

{

char temp1[large];

libg77_catenate (temp1, ’prefix’, a);

temp0 = i (temp1);

}

switch (temp0)

{

case 0:

...

}

}

Note how ‘temp1’ goes out of scope before starting the switch, thus making it easy for a
back end to free it.

The problem that solution has, however, is with ‘SELECT CASE(’prefix’//A)’ (which is
currently not supported).

Unless the GBEL is extended to support arbitrarily long character strings in its case
facility, the FFE has to implement SELECT CASE on CHARACTER (probably excepting
CHARACTER*1) using a cascade of if, elseif, else, and endif constructs in GBEL.

To prevent the (potentially large) temporary, needed to hold the selected expression itself
(‘’prefix’//A’), from being in scope during execution of the CASE blocks, two approaches
are available:
• Pre-evaluate all the CASE tests, producing an integer ordinal that is used, a la ‘temp0’

in the earlier example, as if ‘SELECT CASE(temp0)’ had been written.
Each corresponding CASE is replaced with ‘CASE(i)’, where i is the ordinal for that
case, determined while, or before, generating the cascade of if-related constructs to
cope with CHARACTER selection.

• Make ‘temp0’ above just large enough to hold the longest CASE string that’ll actually
be compared against the expression (in this case, ‘’prefix’//A’).
Since that length must be constant (because CASE expressions are all constant), it won’t
be so large, and, further, ‘temp1’ need not be dynamically allocated, since normal
CHARACTER assignment can be used into the fixed-length ‘temp0’.

Both of these solutions require SELECT CASE implementation to be changed so all the
corresponding CASE statements are seen during the actual code generation for SELECT CASE.

Chapter 21: Front End 349

21.7 Transforming Expressions

The interactions between statements, expressions, and subexpressions at program run time
can be viewed as:

action(expr)

Here, action is the series of steps performed to effect the statement, and expr is the
expression whose value is used by action.

Expanding the above shows a typical order of events at run time:
Evaluate expr

Perform action, using result of evaluation of expr

Clean up after evaluating expr

So, if evaluating expr requires allocating memory, that memory can be freed before
performing action only if it is not needed to hold the result of evaluating expr. Otherwise,
it must be freed no sooner than after action has been performed.

The above are recursive definitions, in the sense that they apply to subexpressions of
expr.

That is, evaluating expr involves evaluating all of its subexpressions, performing the
action that computes the result value of expr, then cleaning up after evaluating those
subexpressions.

The recursive nature of this evaluation is implemented via recursive-descent transforma-
tion of the top-level statements, their expressions, their subexpressions, and so on.

However, that recursive-descent transformation is, due to the nature of the GBEL, fo-
cused primarily on generating a single stream of code to be executed at run time.

Yet, from the above, it’s clear that multiple streams of code must effectively be simul-
taneously generated during the recursive-descent analysis of statements.

The primary stream implements the primary action items, while at least two other
streams implement the evaluation and clean-up items.

Requirements imposed by expressions include:

• Whether the caller needs to have a temporary ready to hold the value of the expression.
• Other stuff???

21.8 Internal Naming Conventions

Names exported by FFE modules have the following (regular-expression) forms. Note that
all names beginning ffemod or FFEmod , where mod is lowercase or uppercase alphanumerics,
respectively, are exported by the module ffemod , with the source code doing the exporting
in ‘mod.h’. (Usually, the source code for the implementation is in ‘mod.c’.)

Identifiers that don’t fit the following forms are not considered exported, even if they are
according to the C language. (For example, they might be made available to other modules
solely for use within expansions of exported macros, not for use within any source code in
those other modules.)

ffemod The single typedef exported by the module.

350 Using and Porting GNU Fortran

FFEumod_[A-Z][A-Z0-9_]*
(Where umod is the uppercase for of mod.)
A #define or enum constant of the type ffemod .

ffemod[A-Z][A-Z][a-z0-9]*
A typedef exported by the module.
The portion of the identifier after ffemod is referred to as ctype, a capitalized
(mixed-case) form of type.

FFEumod_type[A-Z][A-Z0-9_]*[A-Z0-9]?
(Where umod is the uppercase for of mod.)
A #define or enum constant of the type ffemodtype , where type is the lower-
case form of ctype in an exported typedef.

ffemod_value
A function that does or returns something, as described by value (see below).

ffemod_value_input
A function that does or returns something based primarily on the thing de-
scribed by input (see below).

Below are names used for value and input, along with their definitions.

col A column number within a line (first column is number 1).

file An encapsulation of a file’s name.

find Looks up an instance of some type that matches specified criteria, and returns
that, even if it has to create a new instance or crash trying to find it (as
appropriate).

initialize
Initializes, usually a module. No type.

int A generic integer of type int.

is A generic integer that contains a true (nonzero) or false (zero) value.

len A generic integer that contains the length of something.

line A line number within a source file, or a global line number.

lookup Looks up an instance of some type that matches specified criteria, and returns
that, or returns nil.

name A text that points to a name of something.

new Makes a new instance of the indicated type. Might return an existing one if
appropriate—if so, similar to find without crashing.

pt Pointer to a particular character (line, column pairs) in the input file (source
code being compiled).

run Performs some herculean task. No type.

terminate
Terminates, usually a module. No type.

text A char * that points to generic text.

Chapter 22: Diagnostics 351

22 Diagnostics

Some diagnostics produced by g77 require sufficient explanation that the explanations are
given below, and the diagnostics themselves identify the appropriate explanation.

Identification uses the GNU Info format—specifically, the info command that displays
the explanation is given within square brackets in the diagnostic. For example:

foo.f:5: Invalid statement [info -f g77 M FOOEY]

More details about the above diagnostic is found in the g77 Info documentation, menu
item ‘M’, submenu item ‘FOOEY’, which is displayed by typing the UNIX command ‘info -f
g77 M FOOEY’.

Other Info readers, such as EMACS, may be just as easily used to display the pertinent
node. In the above example, ‘g77’ is the Info document name, ‘M’ is the top-level menu
item to select, and, in that node (named ‘Diagnostics’, the name of this chapter, which is
the very text you’re reading now), ‘FOOEY’ is the menu item to select.

In this printed version of the g77 manual, the above example points to a section, below,
entitled ‘FOOEY’—though, of course, as the above is just a sample, no such section exists.

22.1 CMPAMBIG

Ambiguous use of intrinsic intrinsic ...

The type of the argument to the invocation of the intrinsic intrinsic is a COMPLEX type
other than COMPLEX(KIND=1). Typically, it is COMPLEX(KIND=2), also known as DOUBLE
COMPLEX.

The interpretation of this invocation depends on the particular dialect of Fortran for
which the code was written. Some dialects convert the real part of the argument to
REAL(KIND=1), thus losing precision; other dialects, and Fortran 90, do no such conver-
sion.

So, GNU Fortran rejects such invocations except under certain circumstances, to avoid
making an incorrect assumption that results in generating the wrong code.

To determine the dialect of the program unit, perhaps even whether that particular
invocation is properly coded, determine how the result of the intrinsic is used.

The result of intrinsic is expected (by the original programmer) to be REAL(KIND=1)
(the non-Fortran-90 interpretation) if:
• It is passed as an argument to a procedure that explicitly or implicitly declares that

argument REAL(KIND=1).
For example, a procedure with no DOUBLE PRECISION or IMPLICIT DOUBLE PRECISION
statement specifying the dummy argument corresponding to an actual argument of
‘REAL(Z)’, where ‘Z’ is declared DOUBLE COMPLEX, strongly suggests that the program-
mer expected ‘REAL(Z)’ to return REAL(KIND=1) instead of REAL(KIND=2).

• It is used in a context that would otherwise not include any REAL(KIND=2) but where
treating the intrinsic invocation as REAL(KIND=2) would result in unnecessary promo-
tions and (typically) more expensive operations on the wider type.
For example:

352 Using and Porting GNU Fortran

DOUBLE COMPLEX Z

...

R(1) = T * REAL(Z)

The above example suggests the programmer expected the real part of ‘Z’ to be con-
verted to REAL(KIND=1) before being multiplied by ‘T’ (presumed, along with ‘R’ above,
to be type REAL(KIND=1)).
Otherwise, the conversion would have to be delayed until after the multiplication,
requiring not only an extra conversion (of ‘T’ to REAL(KIND=2)), but a (typically) more
expensive multiplication (a double-precision multiplication instead of a single-precision
one).

The result of intrinsic is expected (by the original programmer) to be REAL(KIND=2)
(the Fortran 90 interpretation) if:
• It is passed as an argument to a procedure that explicitly or implicitly declares that

argument REAL(KIND=2).
For example, a procedure specifying a DOUBLE PRECISION dummy argument corre-
sponding to an actual argument of ‘REAL(Z)’, where ‘Z’ is declared DOUBLE COMPLEX,
strongly suggests that the programmer expected ‘REAL(Z)’ to return REAL(KIND=2)
instead of REAL(KIND=1).

• It is used in an expression context that includes other REAL(KIND=2) operands, or is
assigned to a REAL(KIND=2) variable or array element.
For example:

DOUBLE COMPLEX Z

DOUBLE PRECISION R, T

...

R(1) = T * REAL(Z)

The above example suggests the programmer expected the real part of ‘Z’ to not be
converted to REAL(KIND=1) by the REAL() intrinsic.
Otherwise, the conversion would have to be immediately followed by a conversion back
to REAL(KIND=2), losing the original, full precision of the real part of Z, before being
multiplied by ‘T’.

Once you have determined whether a particular invocation of intrinsic expects the For-
tran 90 interpretation, you can:
• Change it to ‘DBLE(expr)’ (if intrinsic is REAL) or ‘DIMAG(expr)’ (if intrinsic is AIMAG)

if it expected the Fortran 90 interpretation.
This assumes expr is COMPLEX(KIND=2)—if it is some other type, such as COMPLEX*32,
you should use the appropriate intrinsic, such as the one to convert to REAL*16 (perhaps
DBLEQ() in place of DBLE(), and QIMAG() in place of DIMAG()).

• Change it to ‘REAL(intrinsic(expr))’, otherwise. This converts to REAL(KIND=1) in
all working Fortran compilers.

If you don’t want to change the code, and you are certain that all ambiguous invocations
of intrinsic in the source file have the same expectation regarding interpretation, you can:
• Compile with the g77 option ‘-ff90’, to enable the Fortran 90 interpretation.
• Compile with the g77 options ‘-fno-f90 -fugly-complex’, to enable the non-Fortran-

90 interpretations.

Chapter 22: Diagnostics 353

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 112, for more information
on this issue.

Note: If the above suggestions don’t produce enough evidence as to whether a particular
program expects the Fortran 90 interpretation of this ambiguous invocation of intrinsic,
there is one more thing you can try.

If you have access to most or all the compilers used on the program to create success-
fully tested and deployed executables, read the documentation for, and also test out, each
compiler to determine how it treats the intrinsic intrinsic in this case. (If all the compilers
don’t agree on an interpretation, there might be lurking bugs in the deployed versions of
the program.)

The following sample program might help:
PROGRAM JCB003

C

C Written by James Craig Burley 1997-02-23.

C

C Determine how compilers handle non-standard REAL

C and AIMAG on DOUBLE COMPLEX operands.

C

DOUBLE COMPLEX Z

REAL R

Z = (3.3D0, 4.4D0)

R = Z

CALL DUMDUM(Z, R)

R = REAL(Z) - R

IF (R .NE. 0.) PRINT *, ’REAL() is Fortran 90’

IF (R .EQ. 0.) PRINT *, ’REAL() is not Fortran 90’

R = 4.4D0

CALL DUMDUM(Z, R)

R = AIMAG(Z) - R

IF (R .NE. 0.) PRINT *, ’AIMAG() is Fortran 90’

IF (R .EQ. 0.) PRINT *, ’AIMAG() is not Fortran 90’

END

C

C Just to make sure compiler doesn’t use naive flow

C analysis to optimize away careful work above,

C which might invalidate results....

C

SUBROUTINE DUMDUM(Z, R)

DOUBLE COMPLEX Z

REAL R

END

If the above program prints contradictory results on a particular compiler, run away!

22.2 EXPIMP

Intrinsic intrinsic referenced ...

The intrinsic is explicitly declared in one program unit in the source file and implicitly
used as an intrinsic in another program unit in the same source file.

This diagnostic is designed to catch cases where a program might depend on using the
name intrinsic as an intrinsic in one program unit and as a global name (such as the name

354 Using and Porting GNU Fortran

of a subroutine or function) in another, but g77 recognizes the name as an intrinsic in both
cases.

After verifying that the program unit making implicit use of the intrinsic is indeed
written expecting the intrinsic, add an ‘INTRINSIC intrinsic ’ statement to that program
unit to prevent this warning.

This and related warnings are disabled by using the ‘-Wno-globals’ option when com-
piling.

Note that this warning is not issued for standard intrinsics. Standard intrinsics include
those described in the FORTRAN 77 standard and, if ‘-ff90’ is specified, those described
in the Fortran 90 standard. Such intrinsics are not as likely to be confused with user
procedures as intrinsics provided as extensions to the standard by g77.

22.3 INTGLOB

Same name ‘intrinsic’ given ...

The name intrinsic is used for a global entity (a common block or a program unit) in
one program unit and implicitly used as an intrinsic in another program unit.

This diagnostic is designed to catch cases where a program intends to use a name entirely
as a global name, but g77 recognizes the name as an intrinsic in the program unit that
references the name, a situation that would likely produce incorrect code.

For example:
INTEGER FUNCTION TIME()

...

END

...

PROGRAM SAMP

INTEGER TIME

PRINT *, ’Time is ’, TIME()

END

The above example defines a program unit named ‘TIME’, but the reference to ‘TIME’
in the main program unit ‘SAMP’ is normally treated by g77 as a reference to the intrinsic
TIME() (unless a command-line option that prevents such treatment has been specified).

As a result, the program ‘SAMP’ will not invoke the ‘TIME’ function in the same source
file.

Since g77 recognizes libU77 procedures as intrinsics, and since some existing code uses
the same names for its own procedures as used by some libU77 procedures, this situation
is expected to arise often enough to make this sort of warning worth issuing.

After verifying that the program unit making implicit use of the intrinsic is indeed
written expecting the intrinsic, add an ‘INTRINSIC intrinsic ’ statement to that program
unit to prevent this warning.

Or, if you believe the program unit is designed to invoke the program-defined procedure
instead of the intrinsic (as recognized by g77), add an ‘EXTERNAL intrinsic ’ statement to
the program unit that references the name to prevent this warning.

This and related warnings are disabled by using the ‘-Wno-globals’ option when com-
piling.

Chapter 22: Diagnostics 355

Note that this warning is not issued for standard intrinsics. Standard intrinsics include
those described in the FORTRAN 77 standard and, if ‘-ff90’ is specified, those described
in the Fortran 90 standard. Such intrinsics are not as likely to be confused with user
procedures as intrinsics provided as extensions to the standard by g77.

22.4 LEX

Unrecognized character ...

Invalid first character ...

Line too long ...

Non-numeric character ...

Continuation indicator ...

Label at ... invalid with continuation line indicator ...

Character constant ...

Continuation line ...

Statement at ... begins with invalid token

Although the diagnostics identify specific problems, they can be produced when general
problems such as the following occur:
• The source file contains something other than Fortran code.

If the code in the file does not look like many of the examples elsewhere in this docu-
ment, it might not be Fortran code. (Note that Fortran code often is written in lower
case letters, while the examples in this document use upper case letters, for stylistic
reasons.)
For example, if the file contains lots of strange-looking characters, it might be APL
source code; if it contains lots of parentheses, it might be Lisp source code; if it contains
lots of bugs, it might be C++ source code.

• The source file contains free-form Fortran code, but ‘-ffree-form’ was not specified
on the command line to compile it.
Free form is a newer form for Fortran code. The older, classic form is called fixed form.
Fixed-form code is visually fairly distinctive, because numerical labels and comments
are all that appear in the first five columns of a line, the sixth column is reserved to de-
note continuation lines, and actual statements start at or beyond column 7. Spaces gen-
erally are not significant, so if you see statements such as ‘REALX,Y’ and ‘DO10I=1,100’,
you are looking at fixed-form code. Comment lines are indicated by the letter ‘C’ or the
symbol ‘*’ in column 1. (Some code uses ‘!’ or ‘/*’ to begin in-line comments, which
many compilers support.)
Free-form code is distinguished from fixed-form source primarily by the fact that state-
ments may start anywhere. (If lots of statements start in columns 1 through 6, that’s
a strong indicator of free-form source.) Consecutive keywords must be separated by
spaces, so ‘REALX,Y’ is not valid, while ‘REAL X,Y’ is. There are no comment lines
per se, but ‘!’ starts a comment anywhere in a line (other than within a character or
Hollerith constant).
See Section 9.1 [Source Form], page 197, for more information.

• The source file is in fixed form and has been edited without sensitivity to the column
requirements.

356 Using and Porting GNU Fortran

Statements in fixed-form code must be entirely contained within columns 7 through
72 on a given line. Starting them “early” is more likely to result in diagnostics than
finishing them “late”, though both kinds of errors are often caught at compile time.
For example, if the following code fragment is edited by following the commented
instructions literally, the result, shown afterward, would produce a diagnostic when
compiled:

C On XYZZY systems, remove "C" on next line:

C CALL XYZZY_RESET

The result of editing the above line might be:
C On XYZZY systems, remove "C" on next line:

CALL XYZZY_RESET

However, that leaves the first ‘C’ in the CALL statement in column 6, making it a
comment line, which is not really what the author intended, and which is likely to
result in one of the above-listed diagnostics.
Replacing the ‘C’ in column 1 with a space is the proper change to make, to ensure the
CALL keyword starts in or after column 7.
Another common mistake like this is to forget that fixed-form source lines are significant
through only column 72, and that, normally, any text beyond column 72 is ignored or
is diagnosed at compile time.
See Section 9.1 [Source Form], page 197, for more information.

• The source file requires preprocessing, and the preprocessing is not being specified at
compile time.
A source file containing lines beginning with #define, #include, #if, and so on is
likely one that requires preprocessing.
If the file’s suffix is ‘.f’, ‘.for’, or ‘.FOR’, the file normally will be compiled without
preprocessing by g77.
Change the file’s suffix from ‘.f’ to ‘.F’ (or, on systems with case-insensitive file names,
to ‘.fpp’ or ‘.FPP’), from ‘.for’ to ‘.fpp’, or from ‘.FOR’ to ‘.FPP’. g77 compiles files
with such names with preprocessing.
Or, learn how to use gcc’s ‘-x’ option to specify the language ‘f77-cpp-input’ for
Fortran files that require preprocessing. See section “Options Controlling the Kind of
Output” in Using the GNU Compiler Collection (GCC).

• The source file is preprocessed, and the results of preprocessing result in syntactic errors
that are not necessarily obvious to someone examining the source file itself.
Examples of errors resulting from preprocessor macro expansion include exceeding the
line-length limit, improperly starting, terminating, or incorporating the apostrophe or
double-quote in a character constant, improperly forming a Hollerith constant, and so
on.
See Section 5.2 [Options Controlling the Kind of Output], page 32, for suggestions
about how to use, and not use, preprocessing for Fortran code.

22.5 GLOBALS

Chapter 22: Diagnostics 357

Global name name defined at ... already defined...

Global name name at ... has different type...

Too many arguments passed to name at ...

Too few arguments passed to name at ...

Argument #n of name is ...

These messages all identify disagreements about the global procedure named name
among different program units (usually including name itself).

Whether a particular disagreement is reported as a warning or an error can depend on
the relative order of the disagreeing portions of the source file.

Disagreements between a procedure invocation and the subsequent procedure itself are,
usually, diagnosed as errors when the procedure itself precedes the invocation. Other dis-
agreements are diagnosed via warnings.

This distinction, between warnings and errors, is due primarily to the present tendency
of the gcc back end to inline only those procedure invocations that are preceded by the
corresponding procedure definitions. If the gcc back end is changed to inline “forward
references”, in which invocations precede definitions, the g77 front end will be changed to
treat both orderings as errors, accordingly.

The sorts of disagreements that are diagnosed by g77 include whether a procedure is a
subroutine or function; if it is a function, the type of the return value of the procedure; the
number of arguments the procedure accepts; and the type of each argument.

Disagreements regarding global names among program units in a Fortran program
should be fixed in the code itself. However, if that is not immediately practical, and the
code has been working for some time, it is possible it will work when compiled with the
‘-fno-globals’ option.

The ‘-fno-globals’ option causes these diagnostics to all be warnings and disables all
inlining of references to global procedures (to avoid subsequent compiler crashes and bad-
code generation). Use of the ‘-Wno-globals’ option as well as ‘-fno-globals’ suppresses all
of these diagnostics. (‘-Wno-globals’ by itself disables only the warnings, not the errors.)

After using ‘-fno-globals’ to work around these problems, it is wise to stop using
that option and address them by fixing the Fortran code, because such problems, while
they might not actually result in bugs on some systems, indicate that the code is not as
portable as it could be. In particular, the code might appear to work on a particular system,
but have bugs that affect the reliability of the data without exhibiting any other outward
manifestations of the bugs.

22.6 LINKFAIL

On AIX 4.1, g77 might not build with the native (non-GNU) tools due to a linker bug in
coping with the ‘-bbigtoc’ option which leads to a ‘Relocation overflow’ error. The
GNU linker is not recommended on current AIX versions, though; it was developed under a
now-unsupported version. This bug is said to be fixed by ‘update PTF U455193 for APAR
IX75823’.

Compiling with ‘-mminimal-toc’ might solve this problem, e.g. by adding
BOOT_CFLAGS=’-mminimal-toc -O2 -g’

to the make bootstrap command line.

358 Using and Porting GNU Fortran

22.7 Y2KBAD

Intrinsic ‘name’, invoked at (^), known to be non-Y2K-compliant...

This diagnostic indicates that the specific intrinsic invoked by the name name is known
to have an interface that is not Year-2000 (Y2K) compliant.

See Section 10.2.2 [Year 2000 (Y2K) Problems], page 212.

Keyword Index 359

Keyword Index

!
! . 93, 94, 198, 203, 355

"
" . 94

#
. 94, 97
#define . 33
#if . 33
#include . 33

$
$. 199

%
% . 94
%DESCR() construct . 109
%LOC() construct . 104
%REF() construct . 108
%VAL() construct . 108

&
&. 94

*
* . 355
*n notation . 99, 216

-
--driver option . 63, 67, 80, 81
-falias-check option . 51, 271
-fargument-alias option 51, 271
-fargument-noalias option 51, 271
-fbadu77-intrinsics-delete option 39
-fbadu77-intrinsics-disable option 39
-fbadu77-intrinsics-enable option 39
-fbadu77-intrinsics-hide option 39
-fbounds-check option . 52
-fcaller-saves option . 46
-fcase-initcap option . 39
-fcase-lower option . 39
-fcase-preserve option . 39
-fcase-strict-lower option . 39
-fcase-strict-upper option . 38
-fcase-upper option . 39

-fdelayed-branch option . 46
-fdollar-ok option . 36
-femulate-complex option . 50
-fexpensive-optimizations option 46
-ff2c-intrinsics-delete option 39
-ff2c-intrinsics-disable option 39
-ff2c-intrinsics-enable option 39
-ff2c-intrinsics-hide option . 39
-ff2c-library option . 49
-ff66 option . 35
-ff77 option . 35
‘-ff90’ . 195
-ff90 option . 35
-ff90-intrinsics-delete option 39
-ff90-intrinsics-disable option 39
-ff90-intrinsics-enable option 39
-ff90-intrinsics-hide option . 39
-ffast-math option . 45
-ffinite-math-only option . 46
-ffixed-line-length-n option . 40
-fflatten-arrays option . 52
-ffloat-store option . 45
-fforce-addr option . 45
-fforce-mem option . 45
-ffortran-bounds-check option 52
‘-ffree-form’ . 194
-ffree-form option . 35
-fgnu-intrinsics-delete option 39
-fgnu-intrinsics-disable option 40
-fgnu-intrinsics-enable option 40
-fgnu-intrinsics-hide option 40
-fgroup-intrinsics-hide option 276
-finit-local-zero option 48, 275
-fintrin-case-any option . 38
-fintrin-case-initcap option . 38
-fintrin-case-lower option . 38
-fintrin-case-upper option . 38
-fmatch-case-any option . 38
-fmatch-case-initcap option 38
-fmatch-case-lower option . 38
-fmatch-case-upper option . 38
-fmil-intrinsics-delete option 40
-fmil-intrinsics-disable option 40
-fmil-intrinsics-enable option 40
-fmil-intrinsics-hide option . 40
-fno-argument-noalias-global option 51, 271
-fno-automatic option . 48, 276
-fno-backslash option . 36
-fno-common option . 53
-fno-f2c option . 48, 278
-fno-f77 option . 35
-fno-fixed-form option . 35
-fno-globals option . 51
-fno-ident option . 50

360 Using and Porting GNU Fortran

-fno-inline option . 45
-fno-move-all-movables option 47
-fno-reduce-all-givs option . 47
-fno-rerun-loop-opt option . 47
-fno-second-underscore . 247
-fno-second-underscore option 50, 253
-fno-silent option . 34
-fno-trapping-math option . 46
-fno-ugly option . 35
-fno-ugly-args option . 36
-fno-ugly-init option. 37
-fno-underscoring option 49, 253
-fonetrip option . 37
-fpack-struct option . 53
-fpcc-struct-return option . 53
-fpedantic option . 41
-fPIC option. 66
-freg-struct-return option . 53
-frerun-cse-after-loop option 46
-fschedule-insns option . 46
-fschedule-insns2 option . 46
-fset-g77-defaults option . 34
-fshort-double option . 53
-fsource-case-lower option . 38
-fsource-case-preserve option 38
-fsource-case-upper option . 38
-fstrength-reduce option . 46
-fsymbol-case-any option . 38
-fsymbol-case-initcap option 38
-fsymbol-case-lower option . 38
-fsymbol-case-upper option 38
-fsyntax-only option . 41
-ftypeless-boz option . 38
-fugly option . 34
-fugly-assign option . 36
-fugly-assumed option . 36
-fugly-comma option . 36
-fugly-complex option . 37
-fugly-logint option . 37
-funix-intrinsics-delete option 40
-funix-intrinsics-disable option 40
-funix-intrinsics-enable option 40
-funix-intrinsics-hide option 40
-funroll-all-loops option . 46
-funroll-loops option . 46
-funsafe-math-optimizations option 46
-fversion option . 34
-fvxt option . 36
-fvxt-intrinsics-delete option 40
-fvxt-intrinsics-disable option 40
-fvxt-intrinsics-enable option 40
-fvxt-intrinsics-hide option . 40
-fzeros option . 50
-g option . 44
-I- option . 47
-i8 . 291
-Idir option . 47
-malign-double . 59, 62, 78, 79

-malign-double option 45, 277

-Nl option . 211

-Nx option . 211

-O2 . 62, 65

-pedantic option . 41

-pedantic-errors option . 41

-qrealsize=8 . 291

-r8. 291

-u option . 41

-v option . 29

-w option . 41

-W option . 43

-Waggregate-return option . 44

-Wall option . 42

-Wcomment option . 43

-Wconversion option . 44

-Werror option . 43

-Wformat option . 43

-Wid-clash-len option . 43

-Wimplicit option . 41

-Wlarger-than-len option . 44

-Wno-globals option . 41

-Wparentheses option . 43

-Wredundant-decls option . 44

-Wshadow option . 43

-Wsurprising option . 42

-Wswitch option . 43

-Wswitch-default option . 43

-Wswitch-enum option . 43

-Wtraditional option . 43

-Wuninitialized option. 41

-Wunused option . 41

‘-x f77-cpp-input’ option 356

.

.EQV., with integer operands 307

.f filename suffix . 33

.F filename suffix . 33

.for filename suffix . 33

.FOR filename suffix . 33

.fpp filename suffix . 33

.FPP filename suffix . 33

.gdbinit . 251

‘.r’ filename suffix . 33

/
/* . 34, 198

/WARNINGS=DECLARATIONS switch 41

;
; . 93, 94

Keyword Index 361

<
< . 94
<> edit descriptor . 194

>
> . 94

?
? . 94

. 94

\
\ . 94

8
80-bit spills . 287

A
Abort intrinsic . 114
Abs intrinsic . 115
ACCEPT statement . 294
Access intrinsic . 115
AChar intrinsic . 116
ACos intrinsic . 116
ACosD intrinsic . 218
adding options . 319
adjustable arrays . 256
AdjustL intrinsic . 116
AdjustR intrinsic . 116
AImag intrinsic . 112
AImag intrinsic . 116
AIMax0 intrinsic . 218
AIMin0 intrinsic . 218
AInt intrinsic . 117
AJMax0 intrinsic . 218
AJMin0 intrinsic. 218
Alarm intrinsic . 117
aliasing . 271, 289
aligned data . 277
aligned stack . 277
alignment . 59, 62, 78, 79, 277
All intrinsic . 118
all warnings . 42
Allocated intrinsic . 118
ALog intrinsic . 118
ALog10 intrinsic . 118
Alpha, support . 289
alternate entry points . 257
alternate returns . 259
ALWAYS FLUSH . 273

AMax0 intrinsic . 118

AMax1 intrinsic . 119

AMin0 intrinsic . 119

AMin1 intrinsic . 119

AMod intrinsic . 119

ampersand . 94

ampersand continuation line 198

And intrinsic . 120

And intrinsic . 296

ANInt intrinsic . 120

ANS carriage control . 295

ANSI FORTRAN 77 standard 87

ANSI FORTRAN 77 support 89

anti-aliasing . 271

Any intrinsic . 120

arguments, null . 207

arguments, omitting . 207

arguments, unused . 43, 271

array bounds checking . 52

array bounds, adjustable . 292

array elements, in adjustable array bounds 292

array ordering . 255

array performance . 52

array size . 213

arrays . 255

arrays, adjustable . 256

arrays, assumed-size . 206

arrays, automatic. 256, 276, 284, 298

arrays, dimensioning . 214, 256

arrays, flattening . 52

as command . 26

ASin intrinsic . 121

ASinD intrinsic . 218

assembler . 26

assembly code . 26

assembly code, invalid . 313

ASSIGN statement . 209, 259

assigned labels. 209

assigned statement labels . 259

Associated intrinsic . 121

association, storage . 271

assumed-size arrays . 206

asterisk . 355

ATan intrinsic . 121

ATan2 intrinsic . 121

ATan2D intrinsic . 219

ATanD intrinsic . 219

automatic arrays 256, 276, 284, 298

AUTOMATIC statement . 295

automatic variables . 295

362 Using and Porting GNU Fortran

B
back end, gcc . 27, 339
backslash . 36, 94, 303
badu77 intrinsics . 39
badu77 intrinsics group . 217
basic concepts . 25
Bear-poking . 340
beginners . 23
BesJ0 intrinsic. 122
BesJ1 intrinsic. 122
BesJN intrinsic . 122
BesY0 intrinsic . 122
BesY1 intrinsic . 123
BesYN intrinsic . 123
binary data . 301
Bit Size intrinsic . 123
BITest intrinsic . 219
BJTest intrinsic . 219
blank . 94, 95
block data . 303
block data and libraries . 266
BLOCK DATA statement 266, 303
bounds checking . 52
BTest intrinsic . 124
bug criteria . 313
bugs . 313
bugs, finding . 25
bugs, known . 281
bus error . 283, 285
but-bugs . 281
byte ordering . 301

C
C library . 285
C preprocessor . 33
C routines calling Fortran 251
C++ . 248
C++, linking with . 247
C, linking with . 247
CAbs intrinsic . 124
calling C routines . 251
card image . 40
carriage control . 295
carriage returns. 197
case sensitivity . 199
cc1 program . 26
cc1plus program . 26
CCos intrinsic . 124
CDAbs intrinsic . 219
CDCos intrinsic . 219
CDExp intrinsic . 220
CDLog intrinsic . 220
CDSin intrinsic . 220
CDSqRt intrinsic . 220
Ceiling intrinsic . 124
CExp intrinsic . 125
cfortran.h . 247

changes, user-visible . 75
Char intrinsic . 125
character assignments . 195
character constants 36, 203, 208, 266
character set . 36
CHARACTER*(*) . 291
CHARACTER, null . 104
character-variable length . 214
characters . 93
characters, comma . 207
characters, comment 93, 198, 203, 355
characters, continuation 93, 203, 355
ChDir intrinsic . 126, 221
checking subscripts . 52
checking substrings . 52
checks, of internal consistency 34
ChMod intrinsic . 126, 221
CLog intrinsic . 127
close angle . 94
close bracket . 94
CLOSE statement . 295
Cmplx intrinsic . 113
Cmplx intrinsic . 127
code generation, conventions 48
code generation, improving 322
code generator . 27, 339
code, assembly . 26
code, displaying main source 289
code, in-line . 27
code, legacy . 263
code, machine . 25
code, source . 25, 94, 197, 199
code, user . 282
code, writing . 263
column-major ordering . 255
columns 73 through 80 . 290
comma, trailing . 207
command options . 31
commands, as . 26
commands, g77 . 26, 29
commands, gcc . 25, 29
commands, gdb . 25
commands, ld . 25
comment . 93, 198, 355
comment character . 203
comment line, debug 199, 298
common blocks . 254, 289, 303
common blocks, large . 282
COMMON layout . 277
COMMON statement . 254, 303
comparing logical expressions 307
compatibility, f2c . 34, 35
compatibility, f2c . 48
compatibility, f2c . 266
compatibility, f2c . 278
compatibility, f77 . 35
compatibility, FORTRAN 66 35, 37
compatibility, FORTRAN 77 89

Keyword Index 363

compatibility, Fortran 90 . 204
compilation, in-line 45, 51, 357

compilation, pedantic . 204

compilation, status . 34

compiler bugs, reporting . 315

compiler limits . 211

compiler memory usage . 288

compiler speed . 288

compilers . 25

compiling programs . 29

Complex intrinsic . 127

COMPLEX intrinsics . 40

complex performance . 289

COMPLEX statement . 255

complex values . 207

complex variables . 255
COMPLEX(KIND=1) type 215

COMPLEX(KIND=2) type 215

components of g77 . 25

concatenation . 291

concepts, basic . 25

conformance, IEEE 754 45, 275

Conjg intrinsic . 128

consistency checks . 34

constants . 103, 216

constants, character 203, 208, 266

constants, context-sensitive 306

constants, Hollerith 206, 208, 266

constants, integer . 288

constants, octal . 203

constants, prefix-radix . 38
constants, types . 38

construct names . 106

context-sensitive constants 306

context-sensitive intrinsics 305

continuation character. 93, 203, 355

continuation line, ampersand 198

continuation line, number of 95

contributors . 17

conversions, nonportable . 297

core dump . 313

Cos intrinsic. 128

CosD intrinsic . 221

CosH intrinsic . 128

Count intrinsic . 129

cpp preprocessor . 33
cpp program . 26, 33, 47, 356

CPU Time intrinsic . 129

Cray pointers . 292

credits . 17

CShift intrinsic . 129

CSin intrinsic . 129

CSqRt intrinsic . 129

CTime intrinsic . 130

CYCLE statement . 106

D
DAbs intrinsic . 130
DACos intrinsic . 131
DACosD intrinsic . 222
DASin intrinsic . 131
DASinD intrinsic . 222
DATA statement . 48, 288
data types . 214
data, aligned . 277
data, overwritten . 285
DATan intrinsic . 131
DATan2 intrinsic . 132
DATan2D intrinsic . 222
DATanD intrinsic . 222
Date intrinsic. 222
Date and Time intrinsic . 132
date y2kbuggy 0 . 212
DbesJ0 intrinsic . 133
DbesJ1 intrinsic . 133
DbesJN intrinsic . 133
DbesY0 intrinsic . 133
DbesY1 intrinsic . 134
DbesYN intrinsic . 134
Dble intrinsic . 134
DbleQ intrinsic . 222
DCmplx intrinsic . 223
DConjg intrinsic . 223
DCos intrinsic . 135
DCosD intrinsic . 223
DCosH intrinsic . 135
DDiM intrinsic . 135
debug line . 199, 298
debugger . 25, 289
debugging . 251, 254
debugging information options 44
debugging main source code 289
DECODE statement . 295
deleted intrinsics . 217
DErF intrinsic . 135
DErFC intrinsic . 136
DExp intrinsic . 136
DFloat intrinsic . 224
DFlotI intrinsic . 224
DFlotJ intrinsic . 224
diagnostics . 351
diagnostics, incorrect . 25
dialect options . 35
Digital Fortran features . 40
Digits intrinsic . 136
DiM intrinsic . 136
DImag intrinsic . 224
DIMENSION statement 255, 256
DIMENSION statement . 292
DIMENSION X(1) . 206
dimensioning arrays . 256
DInt intrinsic . 137
direction of language development 87
directive, INCLUDE . 47

364 Using and Porting GNU Fortran

directory, options . 47
directory, search paths for inclusion 48
disabled intrinsics . 217
disk full . 273
displaying main source code 289
disposition of files . 295
distensions . 205
DLog intrinsic . 137
DLog10 intrinsic . 137
DMax1 intrinsic . 137
DMin1 intrinsic . 138
DMod intrinsic . 138
DNInt intrinsic . 138
DNRM2 . 62, 65
DO . 106
DO loops, one-trip . 37
DO loops, zero-trip . 37
DO statement . 43, 267
DO WHILE . 46, 106
dollar sign . 36, 194, 199
Dot Product intrinsic . 138
DOUBLE COMPLEX . 105
DOUBLE COMPLEX type 216
DOUBLE PRECISION type 216
double quote . 94
double quoted character constants 104, 195
double quotes . 203
double-precision performance 59, 62, 78, 79
DProd intrinsic . 139
DReal intrinsic . 224
driver, gcc command as . 26
DSign intrinsic . 139
DSin intrinsic . 139
DSinD intrinsic . 225
DSinH intrinsic . 139
DSqRt intrinsic . 140
DTan intrinsic . 140
DTanD intrinsic . 225
DTanH intrinsic . 140
DTime intrinsic . 141, 225
dummies, unused . 43

E
edit descriptor, <> . 194
edit descriptor, O . 194
edit descriptor, Q . 294
edit descriptor, Z . 194, 195
effecting IMPLICIT NONE 41
efficiency . 321
ELF support . 66
empty CHARACTER strings 104
enabled intrinsics . 217
ENCODE statement . 295
END DO. 106
entry points . 257
ENTRY statement . 257
environment variables . 53

EOShift intrinsic . 141
Epsilon intrinsic . 141
equivalence areas . 254, 289
EQUIVALENCE statement 254
ErF intrinsic . 141
ErFC intrinsic . 142
error messages . 260, 308
error messages, incorrect . 25
error values . 260
errors, linker . 282
ETime intrinsic . 142
exceptions, floating-point . 297
exclamation point 93, 94, 198, 203, 355
executable file . 26
Exit intrinsic . 143
EXIT statement . 106
Exp intrinsic . 143
Exponent intrinsic . 143
extended-source option . 40
extensions, file name . 32
extensions, from Fortran 90 194
extensions, more . 323
extensions, VXT . 202
external names . 303
extra warnings . 43

F
f2c . 291
f2c compatibility . 34, 35
f2c compatibility . 48
f2c compatibility . 251, 266
f2c compatibility . 278
f2c intrinsics . 39
f2c intrinsics group . 218
f77 compatibility . 35
f77 support . 303
f771, program . 26
f90 intrinsics group . 218
fatal signal . 313
FDate intrinsic . 143, 144
FDL, GNU Free Documentation License 9
features, language . 87
features, ugly . 35, 205
FFE. 27, 327
fflush() . 273
FGet intrinsic . 144, 226
FGetC intrinsic . 145, 226
file format not recognized . 26
file formats . 301
file name extension . 32
file name suffix . 32
file type . 32
file, source . 25, 94, 197
files, executable . 26
fixed form. 35, 40, 94, 197
Float intrinsic . 145
FloatI intrinsic . 226

Keyword Index 365

floating-point errors . 285
floating-point, errors . 275
floating-point, exceptions . 297
floating-point, precision 45, 275
FloatJ intrinsic . 226
Floor intrinsic . 145
Flush intrinsic . 146
flushing output . 273
FNum intrinsic . 146
FORM=’PRINT’ . 295
FORMAT descriptors 194, 195
FORMAT statement 293, 294
FORTRAN 66 . 35, 37
FORTRAN 77 compatibility 89
Fortran 90 . 194
Fortran 90, compatibility . 204
Fortran 90, features . 35, 36
Fortran 90, intrinsics . 39
Fortran 90, support . 290
Fortran preprocessor . 33
forward references . 357
FPE handling . 297
FPut intrinsic . 146, 227
FPutC intrinsic . 147, 227
Fraction intrinsic . 147
free form . 35, 94, 197
front end, g77 . 27
front end, g77 . 327
FSeek intrinsic . 147
FSF, funding the . 21
FStat intrinsic . 147, 148
FTell intrinsic . 149
function references, in adjustable array bounds

. 292
FUNCTION statement 252, 253
functions . 253
functions, mistyped . 269
funding improvements . 21
funding the FSF . 21

G
g77 options, --driver 63, 67, 80, 81
g77 options, -v . 29
g77, command . 26, 29
g77, components of . 25
g77, front end . 27
g77, front end . 327
g77, modifying . 34
G77 date y2kbuggy 0 . 212
G77 vxtidate y2kbuggy 0 212
GBE . 27, 339
GBEL . 339
gcc, back end . 27
gcc, back end . 339
gcc, command . 25, 29
gcc, command as driver . 26
gcc, not recognizing Fortran source 26

gdb, command . 25
gdb, support . 282
generic intrinsics . 109
GError intrinsic . 150
GetArg intrinsic . 150
GetArg intrinsic . 251
GetCWD intrinsic . 150, 151
GetEnv intrinsic . 151
GetGId intrinsic . 151
GetLog intrinsic . 151
GetPId intrinsic . 152
getting started . 23
GetUId intrinsic . 152
global names, warning . 41, 51
GMTime intrinsic . 152
GNU Back End (GBE) 27, 339
GNU Back End Language (GBEL) 339
GNU Fortran command options 31
GNU Fortran Front End (FFE) 27, 327
gnu intrinsics group . 217
GOTO statement . 259
groups of intrinsics . 217

H
hardware errors . 281
hash mark . 94
HDF . 302
hidden intrinsics . 217
Hollerith constants 36, 206, 208, 266
horizontal tab . 197
HostNm intrinsic . 153
Huge intrinsic . 154

I
I/O, errors . 260
I/O, flushing . 273
IAbs intrinsic . 154
IAChar intrinsic . 154
IAnd intrinsic . 154
IArgC intrinsic . 155
IArgC intrinsic . 251
IBClr intrinsic . 155
IBits intrinsic . 155
IBSet intrinsic . 156
IChar intrinsic . 156
IDate intrinsic . 157, 227
IDiM intrinsic . 157
IDInt intrinsic . 157
IDNInt intrinsic . 158
IEEE 754 conformance 45, 275
IEOr intrinsic . 158
IErrNo intrinsic . 158
IFix intrinsic . 158
IIAbs intrinsic . 228
IIAnd intrinsic . 228
IIBClr intrinsic . 228

366 Using and Porting GNU Fortran

IIBits intrinsic . 228
IIBSet intrinsic . 228
IIDiM intrinsic . 228
IIDInt intrinsic . 228
IIDNnt intrinsic . 229
IIEOr intrinsic . 229
IIFix intrinsic . 229
IInt intrinsic . 229
IIOr intrinsic . 229
IIQint intrinsic . 229
IIQNnt intrinsic . 229
IIShftC intrinsic . 229
IISign intrinsic . 229
illegal unit number . 274
Imag intrinsic . 159
imaginary part . 207, 255
ImagPart intrinsic . 159
IMax0 intrinsic . 230
IMax1 intrinsic . 230
IMin0 intrinsic . 230
IMin1 intrinsic . 230
IMod intrinsic . 230
IMPLICIT CHARACTER*(*) statement 303
implicit declaration, warning 41
IMPLICIT NONE, similar effect 41
implicit typing . 269
improvements, funding . 21
in-line code . 27, 45, 51, 357
INCLUDE directive . 47, 96
inclusion, directory search paths for 48
inconsistent floating-point results 285
incorrect diagnostics . 25
incorrect error messages . 25
incorrect use of language . 25
increasing maximum unit number 274
increasing precision . 291
increasing range . 291
Index intrinsic . 159
indexed (iterative) DO . 46
infinite spaces printed . 285
INInt intrinsic . 230
initialization, bug . 288
initialization, of local variables 48
initialization, run-time . 248
initialization, statement placement 305
INot intrinsic . 230
INQUIRE statement . 295
installation trouble . 281
Int intrinsic . 160
Int2 intrinsic . 160
Int8 intrinsic . 161
integer constants . 288
INTEGER(KIND=1) type 215
INTEGER(KIND=2) type 215
INTEGER(KIND=3) type 215
INTEGER(KIND=6) type 215
INTEGER*2 support . 291
INTEGER*8 support . 292

Intel x86 . 62, 65
interfacing . 251
internal consistency checks 34
intrinsics, Abort . 114
intrinsics, Abs . 115
intrinsics, Access . 115
intrinsics, AChar . 116
intrinsics, ACos . 116
intrinsics, ACosD . 218
intrinsics, AdjustL . 116
intrinsics, AdjustR . 116
intrinsics, AImag . 112
intrinsics, AImag . 116
intrinsics, AIMax0 . 218
intrinsics, AIMin0 . 218
intrinsics, AInt . 117
intrinsics, AJMax0 . 218
intrinsics, AJMin0 . 218
intrinsics, Alarm . 117
intrinsics, All . 118
intrinsics, Allocated . 118
intrinsics, ALog . 118
intrinsics, ALog10 . 118
intrinsics, AMax0 . 118
intrinsics, AMax1 . 119
intrinsics, AMin0 . 119
intrinsics, AMin1 . 119
intrinsics, AMod . 119
intrinsics, And . 120
intrinsics, And . 296
intrinsics, ANInt . 120
intrinsics, Any . 120
intrinsics, ASin . 121
intrinsics, ASinD . 218
intrinsics, Associated . 121
intrinsics, ATan . 121
intrinsics, ATan2 . 121
intrinsics, ATan2D . 219
intrinsics, ATanD . 219
intrinsics, badu77 . 39
intrinsics, BesJ0 . 122
intrinsics, BesJ1 . 122
intrinsics, BesJN . 122
intrinsics, BesY0 . 122
intrinsics, BesY1 . 123
intrinsics, BesYN . 123
intrinsics, Bit Size . 123
intrinsics, BITest . 219
intrinsics, BJTest . 219
intrinsics, BTest . 124
intrinsics, CAbs . 124
intrinsics, CCos . 124
intrinsics, CDAbs . 219
intrinsics, CDCos . 219
intrinsics, CDExp . 220
intrinsics, CDLog . 220
intrinsics, CDSin . 220
intrinsics, CDSqRt . 220

Keyword Index 367

intrinsics, Ceiling . 124
intrinsics, CExp . 125
intrinsics, Char . 125
intrinsics, ChDir . 126, 221
intrinsics, ChMod . 126, 221
intrinsics, CLog . 127
intrinsics, Cmplx . 113
intrinsics, Cmplx . 127
intrinsics, Complex . 127
intrinsics, COMPLEX . 40
intrinsics, Conjg . 128
intrinsics, context-sensitive 305
intrinsics, Cos . 128
intrinsics, CosD . 221
intrinsics, CosH. 128
intrinsics, Count . 129
intrinsics, CPU Time . 129
intrinsics, CShift . 129
intrinsics, CSin . 129
intrinsics, CSqRt . 129
intrinsics, CTime . 130
intrinsics, DAbs . 130
intrinsics, DACos . 131
intrinsics, DACosD . 222
intrinsics, DASin . 131
intrinsics, DASinD . 222
intrinsics, DATan . 131
intrinsics, DATan2 . 132
intrinsics, DATan2D . 222
intrinsics, DATanD . 222
intrinsics, Date . 222
intrinsics, Date and Time 132
intrinsics, DbesJ0 . 133
intrinsics, DbesJ1 . 133
intrinsics, DbesJN . 133
intrinsics, DbesY0 . 133
intrinsics, DbesY1 . 134
intrinsics, DbesYN . 134
intrinsics, Dble . 134
intrinsics, DbleQ . 222
intrinsics, DCmplx . 223
intrinsics, DConjg . 223
intrinsics, DCos . 135
intrinsics, DCosD . 223
intrinsics, DCosH . 135
intrinsics, DDiM . 135
intrinsics, deleted . 217
intrinsics, DErF . 135
intrinsics, DErFC . 136
intrinsics, DExp . 136
intrinsics, DFloat . 224
intrinsics, DFlotI . 224
intrinsics, DFlotJ . 224
intrinsics, Digits . 136
intrinsics, DiM . 136
intrinsics, DImag . 224
intrinsics, DInt . 137
intrinsics, disabled . 217

intrinsics, DLog . 137
intrinsics, DLog10 . 137
intrinsics, DMax1 . 137
intrinsics, DMin1 . 138
intrinsics, DMod . 138
intrinsics, DNInt . 138
intrinsics, Dot Product . 138
intrinsics, DProd . 139
intrinsics, DReal . 224
intrinsics, DSign . 139
intrinsics, DSin . 139
intrinsics, DSinD . 225
intrinsics, DSinH . 139
intrinsics, DSqRt . 140
intrinsics, DTan . 140
intrinsics, DTanD . 225
intrinsics, DTanH . 140
intrinsics, DTime . 141, 225
intrinsics, enabled . 217
intrinsics, EOShift . 141
intrinsics, Epsilon . 141
intrinsics, ErF . 141
intrinsics, ErFC . 142
intrinsics, ETime . 142
intrinsics, Exit . 143
intrinsics, Exp . 143
intrinsics, Exponent . 143
intrinsics, f2c . 39
intrinsics, FDate . 143, 144
intrinsics, FGet . 144, 226
intrinsics, FGetC . 145, 226
intrinsics, Float . 145
intrinsics, FloatI . 226
intrinsics, FloatJ . 226
intrinsics, Floor . 145
intrinsics, Flush . 146
intrinsics, FNum . 146
intrinsics, Fortran 90 . 39
intrinsics, FPut . 146, 227
intrinsics, FPutC . 147, 227
intrinsics, Fraction . 147
intrinsics, FSeek . 147
intrinsics, FStat . 147, 148
intrinsics, FTell . 149
intrinsics, generic . 109
intrinsics, GError . 150
intrinsics, GetArg . 150
intrinsics, GetArg . 251
intrinsics, GetCWD . 150, 151
intrinsics, GetEnv . 151
intrinsics, GetGId. 151
intrinsics, GetLog . 151
intrinsics, GetPId . 152
intrinsics, GetUId . 152
intrinsics, GMTime . 152
intrinsics, groups . 217
intrinsics, groups of . 217
intrinsics, hidden . 217

368 Using and Porting GNU Fortran

intrinsics, HostNm . 153
intrinsics, Huge . 154
intrinsics, IAbs . 154
intrinsics, IAChar . 154
intrinsics, IAnd . 154
intrinsics, IArgC . 155
intrinsics, IArgC . 251
intrinsics, IBClr . 155
intrinsics, IBits . 155
intrinsics, IBSet . 156
intrinsics, IChar . 156
intrinsics, IDate . 157, 227
intrinsics, IDiM . 157
intrinsics, IDInt . 157
intrinsics, IDNInt . 158
intrinsics, IEOr . 158
intrinsics, IErrNo . 158
intrinsics, IFix . 158
intrinsics, IIAbs . 228
intrinsics, IIAnd . 228
intrinsics, IIBClr . 228
intrinsics, IIBits . 228
intrinsics, IIBSet. 228
intrinsics, IIDiM . 228
intrinsics, IIDInt . 228
intrinsics, IIDNnt . 229
intrinsics, IIEOr . 229
intrinsics, IIFix . 229
intrinsics, IInt . 229
intrinsics, IIOr . 229
intrinsics, IIQint . 229
intrinsics, IIQNnt . 229
intrinsics, IIShftC . 229
intrinsics, IISign . 229
intrinsics, Imag . 159
intrinsics, ImagPart . 159
intrinsics, IMax0 . 230
intrinsics, IMax1 . 230
intrinsics, IMin0 . 230
intrinsics, IMin1 . 230
intrinsics, IMod . 230
intrinsics, Index . 159
intrinsics, INInt . 230
intrinsics, INot . 230
intrinsics, Int . 160
intrinsics, Int2 . 160
intrinsics, Int8 . 161
intrinsics, IOr . 161
intrinsics, IRand . 161
intrinsics, IsaTty . 162
intrinsics, IShft . 162
intrinsics, IShftC . 162
intrinsics, ISign . 163
intrinsics, ITime . 163
intrinsics, IZExt . 230
intrinsics, JIAbs . 230
intrinsics, JIAnd . 231
intrinsics, JIBClr . 231

intrinsics, JIBits . 231
intrinsics, JIBSet . 231
intrinsics, JIDiM . 231
intrinsics, JIDInt . 231
intrinsics, JIDNnt . 231
intrinsics, JIEOr . 231
intrinsics, JIFix . 231
intrinsics, JInt . 232
intrinsics, JIOr . 232
intrinsics, JIQint. 232
intrinsics, JIQNnt. 232
intrinsics, JIShft . 232
intrinsics, JIShftC . 232
intrinsics, JISign . 232
intrinsics, JMax0 . 232
intrinsics, JMax1 . 232
intrinsics, JMin0 . 233
intrinsics, JMin1 . 233
intrinsics, JMod . 233
intrinsics, JNInt . 233
intrinsics, JNot . 233
intrinsics, JZExt . 233
intrinsics, Kill . 163, 233
intrinsics, Kind . 164
intrinsics, LBound . 164
intrinsics, Len . 164
intrinsics, Len Trim . 164
intrinsics, LGe . 165
intrinsics, LGt . 165
intrinsics, Link . 166, 234
intrinsics, LLe . 166
intrinsics, LLt . 166
intrinsics, LnBlnk . 167
intrinsics, Loc . 167
intrinsics, Log . 167
intrinsics, Log10 . 168
intrinsics, Logical . 168
intrinsics, Long . 168
intrinsics, LShift . 168
intrinsics, LStat . 169, 170
intrinsics, LTime . 171
intrinsics, MatMul . 171
intrinsics, Max . 171
intrinsics, Max0 . 172
intrinsics, Max1 . 172
intrinsics, MaxExponent. 172
intrinsics, MaxLoc . 172
intrinsics, MaxVal . 172
intrinsics, MClock . 173
intrinsics, MClock8 . 173
intrinsics, Merge . 173
intrinsics, MIL-STD 1753 . 40
intrinsics, Min . 174
intrinsics, Min0 . 174
intrinsics, Min1 . 174
intrinsics, MinExponent . 174
intrinsics, MinLoc . 174
intrinsics, MinVal . 175

Keyword Index 369

intrinsics, Mod . 175
intrinsics, Modulo . 175
intrinsics, MvBits . 175
intrinsics, Nearest. 176
intrinsics, NInt . 176
intrinsics, Not . 176
intrinsics, Or . 176
intrinsics, Or . 296
intrinsics, others . 218
intrinsics, Pack . 177
intrinsics, PError . 177
intrinsics, Precision . 177
intrinsics, Present . 177
intrinsics, Product . 177
intrinsics, QAbs . 234
intrinsics, QACos . 234
intrinsics, QACosD . 234
intrinsics, QASin . 234
intrinsics, QASinD . 234
intrinsics, QATan . 234
intrinsics, QATan2 . 235
intrinsics, QATan2D . 235
intrinsics, QATanD . 235
intrinsics, QCos . 235
intrinsics, QCosD . 235
intrinsics, QCosH . 235
intrinsics, QDiM . 235
intrinsics, QExp . 235
intrinsics, QExt . 235
intrinsics, QExtD . 236
intrinsics, QFloat . 236
intrinsics, QInt . 236
intrinsics, QLog . 236
intrinsics, QLog10 . 236
intrinsics, QMax1 . 236
intrinsics, QMin1 . 236
intrinsics, QMod . 236
intrinsics, QNInt . 236
intrinsics, QSin . 237
intrinsics, QSinD . 237
intrinsics, QSinH . 237
intrinsics, QSqRt . 237
intrinsics, QTan . 237
intrinsics, QTanD . 237
intrinsics, QTanH . 237
intrinsics, Radix . 177
intrinsics, Rand . 178
intrinsics, Random Number 178
intrinsics, Random Seed . 178
intrinsics, Range . 178
intrinsics, Real . 112
intrinsics, Real . 178
intrinsics, RealPart . 179
intrinsics, Rename . 179, 237
intrinsics, Repeat . 180
intrinsics, Reshape . 180
intrinsics, RRSpacing . 180
intrinsics, RShift . 180

intrinsics, Scale . 180
intrinsics, Scan . 181
intrinsics, Secnds . 238
intrinsics, Second . 181
intrinsics, Selected Int Kind 181
intrinsics, Selected Real Kind 182
intrinsics, Set Exponent . 182
intrinsics, Shape . 182
intrinsics, Shift . 296
intrinsics, Short . 182
intrinsics, Sign . 182
intrinsics, Signal . 183, 238
intrinsics, Sin . 183
intrinsics, SinD . 239
intrinsics, SinH . 184
intrinsics, Sleep . 184
intrinsics, Sngl . 184
intrinsics, SnglQ . 239
intrinsics, Spacing . 184
intrinsics, Spread . 185
intrinsics, SqRt . 185
intrinsics, SRand . 185
intrinsics, Stat . 185, 186
intrinsics, Sum . 187
intrinsics, SymLnk . 187, 239
intrinsics, System . 187, 240
intrinsics, System Clock . 188
intrinsics, table of . 114
intrinsics, Tan . 188
intrinsics, TanD . 240
intrinsics, TanH . 189
intrinsics, Time . 189, 240
intrinsics, Time8 . 189
intrinsics, Tiny . 190
intrinsics, Transfer . 190
intrinsics, Transpose . 190
intrinsics, Trim . 190
intrinsics, TtyNam . 190, 191
intrinsics, UBound . 191
intrinsics, UMask . 191, 241
intrinsics, UNIX . 40
intrinsics, Unlink . 191, 241
intrinsics, Unpack . 192
intrinsics, Verify . 192
intrinsics, VXT . 40
intrinsics, XOr. 192
intrinsics, ZAbs . 192
intrinsics, ZCos . 193
intrinsics, ZExp . 193
intrinsics, ZExt . 241
intrinsics, ZLog . 193
intrinsics, ZSin . 193
intrinsics, ZSqRt . 194
Introduction . 1
invalid assembly code . 313
invalid input . 313
IOr intrinsic . 161
IOSTAT= . 260

370 Using and Porting GNU Fortran

IRand intrinsic . 161
IsaTty intrinsic . 162
IShft intrinsic . 162
IShftC intrinsic . 162
ISign intrinsic . 163
iterative DO . 46
ITime intrinsic . 163
ix86 floating-point . 275
ix86 FPU stack . 275
IZExt intrinsic. 230

J
JCB002 program . 110
JCB003 program . 353
JIAbs intrinsic . 230
JIAnd intrinsic . 231
JIBClr intrinsic . 231
JIBits intrinsic . 231
JIBSet intrinsic . 231
JIDiM intrinsic . 231
JIDInt intrinsic . 231
JIDNnt intrinsic . 231
JIEOr intrinsic . 231
JIFix intrinsic . 231
JInt intrinsic . 232
JIOr intrinsic . 232
JIQint intrinsic . 232
JIQNnt intrinsic . 232
JIShft intrinsic . 232
JIShftC intrinsic . 232
JISign intrinsic . 232
JMax0 intrinsic . 232
JMax1 intrinsic . 232
JMin0 intrinsic . 233
JMin1 intrinsic . 233
JMod intrinsic . 233
JNInt intrinsic . 233
JNot intrinsic . 233
JZExt intrinsic . 233

K
keywords, RECURSIVE . 291
Kill intrinsic . 163, 233
Kind intrinsic . 164
KIND= notation . 100
known causes of trouble . 281

L
lack of recursion . 291
language, dialect options . 35
language, features . 87
language, incorrect use of . 25
large aggregate areas . 288
large common blocks . 282
layout of COMMON blocks . 277

LBound intrinsic . 164
ld command . 25
ld, can’t find ‘_main’ . 282
ld, can’t find strange names 282
ld, error linking user code 282
ld, errors . 282
left angle . 94
left bracket . 94
legacy code . 263
Len intrinsic. 164
Len Trim intrinsic . 164
length of source lines . 40
letters, lowercase . 199
letters, uppercase . 199
LGe intrinsic . 165
LGt intrinsic . 165
libc, non-ANSI or non-default 285
libf2c library . 26, 27
libg2c library . 26
libraries . 25
libraries, containing BLOCK DATA 266
libraries, libf2c . 26, 27
libraries, libg2c . 26
limits, array dimensions . 211
limits, array size . 213
limits, compiler . 211
limits, continuation lines 95, 211
limits, lengths of names 92, 211
limits, lengths of source lines 40
limits, multi-dimension arrays 214
limits, on character-variable length 214
limits, rank . 211
limits, run-time library . 211
limits, timings . . 129, 141, 142, 143, 173, 181, 188,

189, 225, 238
limits, Y10K 132, 144, 157, 241
limits, Y2K . 228
lines . 94
lines, continuation . 95
lines, length . 40
lines, long . 198
lines, short . 198
Link intrinsic . 166, 234
linking . 25
linking against non-standard library 285
linking error for user code 282
linking error, user code . 282
linking with C . 247
linking, errors . 282
LLe intrinsic . 166
LLt intrinsic . 166
LnBlnk intrinsic . 167
Loc intrinsic . 167
local equivalence areas . 254
Log intrinsic. 167
Log10 intrinsic . 168
logical expressions, comparing 307
Logical intrinsic . 168

Keyword Index 371

LOGICAL(KIND=1) type 215
LOGICAL(KIND=2) type 215
LOGICAL(KIND=3) type 215
LOGICAL(KIND=6) type 215
LOGICAL*1 support . 291
Long intrinsic . 168
long source lines . 198
long time . 212
loops, optimizing . 46
loops, speeding up . 45, 46
loops, unrolling . 46
lowercase letters . 199
LShift intrinsic . 168
LStat intrinsic . 169, 170
LTime intrinsic . 171

M
machine code . 25
macro options . 34
main program unit, debugging 251
main() . 251
MAIN () . 251
Makefile example . 314
MAP statement . 294
MatMul intrinsic . 171
Max intrinsic . 171
Max0 intrinsic . 172
Max1 intrinsic . 172
MaxExponent intrinsic . 172
maximum number of dimensions 211
maximum rank . 211
maximum unit number . 274
MaxLoc intrinsic . 172
MaxVal intrinsic . 172
MClock intrinsic . 173
MClock8 intrinsic . 173
memory usage, of compiler 288
Merge intrinsic . 173
messages, run-time . 260
messages, warning . 40
messages, warning and error 308
mil intrinsics group . 218
MIL-STD 1753 . 40, 106, 113
Min intrinsic . 174
Min0 intrinsic . 174
Min1 intrinsic . 174
MinExponent intrinsic . 174
MinLoc intrinsic . 174
MinVal intrinsic . 175
mistakes . 25
mistyped functions . 269
mistyped variables . 269
Mod intrinsic . 175
modifying g77 . 34
Modulo intrinsic . 175
multi-dimension arrays . 214
MvBits intrinsic . 175

MXUNIT . 274

N
name space . 303
NAMELIST statement . 105
naming conflicts . 303
naming issues . 303
naming programs . 284
NaN values . 297
Nearest intrinsic . 176
negative forms of options . 31
negative time . 212
Netlib . 247, 291
network file system . 273
new users . 23
newbies . 23
NeXTStep problems . 283
NFS . 273
NInt intrinsic . 176
nonportable conversions . 297
Not intrinsic . 176
nothing happens . 284
null arguments . 207
null byte, trailing . 266
null CHARACTER strings 104
number of continuation lines 95
number of dimensions, maximum 211
number of trips . 267

O
O edit descriptor . 194
octal constants . 203
omitting arguments . 207
one-trip DO loops . 37
open angle . 94
open bracket . 94
OPEN statement . 295
optimization, better . 322
optimization, for Pentium 277
optimize options . 44
options, --driver 63, 67, 80, 81
options, -falias-check . 51, 271
options, -fargument-alias 51, 271
options, -fargument-noalias 51, 271
options, -fbadu77-intrinsics-delete 39
options, -fbadu77-intrinsics-disable 39
options, -fbadu77-intrinsics-enable 39
options, -fbadu77-intrinsics-hide 39
options, -fcaller-saves . 46
options, -fcase-initcap . 39
options, -fcase-lower . 39
options, -fcase-preserve . 39
options, -fcase-strict-lower . 39
options, -fcase-strict-upper 38
options, -fcase-upper . 39
options, -fdelayed-branch . 46

372 Using and Porting GNU Fortran

options, -fdollar-ok . 36
options, -femulate-complex 50
options, -fexpensive-optimizations 46
options, -ff2c-intrinsics-delete 39
options, -ff2c-intrinsics-disable 39
options, -ff2c-intrinsics-enable 39
options, -ff2c-intrinsics-hide 39
options, -ff2c-library . 49
options, -ff66 . 35
options, -ff77 . 35
options, -ff90 . 35
options, -ff90-intrinsics-delete 39
options, -ff90-intrinsics-disable 39
options, -ff90-intrinsics-enable 39
options, -ff90-intrinsics-hide 39
options, -ffast-math . 45
options, -ffinite-math-only . 46
options, -ffixed-line-length-n 40
options, -ffloat-store . 45
options, -fforce-addr . 45
options, -fforce-mem . 45
options, -ffree-form . 35
options, -fgnu-intrinsics-delete 39
options, -fgnu-intrinsics-disable 40
options, -fgnu-intrinsics-enable 40
options, -fgnu-intrinsics-hide 40
options, -fgroup-intrinsics-hide 276
options, -finit-local-zero 48, 275
options, -fintrin-case-any . 38
options, -fintrin-case-initcap 38
options, -fintrin-case-lower . 38
options, -fintrin-case-upper 38
options, -fmatch-case-any . 38
options, -fmatch-case-initcap 38
options, -fmatch-case-lower 38
options, -fmatch-case-upper 38
options, -fmil-intrinsics-delete 40
options, -fmil-intrinsics-disable 40
options, -fmil-intrinsics-enable 40
options, -fmil-intrinsics-hide 40
options, -fno-argument-noalias-global 51, 271
options, -fno-automatic 48, 276
options, -fno-backslash . 36
options, -fno-common . 53
options, -fno-f2c . 48, 278
options, -fno-f77 . 35
options, -fno-fixed-form . 35
options, -fno-globals . 51
options, -fno-ident . 50
options, -fno-inline . 45
options, -fno-move-all-movables 47
options, -fno-reduce-all-givs 47
options, -fno-rerun-loop-opt 47
options, -fno-second-underscore 50
options, -fno-silent . 34
options, -fno-trapping-math 46
options, -fno-ugly . 35
options, -fno-ugly-args . 36

options, -fno-ugly-init . 37
options, -fno-underscoring 49, 253
options, -fonetrip . 37
options, -fpack-struct . 53
options, -fpcc-struct-return 53
options, -fpedantic . 41
options, -fPIC . 66
options, -freg-struct-return 53
options, -frerun-cse-after-loop 46
options, -fschedule-insns . 46
options, -fschedule-insns2 . 46
options, -fset-g77-defaults . 34
options, -fshort-double . 53
options, -fsource-case-lower 38
options, -fsource-case-preserve 38
options, -fsource-case-upper 38
options, -fstrength-reduce . 46
options, -fsymbol-case-any . 38
options, -fsymbol-case-initcap 38
options, -fsymbol-case-lower 38
options, -fsymbol-case-upper 38
options, -fsyntax-only . 41
options, -ftypeless-boz . 38
options, -fugly . 34
options, -fugly-assign . 36
options, -fugly-assumed . 36
options, -fugly-comma . 36
options, -fugly-complex . 37
options, -fugly-logint . 37
options, -funix-intrinsics-delete 40
options, -funix-intrinsics-disable 40
options, -funix-intrinsics-enable 40
options, -funix-intrinsics-hide 40
options, -funroll-all-loops . 46
options, -funroll-loops . 46
options, -funsafe-math-optimizations 46
options, -fversion . 34
options, -fvxt . 36
options, -fvxt-intrinsics-delete 40
options, -fvxt-intrinsics-disable 40
options, -fvxt-intrinsics-enable 40
options, -fvxt-intrinsics-hide 40
options, -fzeros . 50
options, -g . 44
options, -I- . 47
options, -Idir . 47
options, -malign-double 45, 277
options, -Nl . 211
options, -Nx . 211
options, -pedantic . 41
options, -pedantic-errors . 41
options, -v . 29
options, -w . 41
options, -W . 43
options, -Waggregate-return 44
options, -Wall . 42
options, -Wcomment . 43
options, -Wconversion . 44

Keyword Index 373

options, -Werror . 43
options, -Wformat . 43
options, -Wid-clash-len . 43
options, -Wimplicit . 41
options, -Wlarger-than-len . 44
options, -Wno-globals . 41
options, -Wparentheses . 43
options, -Wredundant-decls 44
options, -Wshadow . 43
options, -Wsurprising . 42
options, -Wswitch . 43
options, -Wswitch-default . 43
options, -Wswitch-enum . 43
options, -Wtraditional . 43
options, -Wuninitialized . 41
options, -Wunused . 41
options, ‘-x f77-cpp-input’ 356
options, adding . 319
options, code generation . 48
options, debugging . 44
options, dialect . 35
options, directory search . 47
options, GNU Fortran command 31
options, macro . 34
options, negative forms . 31
options, optimization . 44
options, overall . 32
options, overly convenient 275
options, preprocessor . 47
options, shorthand . 34
options, warnings . 40
Or intrinsic . 176
Or intrinsic . 296
order of evaluation, side effects 308
ordering, array . 255
other intrinsics . 218
output, flushing . 273
overall options . 32
overflow . 43
overlapping arguments . 271
overlays . 271
overly convenient options . 275
overwritten data . 285

P
Pack intrinsic. 177
padding . 289
parallel processing . 298
PARAMETER statement 290, 294
parameters, unused . 43
paths, search . 48
PDB . 302
pedantic compilation . 204
Pentium optimizations . 277
percent sign . 94
PError intrinsic . 177
placing initialization statements 305

POINTER statement . 292
pointers . 102, 209
Poking the bear . 340
porting, simplify . 322
pound sign . 94
Precision intrinsic . 177
precision, increasing . 291
prefix-radix constants . 38
preprocessor . 26, 33, 97, 356
preprocessor options . 47
Present intrinsic . 177
printing compilation status 34
printing main source . 289
printing version information 26, 34
procedures . 252
Product intrinsic . 177
PROGRAM statement . 251
programs, cc1 . 26
programs, cc1plus . 26
programs, compiling . 29
programs, cpp . 26, 33, 47, 356
programs, f771 . 26
programs, ratfor . 33
programs, speeding up . 276
programs, test . 284
projects . 321

Q
Q edit descriptor . 294
QAbs intrinsic . 234
QACos intrinsic . 234
QACosD intrinsic . 234
QASin intrinsic . 234
QASinD intrinsic . 234
QATan intrinsic . 234
QATan2 intrinsic . 235
QATan2D intrinsic . 235
QATanD intrinsic . 235
QCos intrinsic . 235
QCosD intrinsic . 235
QCosH intrinsic . 235
QDiM intrinsic . 235
QExp intrinsic . 235
QExt intrinsic . 235
QExtD intrinsic . 236
QFloat intrinsic . 236
QInt intrinsic . 236
QLog intrinsic . 236
QLog10 intrinsic . 236
QMax1 intrinsic . 236
QMin1 intrinsic . 236
QMod intrinsic . 236
QNInt intrinsic . 236
QSin intrinsic . 237
QSinD intrinsic . 237
QSinH intrinsic . 237
QSqRt intrinsic . 237

374 Using and Porting GNU Fortran

QTan intrinsic . 237
QTanD intrinsic . 237
QTanH intrinsic . 237
question mark . 94
questionable instructions . 25

R
Radix intrinsic . 177
Rand intrinsic . 178
Random Number intrinsic 178
Random Seed intrinsic . 178
range checking . 52
Range intrinsic . 178
range, increasing . 291
rank, maximum . 211
ratfor . 33
Ratfor preprocessor . 33
READONLY . 293
reads and writes, scheduling 271
Real intrinsic . 112
Real intrinsic . 178
real part . 207
REAL(KIND=1) type. 215
REAL(KIND=2) type. 215
REAL*16 support . 292
RealPart intrinsic . 179
recent versions . 55, 75
RECORD statement . 294
recursion, lack of . 291
RECURSIVE keyword . 291
reference works . 87
Rename intrinsic . 179, 237
Repeat intrinsic . 180
reporting bugs . 313
reporting compilation status 34
Reshape intrinsic . 180
results, inconsistent . 285
RETURN statement . 253, 259
return type of functions . 253
right angle . 94
right bracket . 94
rounding errors . 285
row-major ordering . 255
RRSpacing intrinsic . 180
RShift intrinsic . 180
run-time, dynamic allocation 291
run-time, initialization . 248
run-time, library . 26
run-time, options . 48

S
SAVE statement . 48
saved variables . 270
Scale intrinsic . 180
Scan intrinsic . 181
scheduling of reads and writes 271

scope . 93, 194
search path . 47
search paths, for included files 48
Secnds intrinsic . 238
Second intrinsic . 181
segmentation violation 283, 285
Selected Int Kind intrinsic 181
Selected Real Kind intrinsic 182
semicolon . 93, 94
sequence numbers . 290
Set Exponent intrinsic . 182
Shape intrinsic . 182
SHARED . 293
Shift intrinsic . 296
Short intrinsic . 182
short source lines . 198
short time . 212
shorthand options . 34
side effects, order of evaluation 308
Sign intrinsic . 182
signal 11 . 281
Signal intrinsic . 183, 238
signature of procedures . 252
simplify porting . 322
Sin intrinsic . 183
SinD intrinsic . 239
SinH intrinsic . 184
Sleep intrinsic . 184
Sngl intrinsic . 184
SnglQ intrinsic . 239
Solaris . 285
source code . 25, 94, 197, 199
source file . 25
source file format 35, 40, 94, 197, 199
source format . 94, 197
source lines, long . 198
source lines, short. 198
space . 94, 95
space, endless printing of . 285
space, padding with . 198
Spacing intrinsic . 184
SPC . 94, 95
speed, of compiler . 288
speed, of loops . 45, 46
speed, of programs . 276
spills of floating-point results 287
Spread intrinsic . 185
SqRt intrinsic . 185
SRand intrinsic . 185
stack, 387 coprocessor . 62, 65
stack, aligned . 277
stack, overflow . 283
standard, ANSI FORTRAN 77 87
standard, support for . 89
startup code . 248
Stat intrinsic . 185, 186
statement labels, assigned 259
statements, ACCEPT . 294

Keyword Index 375

statements, ASSIGN 209, 259
statements, AUTOMATIC . 295
statements, BLOCK DATA 266, 303
statements, CLOSE . 295
statements, COMMON . 254, 303
statements, COMPLEX . 255
statements, CYCLE . 106
statements, DATA . 48, 288
statements, DECODE . 295
statements, DIMENSION 255, 256
statements, DIMENSION . 292
statements, DO . 43, 267
statements, ENCODE . 295
statements, ENTRY . 257
statements, EQUIVALENCE 254
statements, EXIT . 106
statements, FORMAT . 293
statements, FUNCTION 252, 253
statements, GOTO . 259
statements, IMPLICIT CHARACTER*(*) 303
statements, INQUIRE . 295
statements, MAP . 294
statements, NAMELIST . 105
statements, OPEN . 295
statements, PARAMETER 290, 294
statements, POINTER . 292
statements, PROGRAM . 251
statements, RECORD . 294
statements, RETURN 253, 259
statements, SAVE . 48
statements, separated by semicolon 93
statements, STRUCTURE 294
statements, SUBROUTINE 252, 259
statements, TYPE . 294
statements, UNION . 294
STATIC . 296
static variables . 270
status, compilation . 34
storage association . 271
strings, empty . 104
STRUCTURE statement . 294
structures . 289
submodels. 278
SUBROUTINE statement 252, 259
subroutines. 259
subscript checking . 52
substring checking . 52
suffixes, file name . 32
Sum intrinsic . 187
support, Alpha . 289
support, ELF . 66
support, f77 . 303
support, FORTRAN 77 . 89
support, Fortran 90 . 290
support, gdb . 282
suppressing warnings . 40
symbol names . 36, 253
symbol names, scope and classes 194

symbol names, transforming 49, 50
symbol names, underscores 49, 50
SymLnk intrinsic . 187, 239
synchronous write errors . 273
syntax checking . 41
System intrinsic . 187, 240
System Clock intrinsic . 188

T
tab character . 197
table of intrinsics . 114
Tan intrinsic . 188
TanD intrinsic . 240
TanH intrinsic . 189
test programs. 284
textbooks . 87
threads . 298
Time intrinsic . 189, 240
Time8 intrinsic . 189
Tiny intrinsic . 190
Toolpack . 291
trailing comma . 207
trailing comment 93, 198, 355
trailing null byte . 266
Transfer intrinsic . 190
transforming symbol names 49, 50, 253
translation of user programs 25
Transpose intrinsic . 190
Trim intrinsic . 190
trips, number of . 267
truncation, of floating-point values 287
truncation, of long lines . 198
TtyNam intrinsic . 190, 191
TYPE statement . 294
types, COMPLEX(KIND=1) 215
types, COMPLEX(KIND=2) 215
types, constants . 38, 103, 216
types, DOUBLE COMPLEX 216
types, DOUBLE PRECISION 216
types, file . 32
types, Fortran/C . 247
types, INTEGER(KIND=1) 215
types, INTEGER(KIND=2) 215
types, INTEGER(KIND=3) 215
types, INTEGER(KIND=6) 215
types, INTEGER*2 . 291
types, INTEGER*8 . 292
types, LOGICAL(KIND=1) 215
types, LOGICAL(KIND=2) 215
types, LOGICAL(KIND=3) 215
types, LOGICAL(KIND=6) 215
types, LOGICAL*1 . 291
types, of data . 214
types, REAL(KIND=1) . 215
types, REAL(KIND=2) . 215
types, REAL*16 . 292

376 Using and Porting GNU Fortran

U
UBound intrinsic . 191
ugly features . 35, 205
UMask intrinsic . 191, 241
undefined behavior . 313
undefined function value . 313
undefined reference (main) 282
underscore 49, 50, 94, 194, 303
unformatted files . 301
uninitialized variables 41, 48, 270
UNION statement . 294
unit numbers . 274
UNIX f77 . 35
UNIX intrinsics . 40
Unlink intrinsic . 191, 241
Unpack intrinsic . 192
unrecognized file format . 26
unresolved reference (various) 282
unrolling loops . 46
UNSAVE . 296
unsupported warnings . 44
unused arguments . 43, 271
unused dummies . 43
unused parameters . 43
unused variables . 41
uppercase letters . 199
user-visible changes . 75

V
variables, assumed to be zero 270
variables, automatic . 295
variables, initialization of . 48
variables, mistyped . 269
variables, retaining values across calls 270
variables, uninitialized . 41, 48
variables, unused . 41
Verify intrinsic . 192
version information, printing 26, 34
versions, recent . 55, 75
VXT extensions . 36, 202
VXT intrinsics . 40
vxtidate y2kbuggy 0 . 212

W
warnings . 25
warnings vs errors . 308
warnings, all . 42
warnings, extra . 43
warnings, global names 41, 51
warnings, implicit declaration 41
warnings, suppressing . 40
warnings, unsupported . 44
wisdom . 263
wraparound . 211
wraparound, timings. 129, 141, 142, 143, 173,

181, 188, 189, 225, 238
wraparound, Y10K 132, 144, 157, 241
wraparound, Y2K . 228
writes, flushing . 273
writing code . 263

X
x86 floating-point . 275
x86 FPU stack . 275
XOr intrinsic . 192

Y
Y10K compliance 132, 144, 157, 214, 241
Y2K compliance. 212, 222, 228, 358
y2kbuggy . 212
Year 10000 compliance 132, 144, 157, 214, 241
Year 2000 compliance 212, 222, 228, 358

Z
Z edit descriptor . 194, 195
ZAbs intrinsic . 192
ZCos intrinsic . 193
zero byte, trailing . 266
zero-initialized variables . 270
zero-length CHARACTER 104
zero-trip DO loops . 37
ZExp intrinsic . 193
ZExt intrinsic . 241
ZLog intrinsic . 193
ZSin intrinsic . 193
ZSqRt intrinsic . 194

