
The “stabs” debug format

Julia Menapace, Jim Kingdon, David MacKenzie
Cygnus Support

Cygnus Support
Revision: 2.130

TEXinfo 2012-07-29.17

Copyright c© 1992-2013 Free Software Foundation, Inc. Contributed by Cygnus Support.
Written by Julia Menapace, Jim Kingdon, and David MacKenzie.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

Chapter 1: Overview of Stabs 1

1 Overview of Stabs

Stabs refers to a format for information that describes a program to a debugger. This format
was apparently invented by Peter Kessler at the University of California at Berkeley, for
the pdx Pascal debugger; the format has spread widely since then.

This document is one of the few published sources of documentation on stabs. It is
believed to be comprehensive for stabs used by C. The lists of symbol descriptors (see
〈undefined〉 [Symbol Descriptors], page 〈undefined〉) and type descriptors (see 〈undefined〉
[Type Descriptors], page 〈undefined〉) are believed to be completely comprehensive. Stabs
for COBOL-specific features and for variant records (used by Pascal and Modula-2) are
poorly documented here.

Other sources of information on stabs are Dbx and Dbxtool Interfaces, 2nd edition, by
Sun, 1988, and AIX Version 3.2 Files Reference, Fourth Edition, September 1992, "dbx
Stabstring Grammar" in the a.out section, page 2-31. This document is believed to incorp-
orate the information from those two sources except where it explicitly directs you to them
for more information.

1.1 Overview of Debugging Information Flow

The GNU C compiler compiles C source in a .c file into assembly language in a .s file,
which the assembler translates into a .o file, which the linker combines with other .o files
and libraries to produce an executable file.

With the ‘-g’ option, GCC puts in the .s file additional debugging information, which
is slightly transformed by the assembler and linker, and carried through into the final exe-
cutable. This debugging information describes features of the source file like line numbers,
the types and scopes of variables, and function names, parameters, and scopes.

For some object file formats, the debugging information is encapsulated in assembler
directives known collectively as stab (symbol table) directives, which are interspersed with
the generated code. Stabs are the native format for debugging information in the a.out and
XCOFF object file formats. The GNU tools can also emit stabs in the COFF and ECOFF
object file formats.

The assembler adds the information from stabs to the symbol information it places by
default in the symbol table and the string table of the .o file it is building. The linker
consolidates the .o files into one executable file, with one symbol table and one string
table. Debuggers use the symbol and string tables in the executable as a source of debugging
information about the program.

1.2 Overview of Stab Format

There are three overall formats for stab assembler directives, differentiated by the first
word of the stab. The name of the directive describes which combination of four possible
data fields follows. It is either .stabs (string), .stabn (number), or .stabd (dot). IBM’s
XCOFF assembler uses .stabx (and some other directives such as .file and .bi) instead
of .stabs, .stabn or .stabd.

The overall format of each class of stab is:

2 STABS

.stabs "string",type,other,desc,value

.stabn type,other,desc,value

.stabd type,other,desc

.stabx "string",value,type,sdb-type

For .stabn and .stabd, there is no string (the n_strx field is zero; see 〈undefined〉
[Symbol Tables], page 〈undefined〉). For .stabd, the value field is implicit and has the
value of the current file location. For .stabx, the sdb-type field is unused for stabs and can
always be set to zero. The other field is almost always unused and can be set to zero.

The number in the type field gives some basic information about which type of stab this
is (or whether it is a stab, as opposed to an ordinary symbol). Each valid type number
defines a different stab type; further, the stab type defines the exact interpretation of, and
possible values for, any remaining string, desc, or value fields present in the stab. See 〈un-
defined〉 [Stab Types], page 〈undefined〉, for a list in numeric order of the valid type field
values for stab directives.

1.3 The String Field

For most stabs the string field holds the meat of the debugging information. The flexible
nature of this field is what makes stabs extensible. For some stab types the string field
contains only a name. For other stab types the contents can be a great deal more complex.

The overall format of the string field for most stab types is:

"name:symbol-descriptor type-information"

name is the name of the symbol represented by the stab; it can contain a pair of colons
(see 〈undefined〉 [Nested Symbols], page 〈undefined〉). name can be omitted, which means
the stab represents an unnamed object. For example, ‘:t10=*2’ defines type 10 as a pointer
to type 2, but does not give the type a name. Omitting the name field is supported by
AIX dbx and GDB after about version 4.8, but not other debuggers. GCC sometimes uses
a single space as the name instead of omitting the name altogether; apparently that is
supported by most debuggers.

The symbol-descriptor following the ‘:’ is an alphabetic character that tells more sp-
ecifically what kind of symbol the stab represents. If the symbol-descriptor is omitted, but
type information follows, then the stab represents a local variable. For a list of symbol des-
criptors, see 〈undefined〉 [Symbol Descriptors], page 〈undefined〉. The ‘c’ symbol descriptor
is an exception in that it is not followed by type information. See 〈undefined〉 [Constants],
page 〈undefined〉.

type-information is either a type-number, or ‘type-number=’. A type-number alone is a
type reference, referring directly to a type that has already been defined.

The ‘type-number=’ form is a type definition, where the number represents a new type
which is about to be defined. The type definition may refer to other types by number, and
those type numbers may be followed by ‘=’ and nested definitions. Also, the Lucid compiler
will repeat ‘type-number=’ more than once if it wants to define several type numbers at
once.

In a type definition, if the character that follows the equals sign is non-numeric then it
is a type-descriptor, and tells what kind of type is about to be defined. Any other values
following the type-descriptor vary, depending on the type-descriptor. See 〈undefined〉 [Type

Chapter 1: Overview of Stabs 3

Descriptors], page 〈undefined〉, for a list of type-descriptor values. If a number follows the
‘=’ then the number is a type-reference. For a full description of types, 〈undefined〉 [Types],
page 〈undefined〉.

A type-number is often a single number. The GNU and Sun tools additionally permit
a type-number to be a pair (file-number,filetype-number) (the parentheses appear in the
string, and serve to distinguish the two cases). The file-number is 0 for the base source file,
1 for the first included file, 2 for the next, and so on. The filetype-number is a number
starting with 1 which is incremented for each new type defined in the file. (Separating the
file number and the type number permits the N_BINCL optimization to succeed more often;
see 〈undefined〉 [Include Files], page 〈undefined〉).

There is an AIX extension for type attributes. Following the ‘=’ are any number of type
attributes. Each one starts with ‘@’ and ends with ‘;’. Debuggers, including AIX’s dbx and
GDB 4.10, skip any type attributes they do not recognize. GDB 4.9 and other versions of
dbx may not do this. Because of a conflict with C++ (see 〈undefined〉 [Cplusplus], page 〈un-
defined〉), new attributes should not be defined which begin with a digit, ‘(’, or ‘-’; GDB
may be unable to distinguish those from the C++ type descriptor ‘@’. The attributes are:

aboundary

boundary is an integer specifying the alignment. I assume it applies to all
variables of this type.

pinteger Pointer class (for checking). Not sure what this means, or how integer is
interpreted.

P Indicate this is a packed type, meaning that structure fields or array elements
are placed more closely in memory, to save memory at the expense of speed.

ssize Size in bits of a variable of this type. This is fully supported by GDB 4.11 and
later.

S Indicate that this type is a string instead of an array of characters, or a bitstring
instead of a set. It doesn’t change the layout of the data being represented, but
does enable the debugger to know which type it is.

V Indicate that this type is a vector instead of an array. The only major difference
between vectors and arrays is that vectors are passed by value instead of by
reference (vector coprocessor extension).

All of this can make the string field quite long. All versions of GDB, and some versions
of dbx, can handle arbitrarily long strings. But many versions of dbx (or assemblers or
linkers, I’m not sure which) cretinously limit the strings to about 80 characters, so compilers
which must work with such systems need to split the .stabs directive into several .stabs
directives. Each stab duplicates every field except the string field. The string field of every
stab except the last is marked as continued with a backslash at the end (in the assembly
code this may be written as a double backslash, depending on the assembler). Removing
the backslashes and concatenating the string fields of each stab produces the original, long
string. Just to be incompatible (or so they don’t have to worry about what the assembler
does with backslashes), AIX can use ‘?’ instead of backslash.

4 STABS

1.4 A Simple Example in C Source

To get the flavor of how stabs describe source information for a C program, let’s look at
the simple program:

main()

{

printf("Hello world");

}

When compiled with ‘-g’, the program above yields the following .s file. Line numbers
have been added to make it easier to refer to parts of the .s file in the description of the
stabs that follows.

1.5 The Simple Example at the Assembly Level

This simple “hello world” example demonstrates several of the stab types used to describe
C language source files.

1 gcc2_compiled.:

2 .stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0

3 .stabs "hello.c",100,0,0,Ltext0

4 .text

5 Ltext0:

6 .stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0

7 .stabs "char:t2=r2;0;127;",128,0,0,0

8 .stabs "long int:t3=r1;-2147483648;2147483647;",128,0,0,0

9 .stabs "unsigned int:t4=r1;0;-1;",128,0,0,0

10 .stabs "long unsigned int:t5=r1;0;-1;",128,0,0,0

11 .stabs "short int:t6=r1;-32768;32767;",128,0,0,0

12 .stabs "long long int:t7=r1;0;-1;",128,0,0,0

13 .stabs "short unsigned int:t8=r1;0;65535;",128,0,0,0

14 .stabs "long long unsigned int:t9=r1;0;-1;",128,0,0,0

15 .stabs "signed char:t10=r1;-128;127;",128,0,0,0

16 .stabs "unsigned char:t11=r1;0;255;",128,0,0,0

17 .stabs "float:t12=r1;4;0;",128,0,0,0

18 .stabs "double:t13=r1;8;0;",128,0,0,0

19 .stabs "long double:t14=r1;8;0;",128,0,0,0

20 .stabs "void:t15=15",128,0,0,0

21 .align 4

22 LC0:

23 .ascii "Hello, world!\12\0"

24 .align 4

25 .global _main

26 .proc 1

27 _main:

28 .stabn 68,0,4,LM1

29 LM1:

30 !#PROLOGUE# 0

31 save %sp,-136,%sp

Chapter 1: Overview of Stabs 5

32 !#PROLOGUE# 1

33 call ___main,0

34 nop

35 .stabn 68,0,5,LM2

36 LM2:

37 LBB2:

38 sethi %hi(LC0),%o1

39 or %o1,%lo(LC0),%o0

40 call _printf,0

41 nop

42 .stabn 68,0,6,LM3

43 LM3:

44 LBE2:

45 .stabn 68,0,6,LM4

46 LM4:

47 L1:

48 ret

49 restore

50 .stabs "main:F1",36,0,0,_main

51 .stabn 192,0,0,LBB2

52 .stabn 224,0,0,LBE2

Chapter 2: Encoding the Structure of the Program 7

2 Encoding the Structure of the Program

The elements of the program structure that stabs encode include the name of the main
function, the names of the source and include files, the line numbers, procedure names and
types, and the beginnings and ends of blocks of code.

2.1 Main Program

Most languages allow the main program to have any name. The N_MAIN stab type tells the
debugger the name that is used in this program. Only the string field is significant; it is
the name of a function which is the main program. Most C compilers do not use this stab
(they expect the debugger to assume that the name is main), but some C compilers emit
an N_MAIN stab for the main function. I’m not sure how XCOFF handles this.

2.2 Paths and Names of the Source Files

Before any other stabs occur, there must be a stab specifying the source file. This informat-
ion is contained in a symbol of stab type N_SO; the string field contains the name of the file.
The value of the symbol is the start address of the portion of the text section corresponding
to that file.

Some compilers use the desc field to indicate the language of the source file. Sun’s
compilers started this usage, and the first constants are derived from their documentation.
Languages added by gcc/gdb start at 0x32 to avoid conflict with languages Sun may add
in the future. A desc field with a value 0 indicates that no language has been specified via
this mechanism.

N_SO_AS (0x1)
Assembly language

N_SO_C (0x2)
K&R traditional C

N_SO_ANSI_C (0x3)
ANSI C

N_SO_CC (0x4)
C++

N_SO_FORTRAN (0x5)
Fortran

N_SO_PASCAL (0x6)
Pascal

N_SO_FORTRAN90 (0x7)
Fortran90

N_SO_OBJC (0x32)
Objective-C

N_SO_OBJCPLUS (0x33)
Objective-C++

8 STABS

Some compilers (for example, GCC2 and SunOS4 /bin/cc) also include the directory in
which the source was compiled, in a second N_SO symbol preceding the one containing the
file name. This symbol can be distinguished by the fact that it ends in a slash. Code from
the cfront C++ compiler can have additional N_SO symbols for nonexistent source files after
the N_SO for the real source file; these are believed to contain no useful information.

For example:

.stabs "/cygint/s1/users/jcm/play/",100,0,0,Ltext0 # 100 is N SO

.stabs "hello.c",100,0,0,Ltext0

.text

Ltext0:

Instead of N_SO symbols, XCOFF uses a .file assembler directive which assembles to
a C_FILE symbol; explaining this in detail is outside the scope of this document.

If it is useful to indicate the end of a source file, this is done with an N_SO symbol with
an empty string for the name. The value is the address of the end of the text section for
the file. For some systems, there is no indication of the end of a source file, and you just
need to figure it ended when you see an N_SO for a different source file, or a symbol ending
in .o (which at least some linkers insert to mark the start of a new .o file).

2.3 Names of Include Files

There are several schemes for dealing with include files: the traditional N_SOL approach,
Sun’s N_BINCL approach, and the XCOFF C_BINCL approach (which despite the similar
name has little in common with N_BINCL).

An N_SOL symbol specifies which include file subsequent symbols refer to. The string
field is the name of the file and the value is the text address corresponding to the end of
the previous include file and the start of this one. To specify the main source file again, use
an N_SOL symbol with the name of the main source file.

The N_BINCL approach works as follows. An N_BINCL symbol specifies the start of an
include file. In an object file, only the string is significant; the linker puts data into some of
the other fields. The end of the include file is marked by an N_EINCL symbol (which has no
string field). In an object file, there is no significant data in the N_EINCL symbol. N_BINCL
and N_EINCL can be nested.

If the linker detects that two source files have identical stabs between an N_BINCL and
N_EINCL pair (as will generally be the case for a header file), then it only puts out the stabs
once. Each additional occurrence is replaced by an N_EXCL symbol. I believe the GNU
linker and the Sun (both SunOS4 and Solaris) linker are the only ones which supports this
feature.

A linker which supports this feature will set the value of a N_BINCL symbol to the total of
all the characters in the stabs strings included in the header file, omitting any file numbers.
The value of an N_EXCL symbol is the same as the value of the N_BINCL symbol it replaces.
This information can be used to match up N_EXCL and N_BINCL symbols which have the
same filename. The N_EINCL value, and the values of the other and description fields for all
three, appear to always be zero.

For the start of an include file in XCOFF, use the .bi assembler directive, which gen-
erates a C_BINCL symbol. A .ei directive, which generates a C_EINCL symbol, denotes the

Chapter 2: Encoding the Structure of the Program 9

end of the include file. Both directives are followed by the name of the source file in quotes,
which becomes the string for the symbol. The value of each symbol, produced automatically
by the assembler and linker, is the offset into the executable of the beginning (inclusive, as
you’d expect) or end (inclusive, as you would not expect) of the portion of the COFF line
table that corresponds to this include file. C_BINCL and C_EINCL do not nest.

2.4 Line Numbers

An N_SLINE symbol represents the start of a source line. The desc field contains the line
number and the value contains the code address for the start of that source line. On most
machines the address is absolute; for stabs in sections (see 〈undefined〉 [Stab Sections],
page 〈undefined〉), it is relative to the function in which the N_SLINE symbol occurs.

GNU documents N_DSLINE and N_BSLINE symbols for line numbers in the data or bss
segments, respectively. They are identical to N_SLINE but are relocated differently by
the linker. They were intended to be used to describe the source location of a variable
declaration, but I believe that GCC2 actually puts the line number in the desc field of the
stab for the variable itself. GDB has been ignoring these symbols (unless they contain a
string field) since at least GDB 3.5.

For single source lines that generate discontiguous code, such as flow of control stat-
ements, there may be more than one line number entry for the same source line. In this
case there is a line number entry at the start of each code range, each with the same line
number.

XCOFF does not use stabs for line numbers. Instead, it uses COFF line numbers (which
are outside the scope of this document). Standard COFF line numbers cannot deal with
include files, but in XCOFF this is fixed with the C_BINCL method of marking include files
(see 〈undefined〉 [Include Files], page 〈undefined〉).

2.5 Procedures

All of the following stabs normally use the N_FUN symbol type. However, Sun’s acc compiler
on SunOS4 uses N_GSYM and N_STSYM, which means that the value of the stab for the function
is useless and the debugger must get the address of the function from the non-stab symbols
instead. On systems where non-stab symbols have leading underscores, the stabs will lack
underscores and the debugger needs to know about the leading underscore to match up the
stab and the non-stab symbol. BSD Fortran is said to use N_FNAME with the same restriction;
the value of the symbol is not useful (I’m not sure it really does use this, because GDB
doesn’t handle this and no one has complained).

A function is represented by an ‘F’ symbol descriptor for a global (extern) function, and
‘f’ for a static (local) function. For a.out, the value of the symbol is the address of the start
of the function; it is already relocated. For stabs in ELF, the SunPRO compiler version
2.0.1 and GCC put out an address which gets relocated by the linker. In a future release
SunPRO is planning to put out zero, in which case the address can be found from the
ELF (non-stab) symbol. Because looking things up in the ELF symbols would probably be
slow, I’m not sure how to find which symbol of that name is the right one, and this doesn’t
provide any way to deal with nested functions, it would probably be better to make the
value of the stab an address relative to the start of the file, or just absolute. See 〈unde-
fined〉 [ELF Linker Relocation], page 〈undefined〉 for more information on linker relocation

10 STABS

of stabs in ELF files. For XCOFF, the stab uses the C_FUN storage class and the value of
the stab is meaningless; the address of the function can be found from the csect symbol
(XTY LD/XMC PR).

The type information of the stab represents the return type of the function; thus ‘foo:f5’
means that foo is a function returning type 5. There is no need to try to get the line number
of the start of the function from the stab for the function; it is in the next N_SLINE symbol.

Some compilers (such as Sun’s Solaris compiler) support an extension for specifying the
types of the arguments. I suspect this extension is not used for old (non-prototyped) function
definitions in C. If the extension is in use, the type information of the stab for the function
is followed by type information for each argument, with each argument preceded by ‘;’. An
argument type of 0 means that additional arguments are being passed, whose types and
number may vary (‘...’ in ANSI C). GDB has tolerated this extension (parsed the syntax,
if not necessarily used the information) since at least version 4.8; I don’t know whether
all versions of dbx tolerate it. The argument types given here are not redundant with the
symbols for the formal parameters (see 〈undefined〉 [Parameters], page 〈undefined〉); they
are the types of the arguments as they are passed, before any conversions might take place.
For example, if a C function which is declared without a prototype takes a float argument,
the value is passed as a double but then converted to a float. Debuggers need to use the
types given in the arguments when printing values, but when calling the function they need
to use the types given in the symbol defining the function.

If the return type and types of arguments of a function which is defined in another
source file are specified (i.e., a function prototype in ANSI C), traditionally compilers emit
no stab; the only way for the debugger to find the information is if the source file where the
function is defined was also compiled with debugging symbols. As an extension the Solaris
compiler uses symbol descriptor ‘P’ followed by the return type of the function, followed by
the arguments, each preceded by ‘;’, as in a stab with symbol descriptor ‘f’ or ‘F’. This
use of symbol descriptor ‘P’ can be distinguished from its use for register parameters (see
〈undefined〉 [Register Parameters], page 〈undefined〉) by the fact that it has symbol type
N_FUN.

The AIX documentation also defines symbol descriptor ‘J’ as an internal function. I
assume this means a function nested within another function. It also says symbol descriptor
‘m’ is a module in Modula-2 or extended Pascal.

Procedures (functions which do not return values) are represented as functions returning
the void type in C. I don’t see why this couldn’t be used for all languages (inventing a void
type for this purpose if necessary), but the AIX documentation defines ‘I’, ‘P’, and ‘Q’ for
internal, global, and static procedures, respectively. These symbol descriptors are unusual
in that they are not followed by type information.

The following example shows a stab for a function main which returns type number 1.
The _main specified for the value is a reference to an assembler label which is used to fill
in the start address of the function.

.stabs "main:F1",36,0,0,_main # 36 is N FUN

The stab representing a procedure is located immediately following the code of the
procedure. This stab is in turn directly followed by a group of other stabs describing
elements of the procedure. These other stabs describe the procedure’s parameters, its block
local variables, and its block structure.

Chapter 2: Encoding the Structure of the Program 11

If functions can appear in different sections, then the debugger may not be able to find
the end of a function. Recent versions of GCC will mark the end of a function with an
N_FUN symbol with an empty string for the name. The value is the address of the end of
the current function. Without such a symbol, there is no indication of the address of the
end of a function, and you must assume that it ended at the starting address of the next
function or at the end of the text section for the program.

2.6 Nested Procedures

For any of the symbol descriptors representing procedures, after the symbol descriptor and
the type information is optionally a scope specifier. This consists of a comma, the name of
the procedure, another comma, and the name of the enclosing procedure. The first name is
local to the scope specified, and seems to be redundant with the name of the symbol (before
the ‘:’). This feature is used by GCC, and presumably Pascal, Modula-2, etc., compilers,
for nested functions.

If procedures are nested more than one level deep, only the immediately containing scope
is specified. For example, this code:

int

foo (int x)

{

int bar (int y)

{

int baz (int z)

{

return x + y + z;

}

return baz (x + 2 * y);

}

return x + bar (3 * x);

}

produces the stabs:

.stabs "baz:f1,baz,bar",36,0,0,_baz.15 # 36 is N FUN

.stabs "bar:f1,bar,foo",36,0,0,_bar.12

.stabs "foo:F1",36,0,0,_foo

2.7 Block Structure

The program’s block structure is represented by the N_LBRAC (left brace) and the N_RBRAC
(right brace) stab types. The variables defined inside a block precede the N_LBRAC symbol
for most compilers, including GCC. Other compilers, such as the Convex, Acorn RISC
machine, and Sun acc compilers, put the variables after the N_LBRAC symbol. The values of
the N_LBRAC and N_RBRAC symbols are the start and end addresses of the code of the block,
respectively. For most machines, they are relative to the starting address of this source
file. For the Gould NP1, they are absolute. For stabs in sections (see 〈undefined〉 [Stab
Sections], page 〈undefined〉), they are relative to the function in which they occur.

The N_LBRAC and N_RBRAC stabs that describe the block scope of a procedure are located
after the N_FUN stab that represents the procedure itself.

12 STABS

Sun documents the desc field of N_LBRAC and N_RBRAC symbols as containing the nesting
level of the block. However, dbx seems to not care, and GCC always sets desc to zero.

For XCOFF, block scope is indicated with C_BLOCK symbols. If the name of the symbol
is ‘.bb’, then it is the beginning of the block; if the name of the symbol is ‘.be’; it is the
end of the block.

2.8 Alternate Entry Points

Some languages, like Fortran, have the ability to enter procedures at some place other than
the beginning. One can declare an alternate entry point. The N_ENTRY stab is for this;
however, the Sun FORTRAN compiler doesn’t use it. According to AIX documentation,
only the name of a C_ENTRY stab is significant; the address of the alternate entry point
comes from the corresponding external symbol. A previous revision of this document said
that the value of an N_ENTRY stab was the address of the alternate entry point, but I don’t
know the source for that information.

Chapter 3: Constants 13

3 Constants

The ‘c’ symbol descriptor indicates that this stab represents a constant. This symbol
descriptor is an exception to the general rule that symbol descriptors are followed by type
information. Instead, it is followed by ‘=’ and one of the following:

b value Boolean constant. value is a numeric value; I assume it is 0 for false or 1 for
true.

c value Character constant. value is the numeric value of the constant.

e type-information , value

Constant whose value can be represented as integral. type-information is the
type of the constant, as it would appear after a symbol descriptor (see 〈un-
defined〉 [String Field], page 〈undefined〉). value is the numeric value of the
constant. GDB 4.9 does not actually get the right value if value does not fit in
a host int, but it does not do anything violent, and future debuggers could be
extended to accept integers of any size (whether unsigned or not). This constant
type is usually documented as being only for enumeration constants, but GDB
has never imposed that restriction; I don’t know about other debuggers.

i value Integer constant. value is the numeric value. The type is some sort of generic
integer type (for GDB, a host int); to specify the type explicitly, use ‘e’ instead.

r value Real constant. value is the real value, which can be ‘INF’ (optionally preceded
by a sign) for infinity, ‘QNAN’ for a quiet NaN (not-a-number), or ‘SNAN’ for a
signalling NaN. If it is a normal number the format is that accepted by the C
library function atof.

s string String constant. string is a string enclosed in either ‘’’ (in which case ‘’’
characters within the string are represented as ‘\’’ or ‘"’ (in which case ‘"’
characters within the string are represented as ‘\"’).

S type-information , elements , bits , pattern

Set constant. type-information is the type of the constant, as it would appear
after a symbol descriptor (see 〈undefined〉 [String Field], page 〈undefined〉).
elements is the number of elements in the set (does this means how many
bits of pattern are actually used, which would be redundant with the type, or
perhaps the number of bits set in pattern? I don’t get it), bits is the number
of bits in the constant (meaning it specifies the length of pattern, I think), and
pattern is a hexadecimal representation of the set. AIX documentation refers
to a limit of 32 bytes, but I see no reason why this limit should exist. This form
could probably be used for arbitrary constants, not just sets; the only catch
is that pattern should be understood to be target, not host, byte order and
format.

The boolean, character, string, and set constants are not supported by GDB 4.9, but it
ignores them. GDB 4.8 and earlier gave an error message and refused to read symbols from
the file containing the constants.

The above information is followed by ‘;’.

Chapter 4: Variables 15

4 Variables

Different types of stabs describe the various ways that variables can be allocated: on the
stack, globally, in registers, in common blocks, statically, or as arguments to a function.

4.1 Automatic Variables Allocated on the Stack

If a variable’s scope is local to a function and its lifetime is only as long as that function
executes (C calls such variables automatic), it can be allocated in a register (see 〈undefined〉
[Register Variables], page 〈undefined〉) or on the stack.

Each variable allocated on the stack has a stab with the symbol descriptor omitted. Since
type information should begin with a digit, ‘-’, or ‘(’, only those characters precluded from
being used for symbol descriptors. However, the Acorn RISC machine (ARM) is said to get
this wrong: it puts out a mere type definition here, without the preceding ‘type-number=’.
This is a bad idea; there is no guarantee that type descriptors are distinct from symbol
descriptors. Stabs for stack variables use the N_LSYM stab type, or C_LSYM for XCOFF.

The value of the stab is the offset of the variable within the local variables. On most
machines this is an offset from the frame pointer and is negative. The location of the stab
specifies which block it is defined in; see 〈undefined〉 [Block Structure], page 〈undefined〉.

For example, the following C code:

int

main ()

{

int x;

}

produces the following stabs:

.stabs "main:F1",36,0,0,_main # 36 is N FUN

.stabs "x:1",128,0,0,-12 # 128 is N LSYM

.stabn 192,0,0,LBB2 # 192 is N LBRAC

.stabn 224,0,0,LBE2 # 224 is N RBRAC

See 〈undefined〉 [Procedures], page 〈undefined〉 for more information on the N_FUN stab,
and 〈undefined〉 [Block Structure], page 〈undefined〉 for more information on the N_LBRAC

and N_RBRAC stabs.

4.2 Global Variables

A variable whose scope is not specific to just one source file is represented by the ‘G’
symbol descriptor. These stabs use the N_GSYM stab type (C GSYM for XCOFF). The type
information for the stab (see 〈undefined〉 [String Field], page 〈undefined〉) gives the type of
the variable.

For example, the following source code:

char g_foo = ’c’;

yields the following assembly code:

.stabs "g_foo:G2",32,0,0,0 # 32 is N GSYM
.global _g_foo

16 STABS

.data

_g_foo:

.byte 99

The address of the variable represented by the N_GSYM is not contained in the N_GSYM

stab. The debugger gets this information from the external symbol for the global variable.
In the example above, the .global _g_foo and _g_foo: lines tell the assembler to produce
an external symbol.

Some compilers, like GCC, output N_GSYM stabs only once, where the variable is defined.
Other compilers, like SunOS4 /bin/cc, output a N_GSYM stab for each compilation unit
which references the variable.

4.3 Register Variables

Register variables have their own stab type, N_RSYM (C_RSYM for XCOFF), and their own
symbol descriptor, ‘r’. The stab’s value is the number of the register where the variable
data will be stored.

AIX defines a separate symbol descriptor ‘d’ for floating point registers. This seems
unnecessary; why not just just give floating point registers different register numbers? I
have not verified whether the compiler actually uses ‘d’.

If the register is explicitly allocated to a global variable, but not initialized, as in:

register int g_bar asm ("%g5");

then the stab may be emitted at the end of the object file, with the other bss symbols.

4.4 Common Blocks

A common block is a statically allocated section of memory which can be referred to by
several source files. It may contain several variables. I believe Fortran is the only language
with this feature.

A N_BCOMM stab begins a common block and an N_ECOMM stab ends it. The only field
that is significant in these two stabs is the string, which names a normal (non-debugging)
symbol that gives the address of the common block. According to IBM documentation,
only the N_BCOMM has the name of the common block (even though their compiler actually
puts it both places).

The stabs for the members of the common block are between the N_BCOMM and the N_

ECOMM; the value of each stab is the offset within the common block of that variable. IBM
uses the C_ECOML stab type, and there is a corresponding N_ECOML stab type, but Sun’s
Fortran compiler uses N_GSYM instead. The variables within a common block use the ‘V’
symbol descriptor (I believe this is true of all Fortran variables). Other stabs (at least type
declarations using C_DECL) can also be between the N_BCOMM and the N_ECOMM.

4.5 Static Variables

Initialized static variables are represented by the ‘S’ and ‘V’ symbol descriptors. ‘S’ means
file scope static, and ‘V’ means procedure scope static. One exception: in XCOFF, IBM’s
xlc compiler always uses ‘V’, and whether it is file scope or not is distinguished by whether
the stab is located within a function.

Chapter 4: Variables 17

In a.out files, N_STSYM means the data section, N_FUN means the text section, and N_

LCSYM means the bss section. For those systems with a read-only data section separate from
the text section (Solaris), N_ROSYM means the read-only data section.

For example, the source lines:

static const int var_const = 5;

static int var_init = 2;

static int var_noinit;

yield the following stabs:

.stabs "var_const:S1",36,0,0,_var_const # 36 is N FUN

...

.stabs "var_init:S1",38,0,0,_var_init # 38 is N STSYM

...

.stabs "var_noinit:S1",40,0,0,_var_noinit # 40 is N LCSYM

In XCOFF files, the stab type need not indicate the section; C_STSYM can be used for all
statics. Also, each static variable is enclosed in a static block. A C_BSTAT (emitted with a
‘.bs’ assembler directive) symbol begins the static block; its value is the symbol number of
the csect symbol whose value is the address of the static block, its section is the section of
the variables in that static block, and its name is ‘.bs’. A C_ESTAT (emitted with a ‘.es’
assembler directive) symbol ends the static block; its name is ‘.es’ and its value and section
are ignored.

In ECOFF files, the storage class is used to specify the section, so the stab type need
not indicate the section.

In ELF files, for the SunPRO compiler version 2.0.1, symbol descriptor ‘S’ means that
the address is absolute (the linker relocates it) and symbol descriptor ‘V’ means that the
address is relative to the start of the relevant section for that compilation unit. SunPRO
has plans to have the linker stop relocating stabs; I suspect that their the debugger gets
the address from the corresponding ELF (not stab) symbol. I’m not sure how to find which
symbol of that name is the right one. The clean way to do all this would be to have the
value of a symbol descriptor ‘S’ symbol be an offset relative to the start of the file, just like
everything else, but that introduces obvious compatibility problems. For more information
on linker stab relocation, See 〈undefined〉 [ELF Linker Relocation], page 〈undefined〉.

4.6 Fortran Based Variables

Fortran (at least, the Sun and SGI dialects of FORTRAN-77) has a feature which allows all-
ocating arrays with malloc, but which avoids blurring the line between arrays and pointers
the way that C does. In stabs such a variable uses the ‘b’ symbol descriptor.

For example, the Fortran declarations

real foo, foo10(10), foo10_5(10,5)

pointer (foop, foo)

pointer (foo10p, foo10)

pointer (foo105p, foo10_5)

produce the stabs

foo:b6

foo10:bar3;1;10;6

18 STABS

foo10_5:bar3;1;5;ar3;1;10;6

In this example, real is type 6 and type 3 is an integral type which is the type of the
subscripts of the array (probably integer).

The ‘b’ symbol descriptor is like ‘V’ in that it denotes a statically allocated symbol whose
scope is local to a function; see See 〈undefined〉 [Statics], page 〈undefined〉. The value of
the symbol, instead of being the address of the variable itself, is the address of a pointer to
that variable. So in the above example, the value of the foo stab is the address of a pointer
to a real, the value of the foo10 stab is the address of a pointer to a 10-element array of
reals, and the value of the foo10_5 stab is the address of a pointer to a 5-element array of
10-element arrays of reals.

4.7 Parameters

Formal parameters to a function are represented by a stab (or sometimes two; see below)
for each parameter. The stabs are in the order in which the debugger should print the
parameters (i.e., the order in which the parameters are declared in the source file). The
exact form of the stab depends on how the parameter is being passed.

Parameters passed on the stack use the symbol descriptor ‘p’ and the N_PSYM symbol type
(or C_PSYM for XCOFF). The value of the symbol is an offset used to locate the parameter
on the stack; its exact meaning is machine-dependent, but on most machines it is an offset
from the frame pointer.

As a simple example, the code:

main (argc, argv)

int argc;

char **argv;

produces the stabs:

.stabs "main:F1",36,0,0,_main # 36 is N FUN

.stabs "argc:p1",160,0,0,68 # 160 is N PSYM

.stabs "argv:p20=*21=*2",160,0,0,72

The type definition of argv is interesting because it contains several type definitions.
Type 21 is pointer to type 2 (char) and argv (type 20) is pointer to type 21.

The following symbol descriptors are also said to go with N_PSYM. The value of the
symbol is said to be an offset from the argument pointer (I’m not sure whether this is true
or not).

pP (<<??>>)

pF Fortran function parameter

X (function result variable)

4.7.1 Passing Parameters in Registers

If the parameter is passed in a register, then traditionally there are two symbols for each
argument:

.stabs "arg:p1" . . . ; N_PSYM

.stabs "arg:r1" . . . ; N_RSYM

Debuggers use the second one to find the value, and the first one to know that it is an
argument.

Chapter 4: Variables 19

Because that approach is kind of ugly, some compilers use symbol descriptor ‘P’ or ‘R’
to indicate an argument which is in a register. Symbol type C_RPSYM is used in XCOFF
and N_RSYM is used otherwise. The symbol’s value is the register number. ‘P’ and ‘R’ mean
the same thing; the difference is that ‘P’ is a GNU invention and ‘R’ is an IBM (XCOFF)
invention. As of version 4.9, GDB should handle either one.

There is at least one case where GCC uses a ‘p’ and ‘r’ pair rather than ‘P’; this is where
the argument is passed in the argument list and then loaded into a register.

According to the AIX documentation, symbol descriptor ‘D’ is for a parameter passed
in a floating point register. This seems unnecessary—why not just use ‘R’ with a register
number which indicates that it’s a floating point register? I haven’t verified whether the
system actually does what the documentation indicates.

On the sparc and hppa, for a ‘P’ symbol whose type is a structure or union, the register
contains the address of the structure. On the sparc, this is also true of a ‘p’ and ‘r’ pair
(using Sun cc) or a ‘p’ symbol. However, if a (small) structure is really in a register, ‘r’
is used. And, to top it all off, on the hppa it might be a structure which was passed on
the stack and loaded into a register and for which there is a ‘p’ and ‘r’ pair! I believe that
symbol descriptor ‘i’ is supposed to deal with this case (it is said to mean "value parameter
by reference, indirect access"; I don’t know the source for this information), but I don’t
know details or what compilers or debuggers use it, if any (not GDB or GCC). It is not
clear to me whether this case needs to be dealt with differently than parameters passed by
reference (see 〈undefined〉 [Reference Parameters], page 〈undefined〉).

4.7.2 Storing Parameters as Local Variables

There is a case similar to an argument in a register, which is an argument that is actually
stored as a local variable. Sometimes this happens when the argument was passed in a
register and then the compiler stores it as a local variable. If possible, the compiler should
claim that it’s in a register, but this isn’t always done.

If a parameter is passed as one type and converted to a smaller type by the prologue
(for example, the parameter is declared as a float, but the calling conventions specify that
it is passed as a double), then GCC2 (sometimes) uses a pair of symbols. The first symbol
uses symbol descriptor ‘p’ and the type which is passed. The second symbol has the type
and location which the parameter actually has after the prologue. For example, suppose
the following C code appears with no prototypes involved:

void

subr (f)

float f;

{

if f is passed as a double at stack offset 8, and the prologue converts it to a float in
register number 0, then the stabs look like:

.stabs "f:p13",160,0,3,8 # 160 is N_PSYM, here 13 is double

.stabs "f:r12",64,0,3,0 # 64 is N_RSYM, here 12 is float

In both stabs 3 is the line number where f is declared (see 〈undefined〉 [Line Numbers],
page 〈undefined〉).

GCC, at least on the 960, has another solution to the same problem. It uses a single
‘p’ symbol descriptor for an argument which is stored as a local variable but uses N_LSYM

20 STABS

instead of N_PSYM. In this case, the value of the symbol is an offset relative to the local
variables for that function, not relative to the arguments; on some machines those are the
same thing, but not on all.

On the VAX or on other machines in which the calling convention includes the number
of words of arguments actually passed, the debugger (GDB at least) uses the parameter
symbols to keep track of whether it needs to print nameless arguments in addition to the
formal parameters which it has printed because each one has a stab. For example, in

extern int fprintf (FILE *stream, char *format, ...);

...

fprintf (stdout, "%d\n", x);

there are stabs for stream and format. On most machines, the debugger can only print
those two arguments (because it has no way of knowing that additional arguments were
passed), but on the VAX or other machines with a calling convention which indicates the
number of words of arguments, the debugger can print all three arguments. To do so, the
parameter symbol (symbol descriptor ‘p’) (not necessarily ‘r’ or symbol descriptor omitted
symbols) needs to contain the actual type as passed (for example, double not float if it is
passed as a double and converted to a float).

4.7.3 Passing Parameters by Reference

If the parameter is passed by reference (e.g., Pascal VAR parameters), then the symbol
descriptor is ‘v’ if it is in the argument list, or ‘a’ if it in a register. Other than the fact
that these contain the address of the parameter rather than the parameter itself, they are
identical to ‘p’ and ‘R’, respectively. I believe ‘a’ is an AIX invention; ‘v’ is supported by
all stabs-using systems as far as I know.

4.7.4 Passing Conformant Array Parameters

Conformant arrays are a feature of Modula-2, and perhaps other languages, in which the size
of an array parameter is not known to the called function until run-time. Such parameters
have two stabs: a ‘x’ for the array itself, and a ‘C’, which represents the size of the array.
The value of the ‘x’ stab is the offset in the argument list where the address of the array is
stored (it this right? it is a guess); the value of the ‘C’ stab is the offset in the argument
list where the size of the array (in elements? in bytes?) is stored.

Chapter 5: Defining Types 21

5 Defining Types

The examples so far have described types as references to previously defined types, or defined
in terms of subranges of or pointers to previously defined types. This chapter describes the
other type descriptors that may follow the ‘=’ in a type definition.

5.1 Builtin Types

Certain types are built in (int, short, void, float, etc.); the debugger recognizes these
types and knows how to handle them. Thus, don’t be surprised if some of the following
ways of specifying builtin types do not specify everything that a debugger would need to
know about the type—in some cases they merely specify enough information to distinguish
the type from other types.

The traditional way to define builtin types is convoluted, so new ways have been invented
to describe them. Sun’s acc uses special builtin type descriptors (‘b’ and ‘R’), and IBM uses
negative type numbers. GDB accepts all three ways, as of version 4.8; dbx just accepts the
traditional builtin types and perhaps one of the other two formats. The following sections
describe each of these formats.

5.1.1 Traditional Builtin Types

This is the traditional, convoluted method for defining builtin types. There are several
classes of such type definitions: integer, floating point, and void.

5.1.1.1 Traditional Integer Types

Often types are defined as subranges of themselves. If the bounding values fit within an
int, then they are given normally. For example:

.stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0 # 128 is N LSYM

.stabs "char:t2=r2;0;127;",128,0,0,0

Builtin types can also be described as subranges of int:

.stabs "unsigned short:t6=r1;0;65535;",128,0,0,0

If the lower bound of a subrange is 0 and the upper bound is -1, the type is an unsigned
integral type whose bounds are too big to describe in an int. Traditionally this is only used
for unsigned int and unsigned long:

.stabs "unsigned int:t4=r1;0;-1;",128,0,0,0

For larger types, GCC 2.4.5 puts out bounds in octal, with one or more leading zeroes.
In this case a negative bound consists of a number which is a 1 bit (for the sign bit) followed
by a 0 bit for each bit in the number (except the sign bit), and a positive bound is one which
is a 1 bit for each bit in the number (except possibly the sign bit). All known versions of
dbx and GDB version 4 accept this (at least in the sense of not refusing to process the file),
but GDB 3.5 refuses to read the whole file containing such symbols. So GCC 2.3.3 did not
output the proper size for these types. As an example of octal bounds, the string fields of
the stabs for 64 bit integer types look like:

long int:t3=r1;001000000000000000000000;000777777777777777777777;

long unsigned int:t5=r1;000000000000000000000000;001777777777777777777777;

22 STABS

If the lower bound of a subrange is 0 and the upper bound is negative, the type is an
unsigned integral type whose size in bytes is the absolute value of the upper bound. I believe
this is a Convex convention for unsigned long long.

If the lower bound of a subrange is negative and the upper bound is 0, the type is a
signed integral type whose size in bytes is the absolute value of the lower bound. I believe
this is a Convex convention for long long. To distinguish this from a legitimate subrange,
the type should be a subrange of itself. I’m not sure whether this is the case for Convex.

5.1.1.2 Traditional Other Types

If the upper bound of a subrange is 0 and the lower bound is positive, the type is a floating
point type, and the lower bound of the subrange indicates the number of bytes in the type:

.stabs "float:t12=r1;4;0;",128,0,0,0

.stabs "double:t13=r1;8;0;",128,0,0,0

However, GCC writes long double the same way it writes double, so there is no way
to distinguish.

.stabs "long double:t14=r1;8;0;",128,0,0,0

Complex types are defined the same way as floating-point types; there is no way to
distinguish a single-precision complex from a double-precision floating-point type.

The C void type is defined as itself:

.stabs "void:t15=15",128,0,0,0

I’m not sure how a boolean type is represented.

5.1.2 Defining Builtin Types Using Builtin Type Descriptors

This is the method used by Sun’s acc for defining builtin types. These are the type des-
criptors to define builtin types:

b signed char-flag width ; offset ; nbits ;

Define an integral type. signed is ‘u’ for unsigned or ‘s’ for signed. char-flag is
‘c’ which indicates this is a character type, or is omitted. I assume this is to
distinguish an integral type from a character type of the same size, for example
it might make sense to set it for the C type wchar_t so the debugger can print
such variables differently (Solaris does not do this). Sun sets it on the C types
signed char and unsigned char which arguably is wrong. width and offset
appear to be for small objects stored in larger ones, for example a short in an
int register. width is normally the number of bytes in the type. offset seems
to always be zero. nbits is the number of bits in the type.

Note that type descriptor ‘b’ used for builtin types conflicts with its use for
Pascal space types (see 〈undefined〉 [Miscellaneous Types], page 〈undefined〉);
they can be distinguished because the character following the type descriptor
will be a digit, ‘(’, or ‘-’ for a Pascal space type, or ‘u’ or ‘s’ for a builtin type.

w Documented by AIX to define a wide character type, but their compiler
actually uses negative type numbers (see 〈undefined〉 [Negative Type
Numbers], page 〈undefined〉).

R fp-type ; bytes ;

Define a floating point type. fp-type has one of the following values:

Chapter 5: Defining Types 23

1 (NF_SINGLE)

IEEE 32-bit (single precision) floating point format.

2 (NF_DOUBLE)

IEEE 64-bit (double precision) floating point format.

3 (NF_COMPLEX)

4 (NF_COMPLEX16)

5 (NF_COMPLEX32)

These are for complex numbers. A comment in the GDB
source describes them as Fortran complex, double complex, and
complex*16, respectively, but what does that mean? (i.e., Single
precision? Double precision?).

6 (NF_LDOUBLE)

Long double. This should probably only be used for Sun format
long double, and new codes should be used for other floating point
formats (NF_DOUBLE can be used if a long double is really just an
IEEE double, of course).

bytes is the number of bytes occupied by the type. This allows a debugger to
perform some operations with the type even if it doesn’t understand fp-type.

g type-information ; nbits

Documented by AIX to define a floating type, but their compiler actually uses
negative type numbers (see 〈undefined〉 [Negative Type Numbers], page 〈unde-
fined〉).

c type-information ; nbits

Documented by AIX to define a complex type, but their compiler actually uses
negative type numbers (see 〈undefined〉 [Negative Type Numbers], page 〈unde-
fined〉).

The C void type is defined as a signed integral type 0 bits long:

.stabs "void:t19=bs0;0;0",128,0,0,0

The Solaris compiler seems to omit the trailing semicolon in this case. Getting sloppy
in this way is not a swift move because if a type is embedded in a more complex expression
it is necessary to be able to tell where it ends.

I’m not sure how a boolean type is represented.

5.1.3 Negative Type Numbers

This is the method used in XCOFF for defining builtin types. Since the debugger knows
about the builtin types anyway, the idea of negative type numbers is simply to give a special
type number which indicates the builtin type. There is no stab defining these types.

There are several subtle issues with negative type numbers.

One is the size of the type. A builtin type (for example the C types int or long) might
have different sizes depending on compiler options, the target architecture, the ABI, etc.
This issue doesn’t come up for IBM tools since (so far) they just target the RS/6000; the
sizes indicated below for each size are what the IBM RS/6000 tools use. To deal with

24 STABS

differing sizes, either define separate negative type numbers for each size (which works but
requires changing the debugger, and, unless you get both AIX dbx and GDB to accept
the change, introduces an incompatibility), or use a type attribute (see 〈undefined〉 [String
Field], page 〈undefined〉) to define a new type with the appropriate size (which merely
requires a debugger which understands type attributes, like AIX dbx or GDB). For example,

.stabs "boolean:t10=@s8;-16",128,0,0,0

defines an 8-bit boolean type, and

.stabs "boolean:t10=@s64;-16",128,0,0,0

defines a 64-bit boolean type.

A similar issue is the format of the type. This comes up most often for floating-point
types, which could have various formats (particularly extended doubles, which vary quite a
bit even among IEEE systems). Again, it is best to define a new negative type number for
each different format; changing the format based on the target system has various problems.
One such problem is that the Alpha has both VAX and IEEE floating types. One can easily
imagine one library using the VAX types and another library in the same executable using
the IEEE types. Another example is that the interpretation of whether a boolean is true or
false can be based on the least significant bit, most significant bit, whether it is zero, etc.,
and different compilers (or different options to the same compiler) might provide different
kinds of boolean.

The last major issue is the names of the types. The name of a given type depends only
on the negative type number given; these do not vary depending on the language, the target
system, or anything else. One can always define separate type numbers—in the following
list you will see for example separate int and integer*4 types which are identical except
for the name. But compatibility can be maintained by not inventing new negative type
numbers and instead just defining a new type with a new name. For example:

.stabs "CARDINAL:t10=-8",128,0,0,0

Here is the list of negative type numbers. The phrase integral type is used to mean twos-
complement (I strongly suspect that all machines which use stabs use twos-complement;
most machines use twos-complement these days).

-1 int, 32 bit signed integral type.

-2 char, 8 bit type holding a character. Both GDB and dbx on AIX treat this as
signed. GCC uses this type whether char is signed or not, which seems like a
bad idea. The AIX compiler (xlc) seems to avoid this type; it uses -5 instead
for char.

-3 short, 16 bit signed integral type.

-4 long, 32 bit signed integral type.

-5 unsigned char, 8 bit unsigned integral type.

-6 signed char, 8 bit signed integral type.

-7 unsigned short, 16 bit unsigned integral type.

-8 unsigned int, 32 bit unsigned integral type.

-9 unsigned, 32 bit unsigned integral type.

Chapter 5: Defining Types 25

-10 unsigned long, 32 bit unsigned integral type.

-11 void, type indicating the lack of a value.

-12 float, IEEE single precision.

-13 double, IEEE double precision.

-14 long double, IEEE double precision. The compiler claims the size will increase
in a future release, and for binary compatibility you have to avoid using long

double. I hope when they increase it they use a new negative type number.

-15 integer. 32 bit signed integral type.

-16 boolean. 32 bit type. GDB and GCC assume that zero is false, one is true,
and other values have unspecified meaning. I hope this agrees with how the
IBM tools use the type.

-17 short real. IEEE single precision.

-18 real. IEEE double precision.

-19 stringptr. See 〈undefined〉 [Strings], page 〈undefined〉.
-20 character, 8 bit unsigned character type.

-21 logical*1, 8 bit type. This Fortran type has a split personality in that it is
used for boolean variables, but can also be used for unsigned integers. 0 is false,
1 is true, and other values are non-boolean.

-22 logical*2, 16 bit type. This Fortran type has a split personality in that it
is used for boolean variables, but can also be used for unsigned integers. 0 is
false, 1 is true, and other values are non-boolean.

-23 logical*4, 32 bit type. This Fortran type has a split personality in that it
is used for boolean variables, but can also be used for unsigned integers. 0 is
false, 1 is true, and other values are non-boolean.

-24 logical, 32 bit type. This Fortran type has a split personality in that it is used
for boolean variables, but can also be used for unsigned integers. 0 is false, 1 is
true, and other values are non-boolean.

-25 complex. A complex type consisting of two IEEE single-precision floating point
values.

-26 complex. A complex type consisting of two IEEE double-precision floating
point values.

-27 integer*1, 8 bit signed integral type.

-28 integer*2, 16 bit signed integral type.

-29 integer*4, 32 bit signed integral type.

-30 wchar. Wide character, 16 bits wide, unsigned (what format? Unicode?).

-31 long long, 64 bit signed integral type.

-32 unsigned long long, 64 bit unsigned integral type.

-33 logical*8, 64 bit unsigned integral type.

-34 integer*8, 64 bit signed integral type.

26 STABS

5.2 Miscellaneous Types

b type-information ; bytes

Pascal space type. This is documented by IBM; what does it mean?

This use of the ‘b’ type descriptor can be distinguished from its use for builtin
integral types (see 〈undefined〉 [Builtin Type Descriptors], page 〈undefined〉)
because the character following the type descriptor is always a digit, ‘(’, or ‘-’.

B type-information

A volatile-qualified version of type-information. This is a Sun extension.
References and stores to a variable with a volatile-qualified type must not be
optimized or cached; they must occur as the user specifies them.

d type-information

File of type type-information. As far as I know this is only used by Pascal.

k type-information

A const-qualified version of type-information. This is a Sun extension. A
variable with a const-qualified type cannot be modified.

M type-information ; length

Multiple instance type. The type seems to composed of length repetitions of
type-information, for example character*3 is represented by ‘M-2;3’, where
‘-2’ is a reference to a character type (see 〈undefined〉 [Negative Type Numbers],
page 〈undefined〉). I’m not sure how this differs from an array. This appears
to be a Fortran feature. length is a bound, like those in range types; see 〈un-
defined〉 [Subranges], page 〈undefined〉.

S type-information

Pascal set type. type-information must be a small type such as an enumeration
or a subrange, and the type is a bitmask whose length is specified by the number
of elements in type-information.

In CHILL, if it is a bitstring instead of a set, also use the ‘S’ type attribute (see
〈undefined〉 [String Field], page 〈undefined〉).

* type-information

Pointer to type-information.

5.3 Cross-References to Other Types

A type can be used before it is defined; one common way to deal with that situation is just
to use a type reference to a type which has not yet been defined.

Another way is with the ‘x’ type descriptor, which is followed by ‘s’ for a structure tag,
‘u’ for a union tag, or ‘e’ for a enumerator tag, followed by the name of the tag, followed
by ‘:’. If the name contains ‘::’ between a ‘<’ and ‘>’ pair (for C++ templates), such a ‘::’
does not end the name—only a single ‘:’ ends the name; see 〈undefined〉 [Nested Symbols],
page 〈undefined〉.

For example, the following C declarations:

struct foo;

struct foo *bar;

Chapter 5: Defining Types 27

produce:

.stabs "bar:G16=*17=xsfoo:",32,0,0,0

Not all debuggers support the ‘x’ type descriptor, so on some machines GCC does not
use it. I believe that for the above example it would just emit a reference to type 17 and
never define it, but I haven’t verified that.

Modula-2 imported types, at least on AIX, use the ‘i’ type descriptor, which is followed
by the name of the module from which the type is imported, followed by ‘:’, followed by
the name of the type. There is then optionally a comma followed by type information for
the type. This differs from merely naming the type (see 〈undefined〉 [Typedefs], page 〈un-
defined〉) in that it identifies the module; I don’t understand whether the name of the
type given here is always just the same as the name we are giving it, or whether this type
descriptor is used with a nameless stab (see 〈undefined〉 [String Field], page 〈undefined〉),
or what. The symbol ends with ‘;’.

5.4 Subrange Types

The ‘r’ type descriptor defines a type as a subrange of another type. It is followed by
type information for the type of which it is a subrange, a semicolon, an integral lower
bound, a semicolon, an integral upper bound, and a semicolon. The AIX documentation
does not specify the trailing semicolon, in an effort to specify array indexes more cleanly,
but a subrange which is not an array index has always included a trailing semicolon (see
〈undefined〉 [Arrays], page 〈undefined〉).

Instead of an integer, either bound can be one of the following:

A offset The bound is passed by reference on the stack at offset offset from the argument
list. See 〈undefined〉 [Parameters], page 〈undefined〉, for more information on
such offsets.

T offset The bound is passed by value on the stack at offset offset from the argument
list.

a register-number

The bound is passed by reference in register number register-number.

t register-number

The bound is passed by value in register number register-number.

J There is no bound.

Subranges are also used for builtin types; see 〈undefined〉 [Traditional Builtin Types],
page 〈undefined〉.

5.5 Array Types

Arrays use the ‘a’ type descriptor. Following the type descriptor is the type of the index
and the type of the array elements. If the index type is a range type, it ends in a semicolon;
otherwise (for example, if it is a type reference), there does not appear to be any way to tell
where the types are separated. In an effort to clean up this mess, IBM documents the two
types as being separated by a semicolon, and a range type as not ending in a semicolon (but
this is not right for range types which are not array indexes, see 〈undefined〉 [Subranges],

28 STABS

page 〈undefined〉). I think probably the best solution is to specify that a semicolon ends
a range type, and that the index type and element type of an array are separated by a
semicolon, but that if the index type is a range type, the extra semicolon can be omitted.
GDB (at least through version 4.9) doesn’t support any kind of index type other than a
range anyway; I’m not sure about dbx.

It is well established, and widely used, that the type of the index, unlike most types
found in the stabs, is merely a type definition, not type information (see 〈undefined〉 [String
Field], page 〈undefined〉) (that is, it need not start with ‘type-number=’ if it is defining
a new type). According to a comment in GDB, this is also true of the type of the array
elements; it gives ‘ar1;1;10;ar1;1;10;4’ as a legitimate way to express a two dimensional
array. According to AIX documentation, the element type must be type information. GDB
accepts either.

The type of the index is often a range type, expressed as the type descriptor ‘r’ and
some parameters. It defines the size of the array. In the example below, the range ‘r1;0;2;’
defines an index type which is a subrange of type 1 (integer), with a lower bound of 0 and
an upper bound of 2. This defines the valid range of subscripts of a three-element C array.

For example, the definition:

char char_vec[3] = {’a’,’b’,’c’};

produces the output:

.stabs "char_vec:G19=ar1;0;2;2",32,0,0,0

.global _char_vec

.align 4

_char_vec:

.byte 97

.byte 98

.byte 99

If an array is packed, the elements are spaced more closely than normal, saving memory
at the expense of speed. For example, an array of 3-byte objects might, if unpacked, have
each element aligned on a 4-byte boundary, but if packed, have no padding. One way to
specify that something is packed is with type attributes (see 〈undefined〉 [String Field],
page 〈undefined〉). In the case of arrays, another is to use the ‘P’ type descriptor instead of
‘a’. Other than specifying a packed array, ‘P’ is identical to ‘a’.

An open array is represented by the ‘A’ type descriptor followed by type information
specifying the type of the array elements.

An N-dimensional dynamic array is represented by

D dimensions ; type-information

dimensions is the number of dimensions; type-information specifies the type of the array
elements.

A subarray of an N-dimensional array is represented by

E dimensions ; type-information

dimensions is the number of dimensions; type-information specifies the type of the array
elements.

Chapter 5: Defining Types 29

5.6 Strings

Some languages, like C or the original Pascal, do not have string types, they just have
related things like arrays of characters. But most Pascals and various other languages have
string types, which are indicated as follows:

n type-information ; bytes

bytes is the maximum length. I’m not sure what type-information is; I suspect
that it means that this is a string of type-information (thus allowing a string
of integers, a string of wide characters, etc., as well as a string of characters).
Not sure what the format of this type is. This is an AIX feature.

z type-information ; bytes

Just like ‘n’ except that this is a gstring, not an ordinary string. I don’t know
the difference.

N Pascal Stringptr. What is this? This is an AIX feature.

Languages, such as CHILL which have a string type which is basically just an array of
characters use the ‘S’ type attribute (see 〈undefined〉 [String Field], page 〈undefined〉).

5.7 Enumerations

Enumerations are defined with the ‘e’ type descriptor.

The source line below declares an enumeration type at file scope. The type definition is
located after the N_RBRAC that marks the end of the previous procedure’s block scope, and
before the N_FUN that marks the beginning of the next procedure’s block scope. Therefore
it does not describe a block local symbol, but a file local one.

The source line:

enum e_places {first,second=3,last};

generates the following stab:

.stabs "e_places:T22=efirst:0,second:3,last:4,;",128,0,0,0

The symbol descriptor (‘T’) says that the stab describes a structure, enumeration, or
union tag. The type descriptor ‘e’, following the ‘22=’ of the type definition narrows it
down to an enumeration type. Following the ‘e’ is a list of the elements of the enumeration.
The format is ‘name:value,’. The list of elements ends with ‘;’. The fact that value is
specified as an integer can cause problems if the value is large. GCC 2.5.2 tries to output
it in octal in that case with a leading zero, which is probably a good thing, although GDB
4.11 supports octal only in cases where decimal is perfectly good. Negative decimal values
are supported by both GDB and dbx.

There is no standard way to specify the size of an enumeration type; it is determined
by the architecture (normally all enumerations types are 32 bits). Type attributes can be
used to specify an enumeration type of another size for debuggers which support them; see
〈undefined〉 [String Field], page 〈undefined〉.

Enumeration types are unusual in that they define symbols for the enumeration values
(first, second, and third in the above example), and even though these symbols are
visible in the file as a whole (rather than being in a more local namespace like structure
member names), they are defined in the type definition for the enumeration type rather

30 STABS

than each having their own symbol. In order to be fast, GDB will only get symbols from
such types (in its initial scan of the stabs) if the type is the first thing defined after a ‘T’
or ‘t’ symbol descriptor (the above example fulfills this requirement). If the type does not
have a name, the compiler should emit it in a nameless stab (see 〈undefined〉 [String Field],
page 〈undefined〉); GCC does this.

5.8 Structures

The encoding of structures in stabs can be shown with an example.

The following source code declares a structure tag and defines an instance of the structure
in global scope. Then a typedef equates the structure tag with a new type. Separate stabs
are generated for the structure tag, the structure typedef, and the structure instance. The
stabs for the tag and the typedef are emitted when the definitions are encountered. Since
the structure elements are not initialized, the stab and code for the structure variable itself
is located at the end of the program in the bss section.

struct s_tag {

int s_int;

float s_float;

char s_char_vec[8];

struct s_tag* s_next;

} g_an_s;

typedef struct s_tag s_typedef;

The structure tag has an N_LSYM stab type because, like the enumeration, the symbol has
file scope. Like the enumeration, the symbol descriptor is ‘T’, for enumeration, structure,
or tag type. The type descriptor ‘s’ following the ‘16=’ of the type definition narrows the
symbol type to structure.

Following the ‘s’ type descriptor is the number of bytes the structure occupies, foll-
owed by a description of each structure element. The structure element descriptions are
of the form ‘name:type, bit offset from the start of the struct, number of bits in

the element’.

128 is N LSYM
.stabs "s_tag:T16=s20s_int:1,0,32;s_float:12,32,32;

s_char_vec:17=ar1;0;7;2,64,64;s_next:18=*16,128,32;;",128,0,0,0

In this example, the first two structure elements are previously defined types. For these,
the type following the ‘name:’ part of the element description is a simple type reference.
The other two structure elements are new types. In this case there is a type definition
embedded after the ‘name:’. The type definition for the array element looks just like a
type definition for a stand-alone array. The s_next field is a pointer to the same kind of
structure that the field is an element of. So the definition of structure type 16 contains a
type definition for an element which is a pointer to type 16.

If a field is a static member (this is a C++ feature in which a single variable appears to
be a field of every structure of a given type) it still starts out with the field name, a colon,
and the type, but then instead of a comma, bit position, comma, and bit size, there is a
colon followed by the name of the variable which each such field refers to.

Chapter 5: Defining Types 31

If the structure has methods (a C++ feature), they follow the non-method fields; see
〈undefined〉 [Cplusplus], page 〈undefined〉.

5.9 Giving a Type a Name

To give a type a name, use the ‘t’ symbol descriptor. The type is specified by the type
information (see 〈undefined〉 [String Field], page 〈undefined〉) for the stab. For example,

.stabs "s_typedef:t16",128,0,0,0 # 128 is N LSYM

specifies that s_typedef refers to type number 16. Such stabs have symbol type N_LSYM
(or C_DECL for XCOFF). (The Sun documentation mentions using N_GSYM in some cases).

If you are specifying the tag name for a structure, union, or enumeration, use the ‘T’
symbol descriptor instead. I believe C is the only language with this feature.

If the type is an opaque type (I believe this is a Modula-2 feature), AIX provides a
type descriptor to specify it. The type descriptor is ‘o’ and is followed by a name. I don’t
know what the name means—is it always the same as the name of the type, or is this type
descriptor used with a nameless stab (see 〈undefined〉 [String Field], page 〈undefined〉)?
There optionally follows a comma followed by type information which defines the type of
this type. If omitted, a semicolon is used in place of the comma and the type information,
and the type is much like a generic pointer type—it has a known size but little else about
it is specified.

5.10 Unions

union u_tag {

int u_int;

float u_float;

char* u_char;

} an_u;

This code generates a stab for a union tag and a stab for a union variable. Both use
the N_LSYM stab type. If a union variable is scoped locally to the procedure in which it
is defined, its stab is located immediately preceding the N_LBRAC for the procedure’s block
start.

The stab for the union tag, however, is located preceding the code for the procedure in
which it is defined. The stab type is N_LSYM. This would seem to imply that the union type
is file scope, like the struct type s_tag. This is not true. The contents and position of the
stab for u_type do not convey any information about its procedure local scope.

128 is N LSYM
.stabs "u_tag:T23=u4u_int:1,0,32;u_float:12,0,32;u_char:21,0,32;;",

128,0,0,0

The symbol descriptor ‘T’, following the ‘name:’ means that the stab describes an en-
umeration, structure, or union tag. The type descriptor ‘u’, following the ‘23=’ of the type
definition, narrows it down to a union type definition. Following the ‘u’ is the number
of bytes in the union. After that is a list of union element descriptions. Their format is
‘name:type, bit offset into the union, number of bytes for the element;’.

The stab for the union variable is:

32 STABS

.stabs "an_u:23",128,0,0,-20 # 128 is N LSYM

‘-20’ specifies where the variable is stored (see 〈undefined〉 [Stack Variables], page 〈un-
defined〉).

5.11 Function Types

Various types can be defined for function variables. These types are not used in defining
functions (see 〈undefined〉 [Procedures], page 〈undefined〉); they are used for things like
pointers to functions.

The simple, traditional, type is type descriptor ‘f’ is followed by type information for
the return type of the function, followed by a semicolon.

This does not deal with functions for which the number and types of the parameters are
part of the type, as in Modula-2 or ANSI C. AIX provides extensions to specify these, using
the ‘f’, ‘F’, ‘p’, and ‘R’ type descriptors.

First comes the type descriptor. If it is ‘f’ or ‘F’, this type involves a function rather than
a procedure, and the type information for the return type of the function follows, followed
by a comma. Then comes the number of parameters to the function and a semicolon.
Then, for each parameter, there is the name of the parameter followed by a colon (this is
only present for type descriptors ‘R’ and ‘F’ which represent Pascal function or procedure
parameters), type information for the parameter, a comma, 0 if passed by reference or 1 if
passed by value, and a semicolon. The type definition ends with a semicolon.

For example, this variable definition:

int (*g_pf)();

generates the following code:

.stabs "g_pf:G24=*25=f1",32,0,0,0

.common _g_pf,4,"bss"

The variable defines a new type, 24, which is a pointer to another new type, 25, which
is a function returning int.

Chapter 6: Representation of #define and #undef 33

6 Representation of #define and #undef

This section describes the stabs support for macro define and undefine information, supp-
orted on some systems. (e.g., with -g3 -gstabs when using GCC).

A #define macro-name macro-body is represented with an N_MAC_DEFINE stab with a
string field of macro-name macro-body.

An #undef macro-name is represented with an N_MAC_UNDEF stabs with a string field of
simply macro-name.

For both N_MAC_DEFINE and N_MAC_UNDEF, the desc field is the line number within the
file where the corresponding #define or #undef occurred.

For example, the following C code:

#define NONE 42

#define TWO(a, b) (a + (a) + 2 * b)

#define ONE(c) (c + 19)

main(int argc, char *argv[])

{

func(NONE, TWO(10, 11));

func(NONE, ONE(23));

#undef ONE

#define ONE(c) (c + 23)

func(NONE, ONE(-23));

return (0);

}

int global;

func(int arg1, int arg2)

{

global = arg1 + arg2;

}

produces the following stabs (as well as many others):

.stabs "NONE 42",54,0,1,0

.stabs "TWO(a,b) (a + (a) + 2 * b)",54,0,2,0

.stabs "ONE(c) (c + 19)",54,0,3,0

.stabs "ONE",58,0,10,0

.stabs "ONE(c) (c + 23)",54,0,11,0

NOTE: In the above example, 54 is N_MAC_DEFINE and 58 is N_MAC_UNDEF.

Chapter 7: Symbol Information in Symbol Tables 35

7 Symbol Information in Symbol Tables

This chapter describes the format of symbol table entries and how stab assembler directives
map to them. It also describes the transformations that the assembler and linker make on
data from stabs.

7.1 Symbol Table Format

Each time the assembler encounters a stab directive, it puts each field of the stab into a
corresponding field in a symbol table entry of its output file. If the stab contains a string
field, the symbol table entry for that stab points to a string table entry containing the string
data from the stab. Assembler labels become relocatable addresses. Symbol table entries
in a.out have the format:

struct internal_nlist {

unsigned long n_strx; /* index into string table of name */

unsigned char n_type; /* type of symbol */

unsigned char n_other; /* misc info (usually empty) */

unsigned short n_desc; /* description field */

bfd_vma n_value; /* value of symbol */

};

If the stab has a string, the n_strx field holds the offset in bytes of the string within the
string table. The string is terminated by a NUL character. If the stab lacks a string (for
example, it was produced by a .stabn or .stabd directive), the n_strx field is zero.

Symbol table entries with n_type field values greater than 0x1f originated as stabs
generated by the compiler (with one random exception). The other entries were placed in
the symbol table of the executable by the assembler or the linker.

7.2 Transformations on Symbol Tables

The linker concatenates object files and does fixups of externally defined symbols.

You can see the transformations made on stab data by the assembler and linker by
examining the symbol table after each pass of the build. To do this, use ‘nm -ap’, which
dumps the symbol table, including debugging information, unsorted. For stab entries the
columns are: value, other, desc, type, string. For assembler and linker symbols, the columns
are: value, type, string.

The low 5 bits of the stab type tell the linker how to relocate the value of the stab. Thus
for stab types like N_RSYM and N_LSYM, where the value is an offset or a register number,
the low 5 bits are N_ABS, which tells the linker not to relocate the value.

Where the value of a stab contains an assembly language label, it is transformed by each
build step. The assembler turns it into a relocatable address and the linker turns it into an
absolute address.

7.2.1 Transformations on Static Variables

This source line defines a static variable at file scope:

static int s_g_repeat

The following stab describes the symbol:

36 STABS

.stabs "s_g_repeat:S1",38,0,0,_s_g_repeat

The assembler transforms the stab into this symbol table entry in the .o file. The location
is expressed as a data segment offset.

00000084 - 00 0000 STSYM s_g_repeat:S1

In the symbol table entry from the executable, the linker has made the relocatable address
absolute.

0000e00c - 00 0000 STSYM s_g_repeat:S1

7.2.2 Transformations on Global Variables

Stabs for global variables do not contain location information. In this case, the debugger
finds location information in the assembler or linker symbol table entry describing the
variable. The source line:

char g_foo = ’c’;

generates the stab:

.stabs "g_foo:G2",32,0,0,0

The variable is represented by two symbol table entries in the object file (see below).
The first one originated as a stab. The second one is an external symbol. The upper case
‘D’ signifies that the n_type field of the symbol table contains 7, N_DATA with local linkage.
The stab’s value is zero since the value is not used for N_GSYM stabs. The value of the linker
symbol is the relocatable address corresponding to the variable.

00000000 - 00 0000 GSYM g_foo:G2

00000080 D _g_foo

These entries as transformed by the linker. The linker symbol table entry now holds an
absolute address:

00000000 - 00 0000 GSYM g_foo:G2

...

0000e008 D _g_foo

7.2.3 Transformations of Stabs in separate sections

For object file formats using stabs in separate sections (see 〈undefined〉 [Stab Sections],
page 〈undefined〉), use objdump --stabs instead of nm to show the stabs in an object or
executable file. objdump is a GNU utility; Sun does not provide any equivalent.

The following example is for a stab whose value is an address is relative to the compilation
unit (see 〈undefined〉 [ELF Linker Relocation], page 〈undefined〉). For example, if the source
line

static int ld = 5;

appears within a function, then the assembly language output from the compiler contains:

.Ddata.data:

...

.stabs "ld:V(0,3)",0x26,0,4,.L18-Ddata.data # 0x26 is N STSYM
...

.L18:

.align 4

Chapter 7: Symbol Information in Symbol Tables 37

.word 0x5

Because the value is formed by subtracting one symbol from another, the value is absol-
ute, not relocatable, and so the object file contains

Symnum n_type n_othr n_desc n_value n_strx String

31 STSYM 0 4 00000004 680 ld:V(0,3)

without any relocations, and the executable file also contains

Symnum n_type n_othr n_desc n_value n_strx String

31 STSYM 0 4 00000004 680 ld:V(0,3)

Chapter 8: GNU C++ Stabs 39

8 GNU C++ Stabs

8.1 C++ Class Names

In C++, a class name which is declared with class, struct, or union, is not only a tag,
as in C, but also a type name. Thus there should be stabs with both ‘t’ and ‘T’ symbol
descriptors (see 〈undefined〉 [Typedefs], page 〈undefined〉).

To save space, there is a special abbreviation for this case. If the ‘T’ symbol descriptor
is followed by ‘t’, then the stab defines both a type name and a tag.

For example, the C++ code

struct foo {int x;};

can be represented as either

.stabs "foo:T19=s4x:1,0,32;;",128,0,0,0 # 128 is N LSYM

.stabs "foo:t19",128,0,0,0

or

.stabs "foo:Tt19=s4x:1,0,32;;",128,0,0,0

8.2 Defining a Symbol Within Another Type

In C++, a symbol (such as a type name) can be defined within another type.

In stabs, this is sometimes represented by making the name of a symbol which contains
‘::’. Such a pair of colons does not end the name of the symbol, the way a single colon
would (see 〈undefined〉 [String Field], page 〈undefined〉). I’m not sure how consistently used
or well thought out this mechanism is. So that a pair of colons in this position always has
this meaning, ‘:’ cannot be used as a symbol descriptor.

For example, if the string for a stab is ‘foo::bar::baz:t5=*6’, then foo::bar::baz is
the name of the symbol, ‘t’ is the symbol descriptor, and ‘5=*6’ is the type information.

8.3 Basic Types For C++

<< the examples that follow are based on a01.C >>

C++ adds two more builtin types to the set defined for C. These are the unknown type
and the vtable record type. The unknown type, type 16, is defined in terms of itself like
the void type.

The vtable record type, type 17, is defined as a structure type and then as a structure
tag. The structure has four fields: delta, index, pfn, and delta2. pfn is the function pointer.

<< In boilerplate $vtbl ptr type, what are the fields delta, index, and delta2 used for?
>>

This basic type is present in all C++ programs even if there are no virtual methods
defined.

.stabs "struct name:sym desc(type)type def(17)=type desc(struct)struct bytes(8)
elem name(delta):type ref(short int),bit offset(0),field bits(16);
elem name(index):type ref(short int),bit offset(16),field bits(16);
elem name(pfn):type def(18)=type desc(ptr to)type ref(void),

40 STABS

bit offset(32),field bits(32);
elem name(delta2):type def(short int);bit offset(32),field bits(16);;"
N LSYM, NIL, NIL

.stabs "$vtbl_ptr_type:t17=s8

delta:6,0,16;index:6,16,16;pfn:18=*15,32,32;delta2:6,32,16;;"

,128,0,0,0

.stabs "name:sym dec(struct tag)type ref($vtbl ptr type)",N LSYM,NIL,NIL,NIL

.stabs "$vtbl_ptr_type:T17",128,0,0,0

8.4 Simple Class Definition

The stabs describing C++ language features are an extension of the stabs describing C.
Stabs representing C++ class types elaborate extensively on the stab format used to describe
structure types in C. Stabs representing class type variables look just like stabs representing
C language variables.

Consider the following very simple class definition.

class baseA {

public:

int Adat;

int Ameth(int in, char other);

};

The class baseA is represented by two stabs. The first stab describes the class as a
structure type. The second stab describes a structure tag of the class type. Both stabs
are of stab type N_LSYM. Since the stab is not located between an N_FUN and an N_LBRAC

stab this indicates that the class is defined at file scope. If it were, then the N_LSYM would
signify a local variable.

A stab describing a C++ class type is similar in format to a stab describing a C struct,
with each class member shown as a field in the structure. The part of the struct format
describing fields is expanded to include extra information relevant to C++ class members. In
addition, if the class has multiple base classes or virtual functions the struct format outside
of the field parts is also augmented.

In this simple example the field part of the C++ class stab representing member data
looks just like the field part of a C struct stab. The section on protections describes how
its format is sometimes extended for member data.

The field part of a C++ class stab representing a member function differs substantially
from the field part of a C struct stab. It still begins with ‘name:’ but then goes on to
define a new type number for the member function, describe its return type, its argument
types, its protection level, any qualifiers applied to the method definition, and whether the
method is virtual or not. If the method is virtual then the method description goes on to
give the vtable index of the method, and the type number of the first base class defining
the method.

When the field name is a method name it is followed by two colons rather than one.
This is followed by a new type definition for the method. This is a number followed by an
equal sign and the type of the method. Normally this will be a type declared using the ‘#’

Chapter 8: GNU C++ Stabs 41

type descriptor; see 〈undefined〉 [Method Type Descriptor], page 〈undefined〉; static mem-
ber functions are declared using the ‘f’ type descriptor instead; see 〈undefined〉 [Function
Types], page 〈undefined〉.

The format of an overloaded operator method name differs from that of other methods.
It is ‘op$::operator-name.’ where operator-name is the operator name such as ‘+’ or
‘+=’. The name ends with a period, and any characters except the period can occur in the
operator-name string.

The next part of the method description represents the arguments to the method, prec-
eded by a colon and ending with a semi-colon. The types of the arguments are expressed
in the same way argument types are expressed in C++ name mangling. In this example an
int and a char map to ‘ic’.

This is followed by a number, a letter, and an asterisk or period, followed by another
semicolon. The number indicates the protections that apply to the member function. Here
the 2 means public. The letter encodes any qualifier applied to the method definition. In
this case, ‘A’ means that it is a normal function definition. The dot shows that the method
is not virtual. The sections that follow elaborate further on these fields and describe the
additional information present for virtual methods.

.stabs "class name:sym desc(type)type def(20)=type desc(struct)struct bytes(4)
field name(Adat):type(int),bit offset(0),field bits(32);

method name(Ameth)::type def(21)=type desc(method)return type(int);
:arg types(int char);
protection(public)qualifier(normal)virtual(no);;"
N LSYM,NIL,NIL,NIL

.stabs "baseA:t20=s4Adat:1,0,32;Ameth::21=##1;:ic;2A.;;",128,0,0,0

.stabs "class_name:sym_desc(struct tag)",N_LSYM,NIL,NIL,NIL

.stabs "baseA:T20",128,0,0,0

8.5 Class Instance

As shown above, describing even a simple C++ class definition is accomplished by massively
extending the stab format used in C to describe structure types. However, once the class is
defined, C stabs with no modifications can be used to describe class instances. The following
source:

main () {

baseA AbaseA;

}

yields the following stab describing the class instance. It looks no different from a standard
C stab describing a local variable.

.stabs "name:type ref(baseA)", N LSYM, NIL, NIL, frame ptr offset

.stabs "AbaseA:20",128,0,0,-20

8.6 Method Definition

The class definition shown above declares Ameth. The C++ source below defines Ameth:

42 STABS

int

baseA::Ameth(int in, char other)

{

return in;

};

This method definition yields three stabs following the code of the method. One stab
describes the method itself and following two describe its parameters. Although there
is only one formal argument all methods have an implicit argument which is the this

pointer. The this pointer is a pointer to the object on which the method was called. Note
that the method name is mangled to encode the class name and argument types. Name
mangling is described in the arm (The Annotated C++ Reference Manual, by Ellis and
Stroustrup, isbn 0-201-51459-1); gpcompare.texi in Cygnus GCC distributions describes
the differences between GNU mangling and arm mangling.

.stabs "name:symbol_descriptor(global function)return_type(int)",

N_FUN, NIL, NIL, code_addr_of_method_start

.stabs "Ameth__5baseAic:F1",36,0,0,_Ameth__5baseAic

Here is the stab for the this pointer implicit argument. The name of the this pointer
is always this. Type 19, the this pointer is defined as a pointer to type 20, baseA, but a
stab defining baseA has not yet been emitted. Since the compiler knows it will be emitted
shortly, here it just outputs a cross reference to the undefined symbol, by prefixing the
symbol name with ‘xs’.

.stabs "name:sym_desc(register param)type_def(19)=

type_desc(ptr to)type_ref(baseA)=

type_desc(cross-reference to)baseA:",N_RSYM,NIL,NIL,register_number

.stabs "this:P19=*20=xsbaseA:",64,0,0,8

The stab for the explicit integer argument looks just like a parameter to a C function.
The last field of the stab is the offset from the argument pointer, which in most systems is
the same as the frame pointer.

.stabs "name:sym_desc(value parameter)type_ref(int)",

N_PSYM,NIL,NIL,offset_from_arg_ptr

.stabs "in:p1",160,0,0,72

<< The examples that follow are based on A1.C >>

8.7 The ‘#’ Type Descriptor

This is used to describe a class method. This is a function which takes an extra argument
as its first argument, for the this pointer.

If the ‘#’ is immediately followed by another ‘#’, the second one will be followed by the
return type and a semicolon. The class and argument types are not specified, and must be
determined by demangling the name of the method if it is available.

Otherwise, the single ‘#’ is followed by the class type, a comma, the return type, a
comma, and zero or more parameter types separated by commas. The list of arguments is

Chapter 8: GNU C++ Stabs 43

terminated by a semicolon. In the debugging output generated by gcc, a final argument
type of void indicates a method which does not take a variable number of arguments. If
the final argument type of void does not appear, the method was declared with an ellipsis.

Note that although such a type will normally be used to describe fields in structures,
unions, or classes, for at least some versions of the compiler it can also be used in other
contexts.

8.8 The ‘@’ Type Descriptor

The ‘@’ type descriptor is used for a pointer-to-non-static-member-data type. It is followed
by type information for the class (or union), a comma, and type information for the member
data.

The following C++ source:
typedef int A::*int_in_a;

generates the following stab:
.stabs "int_in_a:t20=21=@19,1",128,0,0,0

Note that there is a conflict between this and type attributes (see 〈undefined〉 [String
Field], page 〈undefined〉); both use type descriptor ‘@’. Fortunately, the ‘@’ type descriptor
used in this C++ sense always will be followed by a digit, ‘(’, or ‘-’, and type attributes
never start with those things.

8.9 Protections

In the simple class definition shown above all member data and functions were publicly
accessible. The example that follows contrasts public, protected and privately accessible
fields and shows how these protections are encoded in C++ stabs.

If the character following the ‘field-name:’ part of the string is ‘/’, then the next
character is the visibility. ‘0’ means private, ‘1’ means protected, and ‘2’ means public.
Debuggers should ignore visibility characters they do not recognize, and assume a reasonable
default (such as public) (GDB 4.11 does not, but this should be fixed in the next GDB
release). If no visibility is specified the field is public. The visibility ‘9’ means that the field
has been optimized out and is public (there is no way to specify an optimized out field with
a private or protected visibility). Visibility ‘9’ is not supported by GDB 4.11; this should
be fixed in the next GDB release.

The following C++ source:

class vis {

private:

int priv;

protected:

char prot;

public:

float pub;

};

generates the following stab:

128 is N LSYM
.stabs "vis:T19=s12priv:/01,0,32;prot:/12,32,8;pub:12,64,32;;",128,0,0,0

44 STABS

‘vis:T19=s12’ indicates that type number 19 is a 12 byte structure named vis The priv
field has public visibility (‘/0’), type int (‘1’), and offset and size ‘,0,32;’. The prot field
has protected visibility (‘/1’), type char (‘2’) and offset and size ‘,32,8;’. The pub field
has type float (‘12’), and offset and size ‘,64,32;’.

Protections for member functions are signified by one digit embedded in the field part
of the stab describing the method. The digit is 0 if private, 1 if protected and 2 if public.
Consider the C++ class definition below:

class all_methods {

private:

int priv_meth(int in){return in;};

protected:

char protMeth(char in){return in;};

public:

float pubMeth(float in){return in;};

};

It generates the following stab. The digit in question is to the left of an ‘A’ in each case.
Notice also that in this case two symbol descriptors apply to the class name struct tag and
struct type.

.stabs "class name:sym desc(struct tag&type)type def(21)=
sym desc(struct)struct bytes(1)
meth name::type def(22)=sym desc(method)returning(int);
:args(int);protection(private)modifier(normal)virtual(no);
meth name::type def(23)=sym desc(method)returning(char);
:args(char);protection(protected)modifier(normal)virtual(no);
meth name::type def(24)=sym desc(method)returning(float);
:args(float);protection(public)modifier(normal)virtual(no);;",
N LSYM,NIL,NIL,NIL

.stabs "all_methods:Tt21=s1priv_meth::22=##1;:i;0A.;protMeth::23=##2;:c;1A.;

pubMeth::24=##12;:f;2A.;;",128,0,0,0

8.10 Method Modifiers (const, volatile, const volatile)

<< based on a6.C >>

In the class example described above all the methods have the normal modifier. This
method modifier information is located just after the protection information for the method.
This field has four possible character values. Normal methods use ‘A’, const methods use ‘B’,
volatile methods use ‘C’, and const volatile methods use ‘D’. Consider the class definition
below:

class A {

public:

int ConstMeth (int arg) const { return arg; };

char VolatileMeth (char arg) volatile { return arg; };

float ConstVolMeth (float arg) const volatile {return arg; };

};

This class is described by the following stab:

Chapter 8: GNU C++ Stabs 45

.stabs "class(A):sym desc(struct)type def(20)=type desc(struct)struct bytes(1)
meth name(ConstMeth)::type def(21)sym desc(method)
returning(int);:arg(int);protection(public)modifier(const)virtual(no);
meth name(VolatileMeth)::type def(22)=sym desc(method)
returning(char);:arg(char);protection(public)modifier(volatile)virt(no)
meth name(ConstVolMeth)::type def(23)=sym desc(method)
returning(float);:arg(float);protection(public)modifier(const volatile)
virtual(no);;", . . .

.stabs "A:T20=s1ConstMeth::21=##1;:i;2B.;VolatileMeth::22=##2;:c;2C.;

ConstVolMeth::23=##12;:f;2D.;;",128,0,0,0

8.11 Virtual Methods

<< The following examples are based on a4.C >>

The presence of virtual methods in a class definition adds additional data to the class
description. The extra data is appended to the description of the virtual method and to
the end of the class description. Consider the class definition below:

class A {

public:

int Adat;

virtual int A_virt (int arg) { return arg; };

};

This results in the stab below describing class A. It defines a new type (20) which is an
8 byte structure. The first field of the class struct is ‘Adat’, an integer, starting at structure
offset 0 and occupying 32 bits.

The second field in the class struct is not explicitly defined by the C++ class definition
but is implied by the fact that the class contains a virtual method. This field is the vtable
pointer. The name of the vtable pointer field starts with ‘$vf’ and continues with a type
reference to the class it is part of. In this example the type reference for class A is 20 so
the name of its vtable pointer field is ‘$vf20’, followed by the usual colon.

Next there is a type definition for the vtable pointer type (21). This is in turn defined
as a pointer to another new type (22).

Type 22 is the vtable itself, which is defined as an array, indexed by a range of integers
between 0 and 1, and whose elements are of type 17. Type 17 was the vtable record type
defined by the boilerplate C++ type definitions, as shown earlier.

The bit offset of the vtable pointer field is 32. The number of bits in the field are not
specified when the field is a vtable pointer.

Next is the method definition for the virtual member function A_virt. Its description
starts out using the same format as the non-virtual member functions described above,
except instead of a dot after the ‘A’ there is an asterisk, indicating that the function is
virtual. Since is is virtual some addition information is appended to the end of the method
description.

The first number represents the vtable index of the method. This is a 32 bit unsigned
number with the high bit set, followed by a semi-colon.

46 STABS

The second number is a type reference to the first base class in the inheritance hierarchy
defining the virtual member function. In this case the class stab describes a base class so
the virtual function is not overriding any other definition of the method. Therefore the
reference is to the type number of the class that the stab is describing (20).

This is followed by three semi-colons. One marks the end of the current sub-section, one
marks the end of the method field, and the third marks the end of the struct definition.

For classes containing virtual functions the very last section of the string part of the
stab holds a type reference to the first base class. This is preceded by ‘~%’ and followed by
a final semi-colon.

.stabs "class name(A):type def(20)=sym desc(struct)struct bytes(8)
field name(Adat):type ref(int),bit offset(0),field bits(32);
field name(A virt func ptr):type def(21)=type desc(ptr to)type def(22)=
sym desc(array)index type ref(range of int from 0 to 1);
elem type ref(vtbl elem type),
bit offset(32);
meth name(A virt)::typedef(23)=sym desc(method)returning(int);
:arg type(int),protection(public)normal(yes)virtual(yes)
vtable index(1);class first defining(A);;;~%first base(A);",
N LSYM,NIL,NIL,NIL

.stabs "A:t20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;

A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0

8.12 Inheritance

Stabs describing C++ derived classes include additional sections that describe the inheritance
hierarchy of the class. A derived class stab also encodes the number of base classes. For
each base class it tells if the base class is virtual or not, and if the inheritance is private or
public. It also gives the offset into the object of the portion of the object corresponding to
each base class.

This additional information is embedded in the class stab following the number of bytes
in the struct. First the number of base classes appears bracketed by an exclamation point
and a comma.

Then for each base type there repeats a series: a virtual character, a visibility character,
a number, a comma, another number, and a semi-colon.

The virtual character is ‘1’ if the base class is virtual and ‘0’ if not. The visibility
character is ‘2’ if the derivation is public, ‘1’ if it is protected, and ‘0’ if it is private.
Debuggers should ignore virtual or visibility characters they do not recognize, and assume
a reasonable default (such as public and non-virtual) (GDB 4.11 does not, but this should
be fixed in the next GDB release).

The number following the virtual and visibility characters is the offset from the start of
the object to the part of the object pertaining to the base class.

After the comma, the second number is a type descriptor for the base type. Finally a
semi-colon ends the series, which repeats for each base class.

The source below defines three base classes A, B, and C and the derived class D.

Chapter 8: GNU C++ Stabs 47

class A {

public:

int Adat;

virtual int A_virt (int arg) { return arg; };

};

class B {

public:

int B_dat;

virtual int B_virt (int arg) {return arg; };

};

class C {

public:

int Cdat;

virtual int C_virt (int arg) {return arg; };

};

class D : A, virtual B, public C {

public:

int Ddat;

virtual int A_virt (int arg) { return arg+1; };

virtual int B_virt (int arg) { return arg+2; };

virtual int C_virt (int arg) { return arg+3; };

virtual int D_virt (int arg) { return arg; };

};

Class stabs similar to the ones described earlier are generated for each base class.

.stabs "A:T20=s8Adat:1,0,32;$vf20:21=*22=ar1;0;1;17,32;

A_virt::23=##1;:i;2A*-2147483647;20;;;~%20;",128,0,0,0

.stabs "B:Tt25=s8Bdat:1,0,32;$vf25:21,32;B_virt::26=##1;

:i;2A*-2147483647;25;;;~%25;",128,0,0,0

.stabs "C:Tt28=s8Cdat:1,0,32;$vf28:21,32;C_virt::29=##1;

:i;2A*-2147483647;28;;;~%28;",128,0,0,0

In the stab describing derived class D below, the information about the derivation of this
class is encoded as follows.

.stabs "derived class name:symbol descriptors(struct tag&type)=
type descriptor(struct)struct bytes(32)!num bases(3),
base virtual(no)inheritance public(no)base offset(0),
base class type ref(A);
base virtual(yes)inheritance public(no)base offset(NIL),
base class type ref(B);
base virtual(no)inheritance public(yes)base offset(64),
base class type ref(C); . . .

.stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:

1,160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt:

:32:i;2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;

48 STABS

28;;D_virt::32:i;2A*-2147483646;31;;;~%20;",128,0,0,0

8.13 Virtual Base Classes

A derived class object consists of a concatenation in memory of the data areas defined by
each base class, starting with the leftmost and ending with the rightmost in the list of base
classes. The exception to this rule is for virtual inheritance. In the example above, class
D inherits virtually from base class B. This means that an instance of a D object will not
contain its own B part but merely a pointer to a B part, known as a virtual base pointer.

In a derived class stab, the base offset part of the derivation information, described
above, shows how the base class parts are ordered. The base offset for a virtual base class
is always given as 0. Notice that the base offset for B is given as 0 even though B is not the
first base class. The first base class A starts at offset 0.

The field information part of the stab for class D describes the field which is the pointer
to the virtual base class B. The vbase pointer name is ‘$vb’ followed by a type reference to
the virtual base class. Since the type id for B in this example is 25, the vbase pointer name
is ‘$vb25’.

.stabs "D:Tt31=s32!3,000,20;100,25;0264,28;$vb25:24,128;Ddat:1,

160,32;A_virt::32=##1;:i;2A*-2147483647;20;;B_virt::32:i;

2A*-2147483647;25;;C_virt::32:i;2A*-2147483647;28;;D_virt:

:32:i;2A*-2147483646;31;;;~%20;",128,0,0,0

Following the name and a semicolon is a type reference describing the type of the virtual
base class pointer, in this case 24. Type 24 was defined earlier as the type of the B class
this pointer. The this pointer for a class is a pointer to the class type.

.stabs "this:P24=*25=xsB:",64,0,0,8

Finally the field offset part of the vbase pointer field description shows that the vbase
pointer is the first field in the D object, before any data fields defined by the class. The
layout of a D class object is a follows, Adat at 0, the vtable pointer for A at 32, Cdat at 64,
the vtable pointer for C at 96, the virtual base pointer for B at 128, and Ddat at 160.

8.14 Static Members

The data area for a class is a concatenation of the space used by the data members of the
class. If the class has virtual methods, a vtable pointer follows the class data. The field
offset part of each field description in the class stab shows this ordering.

<< How is this reflected in stabs? See Cygnus bug #677 for some info. >>

Appendix A: Table of Stab Types 49

Appendix A Table of Stab Types

The following are all the possible values for the stab type field, for a.out files, in numeric
order. This does not apply to XCOFF, but it does apply to stabs in sections (see 〈unde-
fined〉 [Stab Sections], page 〈undefined〉). Stabs in ECOFF use these values but add 0x8f300
to distinguish them from non-stab symbols.

The symbolic names are defined in the file include/aout/stabs.def.

A.1 Non-Stab Symbol Types

The following types are used by the linker and assembler, not by stab directives. Since
this document does not attempt to describe aspects of object file format other than the
debugging format, no details are given.

0x0 N_UNDF Undefined symbol

0x2 N_ABS File scope absolute symbol

0x3 N_ABS | N_EXT External absolute symbol

0x4 N_TEXT File scope text symbol

0x5 N_TEXT | N_EXT External text symbol

0x6 N_DATA File scope data symbol

0x7 N_DATA | N_EXT External data symbol

0x8 N_BSS File scope BSS symbol

0x9 N_BSS | N_EXT External BSS symbol

0x0c N_FN_SEQ Same as N_FN, for Sequent compilers

0x0a N_INDR Symbol is indirected to another symbol

0x12 N_COMM Common—visible after shared library dynamic link

0x14 N_SETA

0x15 N_SETA | N_EXT

Absolute set element

0x16 N_SETT

0x17 N_SETT | N_EXT

Text segment set element

0x18 N_SETD

0x19 N_SETD | N_EXT

Data segment set element

0x1a N_SETB

0x1b N_SETB | N_EXT

BSS segment set element

0x1c N_SETV

0x1d N_SETV | N_EXT

Pointer to set vector

50 STABS

0x1e N_WARNING Print a warning message during linking

0x1f N_FN File name of a .o file

A.2 Stab Symbol Types

The following symbol types indicate that this is a stab. This is the full list of stab numbers,
including stab types that are used in languages other than C.

0x20 N_GSYM Global symbol; see 〈undefined〉 [Global Variables], page 〈undefined〉.

0x22 N_FNAME Function name (for BSD Fortran); see 〈undefined〉 [Procedures],
page 〈undefined〉.

0x24 N_FUN Function name (see 〈undefined〉 [Procedures], page 〈undefined〉) or
text segment variable (see 〈undefined〉 [Statics], page 〈undefined〉).

0x26 N_STSYM Data segment file-scope variable; see 〈undefined〉 [Statics], page 〈un-
defined〉.

0x28 N_LCSYM BSS segment file-scope variable; see 〈undefined〉 [Statics], page 〈un-
defined〉.

0x2a N_MAIN Name of main routine; see 〈undefined〉 [Main Program], page 〈unde-
fined〉.

0x2c N_ROSYM Variable in .rodata section; see 〈undefined〉 [Statics], page 〈unde-
fined〉.

0x30 N_PC Global symbol (for Pascal); see 〈undefined〉 [N PC], page 〈unde-
fined〉.

0x32 N_NSYMS Number of symbols (according to Ultrix V4.0); see 〈undefined〉
[N NSYMS], page 〈undefined〉.

0x34 N_NOMAP No DST map; see 〈undefined〉 [N NOMAP], page 〈undefined〉.

0x36 N_MAC_DEFINE Name and body of a #defined macro; see 〈undefined〉 [Macro define
and undefine], page 〈undefined〉.

0x38 N_OBJ Object file (Solaris2).

0x3a N_MAC_UNDEF Name of an #undefed macro; see 〈undefined〉 [Macro define and un-
define], page 〈undefined〉.

0x3c N_OPT Debugger options (Solaris2).

0x40 N_RSYM Register variable; see 〈undefined〉 [Register Variables], page 〈unde-
fined〉.

0x42 N_M2C Modula-2 compilation unit; see 〈undefined〉 [N M2C], page 〈unde-
fined〉.

0x44 N_SLINE Line number in text segment; see 〈undefined〉 [Line Numbers],
page 〈undefined〉.

0x46 N_DSLINE Line number in data segment; see 〈undefined〉 [Line Numbers],
page 〈undefined〉.

Appendix A: Table of Stab Types 51

0x48 N_BSLINE Line number in bss segment; see 〈undefined〉 [Line Numbers],
page 〈undefined〉.

0x48 N_BROWS Sun source code browser, path to .cb file; see 〈undefined〉
[N BROWS], page 〈undefined〉.

0x4a N_DEFD GNU Modula2 definition module dependency; see 〈undefined〉
[N DEFD], page 〈undefined〉.

0x4c N_FLINE Function start/body/end line numbers (Solaris2).

0x50 N_EHDECL GNU C++ exception variable; see 〈undefined〉 [N EHDECL],
page 〈undefined〉.

0x50 N_MOD2 Modula2 info "for imc" (according to Ultrix V4.0); see 〈undefined〉
[N MOD2], page 〈undefined〉.

0x54 N_CATCH GNU C++ catch clause; see 〈undefined〉 [N CATCH], page 〈unde-
fined〉.

0x60 N_SSYM Structure of union element; see 〈undefined〉 [N SSYM], page 〈unde-
fined〉.

0x62 N_ENDM Last stab for module (Solaris2).

0x64 N_SO Path and name of source file; see 〈undefined〉 [Source Files], page 〈un-
defined〉.

0x80 N_LSYM Stack variable (see 〈undefined〉 [Stack Variables], page 〈undefined〉)
or type (see 〈undefined〉 [Typedefs], page 〈undefined〉).

0x82 N_BINCL Beginning of an include file (Sun only); see 〈undefined〉 [Include
Files], page 〈undefined〉.

0x84 N_SOL Name of include file; see 〈undefined〉 [Include Files], page 〈undefined〉.

0xa0 N_PSYM Parameter variable; see 〈undefined〉 [Parameters], page 〈undefined〉.

0xa2 N_EINCL End of an include file; see 〈undefined〉 [Include Files], page 〈unde-
fined〉.

0xa4 N_ENTRY Alternate entry point; see 〈undefined〉 [Alternate Entry Points],
page 〈undefined〉.

0xc0 N_LBRAC Beginning of a lexical block; see 〈undefined〉 [Block Structure],
page 〈undefined〉.

0xc2 N_EXCL Place holder for a deleted include file; see 〈undefined〉 [Include Files],
page 〈undefined〉.

0xc4 N_SCOPE Modula2 scope information (Sun linker); see 〈undefined〉
[N SCOPE], page 〈undefined〉.

0xe0 N_RBRAC End of a lexical block; see 〈undefined〉 [Block Structure], page 〈un-
defined〉.

0xe2 N_BCOMM Begin named common block; see 〈undefined〉 [Common Blocks],
page 〈undefined〉.

52 STABS

0xe4 N_ECOMM End named common block; see 〈undefined〉 [Common Blocks],
page 〈undefined〉.

0xe8 N_ECOML Member of a common block; see 〈undefined〉 [Common Blocks],
page 〈undefined〉.

0xea N_WITH Pascal with statement: type,,0,0,offset (Solaris2).

0xf0 N_NBTEXT Gould non-base registers; see 〈undefined〉 [Gould], page 〈undefined〉.

0xf2 N_NBDATA Gould non-base registers; see 〈undefined〉 [Gould], page 〈undefined〉.

0xf4 N_NBBSS Gould non-base registers; see 〈undefined〉 [Gould], page 〈undefined〉.

0xf6 N_NBSTS Gould non-base registers; see 〈undefined〉 [Gould], page 〈undefined〉.

0xf8 N_NBLCS Gould non-base registers; see 〈undefined〉 [Gould], page 〈undefined〉.

Appendix B: Table of Symbol Descriptors 53

Appendix B Table of Symbol Descriptors

The symbol descriptor is the character which follows the colon in many stabs, and which
tells what kind of stab it is. See 〈undefined〉 [String Field], page 〈undefined〉, for more
information about their use.

digit

(

- Variable on the stack; see 〈undefined〉 [Stack Variables], page 〈undefined〉.
: C++ nested symbol; see See 〈undefined〉 [Nested Symbols], page 〈undefined〉.
a Parameter passed by reference in register; see 〈undefined〉 [Reference Param-

eters], page 〈undefined〉.
b Based variable; see 〈undefined〉 [Based Variables], page 〈undefined〉.
c Constant; see 〈undefined〉 [Constants], page 〈undefined〉.
C Conformant array bound (Pascal, maybe other languages); 〈undefined〉 [Con-

formant Arrays], page 〈undefined〉. Name of a caught exception (GNU C++).
These can be distinguished because the latter uses N_CATCH and the former uses
another symbol type.

d Floating point register variable; see 〈undefined〉 [Register Variables], page 〈un-
defined〉.

D Parameter in floating point register; see 〈undefined〉 [Register Parameters],
page 〈undefined〉.

f File scope function; see 〈undefined〉 [Procedures], page 〈undefined〉.
F Global function; see 〈undefined〉 [Procedures], page 〈undefined〉.
G Global variable; see 〈undefined〉 [Global Variables], page 〈undefined〉.
i See 〈undefined〉 [Register Parameters], page 〈undefined〉.
I Internal (nested) procedure; see 〈undefined〉 [Nested Procedures], page 〈unde-

fined〉.
J Internal (nested) function; see 〈undefined〉 [Nested Procedures], page 〈unde-

fined〉.
L Label name (documented by AIX, no further information known).

m Module; see 〈undefined〉 [Procedures], page 〈undefined〉.
p Argument list parameter; see 〈undefined〉 [Parameters], page 〈undefined〉.
pP See 〈undefined〉 [Parameters], page 〈undefined〉.
pF Fortran Function parameter; see 〈undefined〉 [Parameters], page 〈undefined〉.
P Unfortunately, three separate meanings have been independently invented for

this symbol descriptor. At least the GNU and Sun uses can be distinguished
by the symbol type. Global Procedure (AIX) (symbol type used unknown); see
〈undefined〉 [Procedures], page 〈undefined〉. Register parameter (GNU) (symbol
type N_PSYM); see 〈undefined〉 [Parameters], page 〈undefined〉. Prototype of
function referenced by this file (Sun acc) (symbol type N_FUN).

54 STABS

Q Static Procedure; see 〈undefined〉 [Procedures], page 〈undefined〉.

R Register parameter; see 〈undefined〉 [Register Parameters], page 〈undefined〉.

r Register variable; see 〈undefined〉 [Register Variables], page 〈undefined〉.

S File scope variable; see 〈undefined〉 [Statics], page 〈undefined〉.

s Local variable (OS9000).

t Type name; see 〈undefined〉 [Typedefs], page 〈undefined〉.

T Enumeration, structure, or union tag; see 〈undefined〉 [Typedefs], page 〈unde-
fined〉.

v Parameter passed by reference; see 〈undefined〉 [Reference Parameters],
page 〈undefined〉.

V Procedure scope static variable; see 〈undefined〉 [Statics], page 〈undefined〉.

x Conformant array; see 〈undefined〉 [Conformant Arrays], page 〈undefined〉.

X Function return variable; see 〈undefined〉 [Parameters], page 〈undefined〉.

Appendix C: Table of Type Descriptors 55

Appendix C Table of Type Descriptors

The type descriptor is the character which follows the type number and an equals sign. It
specifies what kind of type is being defined. See 〈undefined〉 [String Field], page 〈undefined〉,
for more information about their use.

digit

(Type reference; see 〈undefined〉 [String Field], page 〈undefined〉.

- Reference to builtin type; see 〈undefined〉 [Negative Type Numbers], page 〈un-
defined〉.

Method (C++); see 〈undefined〉 [Method Type Descriptor], page 〈undefined〉.

* Pointer; see 〈undefined〉 [Miscellaneous Types], page 〈undefined〉.

& Reference (C++).

@ Type Attributes (AIX); see 〈undefined〉 [String Field], page 〈undefined〉. Mem-
ber (class and variable) type (GNU C++); see 〈undefined〉 [Member Type Des-
criptor], page 〈undefined〉.

a Array; see 〈undefined〉 [Arrays], page 〈undefined〉.

A Open array; see 〈undefined〉 [Arrays], page 〈undefined〉.

b Pascal space type (AIX); see 〈undefined〉 [Miscellaneous Types], page 〈unde-
fined〉. Builtin integer type (Sun); see 〈undefined〉 [Builtin Type Descriptors],
page 〈undefined〉. Const and volatile qualified type (OS9000).

B Volatile-qualified type; see 〈undefined〉 [Miscellaneous Types], page 〈undefined〉.

c Complex builtin type (AIX); see 〈undefined〉 [Builtin Type Descriptors],
page 〈undefined〉. Const-qualified type (OS9000).

C COBOL Picture type. See AIX documentation for details.

d File type; see 〈undefined〉 [Miscellaneous Types], page 〈undefined〉.

D N-dimensional dynamic array; see 〈undefined〉 [Arrays], page 〈undefined〉.

e Enumeration type; see 〈undefined〉 [Enumerations], page 〈undefined〉.

E N-dimensional subarray; see 〈undefined〉 [Arrays], page 〈undefined〉.

f Function type; see 〈undefined〉 [Function Types], page 〈undefined〉.

F Pascal function parameter; see 〈undefined〉 [Function Types], page 〈undefined〉

g Builtin floating point type; see 〈undefined〉 [Builtin Type Descriptors], page 〈un-
defined〉.

G COBOL Group. See AIX documentation for details.

i Imported type (AIX); see 〈undefined〉 [Cross-References], page 〈undefined〉.
Volatile-qualified type (OS9000).

k Const-qualified type; see 〈undefined〉 [Miscellaneous Types], page 〈undefined〉.

K COBOL File Descriptor. See AIX documentation for details.

56 STABS

M Multiple instance type; see 〈undefined〉 [Miscellaneous Types], page 〈undefined〉.

n String type; see 〈undefined〉 [Strings], page 〈undefined〉.

N Stringptr; see 〈undefined〉 [Strings], page 〈undefined〉.

o Opaque type; see 〈undefined〉 [Typedefs], page 〈undefined〉.

p Procedure; see 〈undefined〉 [Function Types], page 〈undefined〉.

P Packed array; see 〈undefined〉 [Arrays], page 〈undefined〉.

r Range type; see 〈undefined〉 [Subranges], page 〈undefined〉.

R Builtin floating type; see 〈undefined〉 [Builtin Type Descriptors], page 〈unde-
fined〉 (Sun). Pascal subroutine parameter; see 〈undefined〉 [Function Types],
page 〈undefined〉 (AIX). Detecting this conflict is possible with careful parsing
(hint: a Pascal subroutine parameter type will always contain a comma, and a
builtin type descriptor never will).

s Structure type; see 〈undefined〉 [Structures], page 〈undefined〉.

S Set type; see 〈undefined〉 [Miscellaneous Types], page 〈undefined〉.

u Union; see 〈undefined〉 [Unions], page 〈undefined〉.

v Variant record. This is a Pascal and Modula-2 feature which is like a union
within a struct in C. See AIX documentation for details.

w Wide character; see 〈undefined〉 [Builtin Type Descriptors], page 〈undefined〉.

x Cross-reference; see 〈undefined〉 [Cross-References], page 〈undefined〉.

Y Used by IBM’s xlC C++ compiler (for structures, I think).

z gstring; see 〈undefined〉 [Strings], page 〈undefined〉.

Appendix D: Expanded Reference by Stab Type 57

Appendix D Expanded Reference by Stab Type

For a full list of stab types, and cross-references to where they are described, see 〈undefined〉
[Stab Types], page 〈undefined〉. This appendix just covers certain stabs which are not yet
described in the main body of this document; eventually the information will all be in one
place.

Format of an entry:

The first line is the symbol type (see include/aout/stab.def).

The second line describes the language constructs the symbol type represents.

The third line is the stab format with the significant stab fields named and the rest NIL.

Subsequent lines expand upon the meaning and possible values for each significant stab
field.

Finally, any further information.

D.1 N PC

[.stabs]N_PC
Global symbol (for Pascal).

"name" -> "symbol_name" <<?>>

value -> supposedly the line number (stab.def is skeptical)

stabdump.c says:

global pascal symbol: name,,0,subtype,line
<< subtype? >>

D.2 N NSYMS

[.stabn]N_NSYMS
Number of symbols (according to Ultrix V4.0).

0, files,,funcs,lines (stab.def)

D.3 N NOMAP

[.stabs]N_NOMAP
No DST map for symbol (according to Ultrix V4.0). I think this means a variable
has been optimized out.

name, ,0,type,ignored (stab.def)

D.4 N M2C

[.stabs]N_M2C
Modula-2 compilation unit.

58 STABS

"string" -> "unit_name,unit_time_stamp[,code_time_stamp]"

desc -> unit_number

value -> 0 (main unit)

1 (any other unit)

See Dbx and Dbxtool Interfaces, 2nd edition, by Sun, 1988, for more information.

D.5 N BROWS

[.stabs]N_BROWS
Sun source code browser, path to .cb file

<<?>> "path to associated .cb file"

Note: N BROWS has the same value as N BSLINE.

D.6 N DEFD

[.stabn]N_DEFD
GNU Modula2 definition module dependency.

GNU Modula-2 definition module dependency. The value is the modification time
of the definition file. The other field is non-zero if it is imported with the GNU M2
keyword %INITIALIZE. Perhaps N_M2C can be used if there are enough empty fields?

D.7 N EHDECL

[.stabs]N_EHDECL
GNU C++ exception variable <<?>>.

"string is variable name"

Note: conflicts with N_MOD2.

D.8 N MOD2

[.stab?]N_MOD2
Modula2 info "for imc" (according to Ultrix V4.0)

Note: conflicts with N_EHDECL <<?>>

D.9 N CATCH

[.stabn]N_CATCH
GNU C++ catch clause

GNU C++ catch clause. The value is its address. The desc field is nonzero if this
entry is immediately followed by a CAUGHT stab saying what exception was caught.
Multiple CAUGHT stabs means that multiple exceptions can be caught here. If desc is
0, it means all exceptions are caught here.

Appendix D: Expanded Reference by Stab Type 59

D.10 N SSYM

[.stabn]N_SSYM
Structure or union element.

The value is the offset in the structure.

<<?looking at structs and unions in C I didn’t see these>>

D.11 N SCOPE

[.stab?]N_SCOPE
Modula2 scope information (Sun linker) <<?>>

D.12 Non-base registers on Gould systems

[.stab?]N_NBTEXT
[.stab?]N_NBDATA
[.stab?]N_NBBSS
[.stab?]N_NBSTS
[.stab?]N_NBLCS

These are used on Gould systems for non-base registers syms.

However, the following values are not the values used by Gould; they are the values
which GNU has been documenting for these values for a long time, without actually
checking what Gould uses. I include these values only because perhaps some someone
actually did something with the GNU information (I hope not, why GNU knowingly
assigned wrong values to these in the header file is a complete mystery to me).

240 0xf0 N_NBTEXT ??

242 0xf2 N_NBDATA ??

244 0xf4 N_NBBSS ??

246 0xf6 N_NBSTS ??

248 0xf8 N_NBLCS ??

D.13 N LENG

[.stabn]N_LENG
Second symbol entry containing a length-value for the preceding entry. The value is
the length.

Appendix E: Questions and Anomalies 61

Appendix E Questions and Anomalies

• For GNU C stabs defining local and global variables (N_LSYM and N_GSYM), the desc
field is supposed to contain the source line number on which the variable is defined. In
reality the desc field is always 0. (This behavior is defined in dbxout.c and putting
a line number in desc is controlled by ‘#ifdef WINNING_GDB’, which defaults to false).
GDB supposedly uses this information if you say ‘list var’. In reality, var can be a
variable defined in the program and GDB says ‘function var not defined’.

• In GNU C stabs, there seems to be no way to differentiate tag types: structures, unions,
and enums (symbol descriptor ‘T’) and typedefs (symbol descriptor ‘t’) defined at file
scope from types defined locally to a procedure or other more local scope. They all
use the N_LSYM stab type. Types defined at procedure scope are emitted after the
N_RBRAC of the preceding function and before the code of the procedure in which they
are defined. This is exactly the same as types defined in the source file between the
two procedure bodies. GDB over-compensates by placing all types in block #1, the
block for symbols of file scope. This is true for default, ‘-ansi’ and ‘-traditional’
compiler options. (Bugs gcc/1063, gdb/1066.)

• What ends the procedure scope? Is it the proc block’s N_RBRAC or the next N_FUN? (I
believe its the first.)

Appendix F: Using Stabs in Their Own Sections 63

Appendix F Using Stabs in Their Own Sections

Many object file formats allow tools to create object files with custom sections containing
any arbitrary data. For any such object file format, stabs can be embedded in special
sections. This is how stabs are used with ELF and SOM, and aside from ECOFF and
XCOFF, is how stabs are used with COFF.

F.1 How to Embed Stabs in Sections

The assembler creates two custom sections, a section named .stab which contains an array
of fixed length structures, one struct per stab, and a section named .stabstr containing all
the variable length strings that are referenced by stabs in the .stab section. The byte order
of the stabs binary data depends on the object file format. For ELF, it matches the byte
order of the ELF file itself, as determined from the EI_DATA field in the e_ident member of
the ELF header. For SOM, it is always big-endian (is this true??? FIXME). For COFF, it
matches the byte order of the COFF headers. The meaning of the fields is the same as for
a.out (see 〈undefined〉 [Symbol Table Format], page 〈undefined〉), except that the n_strx

field is relative to the strings for the current compilation unit (which can be found using
the synthetic N UNDF stab described below), rather than the entire string table.

The first stab in the .stab section for each compilation unit is synthetic, generated
entirely by the assembler, with no corresponding .stab directive as input to the assembler.
This stab contains the following fields:

n_strx Offset in the .stabstr section to the source filename.

n_type N_UNDF.

n_other Unused field, always zero. This may eventually be used to hold overflows from
the count in the n_desc field.

n_desc Count of upcoming symbols, i.e., the number of remaining stabs for this source
file.

n_value Size of the string table fragment associated with this source file, in bytes.

The .stabstr section always starts with a null byte (so that string offsets of zero
reference a null string), followed by random length strings, each of which is null byte term-
inated.

The ELF section header for the .stab section has its sh_link member set to the section
number of the .stabstr section, and the .stabstr section has its ELF section header sh_
type member set to SHT_STRTAB to mark it as a string table. SOM and COFF have no way
of linking the sections together or marking them as string tables.

For COFF, the .stab and .stabstr sections may be simply concatenated by the linker.
GDB then uses the n_desc fields to figure out the extent of the original sections. Similarly,
the n_value fields of the header symbols are added together in order to get the actual
position of the strings in a desired .stabstr section. Although this design obviates any
need for the linker to relocate or otherwise manipulate .stab and .stabstr sections, it also
requires some care to ensure that the offsets are calculated correctly. For instance, if the
linker were to pad in between the .stabstr sections before concatenating, then the offsets
to strings in the middle of the executable’s .stabstr section would be wrong.

64 STABS

The GNU linker is able to optimize stabs information by merging duplicate strings and
removing duplicate header file information (see 〈undefined〉 [Include Files], page 〈unde-
fined〉). When some versions of the GNU linker optimize stabs in sections, they remove the
leading N_UNDF symbol and arranges for all the n_strx fields to be relative to the start of
the .stabstr section.

F.2 Having the Linker Relocate Stabs in ELF

This section describes some Sun hacks for Stabs in ELF; it does not apply to COFF or
SOM.

To keep linking fast, you don’t want the linker to have to relocate very many stabs.
Making sure this is done for N_SLINE, N_RBRAC, and N_LBRAC stabs is the most important
thing (see the descriptions of those stabs for more information). But Sun’s stabs in ELF has
taken this further, to make all addresses in the n_value field (functions and static variables)
relative to the source file. For the N_SO symbol itself, Sun simply omits the address. To
find the address of each section corresponding to a given source file, the compiler puts out
symbols giving the address of each section for a given source file. Since these are ELF
(not stab) symbols, the linker relocates them correctly without having to touch the stabs
section. They are named Bbss.bss for the bss section, Ddata.data for the data section, and
Drodata.rodata for the rodata section. For the text section, there is no such symbol (but
there should be, see below). For an example of how these symbols work, See 〈undefined〉
[Stab Section Transformations], page 〈undefined〉. GCC does not provide these symbols;
it instead relies on the stabs getting relocated. Thus addresses which would normally be
relative to Bbss.bss, etc., are already relocated. The Sun linker provided with Solaris 2.2
and earlier relocates stabs using normal ELF relocation information, as it would do for
any section. Sun has been threatening to kludge their linker to not do this (to speed up
linking), even though the correct way to avoid having the linker do these relocations is to
have the compiler no longer output relocatable values. Last I heard they had been talked
out of the linker kludge. See Sun point patch 101052-01 and Sun bug 1142109. With the Sun
compiler this affects ‘S’ symbol descriptor stabs (see 〈undefined〉 [Statics], page 〈undefined〉)
and functions (see 〈undefined〉 [Procedures], page 〈undefined〉). In the latter case, to adopt
the clean solution (making the value of the stab relative to the start of the compilation
unit), it would be necessary to invent a Ttext.text symbol, analogous to the Bbss.bss,
etc., symbols. I recommend this rather than using a zero value and getting the address
from the ELF symbols.

Finding the correct Bbss.bss, etc., symbol is difficult, because the linker simply concat-
enates the .stab sections from each .o file without including any information about which
part of a .stab section comes from which .o file. The way GDB does this is to look for
an ELF STT_FILE symbol which has the same name as the last component of the file name
from the N_SO symbol in the stabs (for example, if the file name is ../../gdb/main.c, it
looks for an ELF STT_FILE symbol named main.c). This loses if different files have the
same name (they could be in different directories, a library could have been copied from
one system to another, etc.). It would be much cleaner to have the Bbss.bss symbols in
the stabs themselves. Having the linker relocate them there is no more work than having
the linker relocate ELF symbols, and it solves the problem of having to associate the ELF
and stab symbols. However, no one has yet designed or implemented such a scheme.

Appendix G: GNU Free Documentation License 65

Appendix G GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or nonc-
ommercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

66 STABS

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transpar-
ent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix G: GNU Free Documentation License 67

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

68 STABS

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Do-
cument, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix G: GNU Free Documentation License 69

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sect-
ions Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted do-
cument, and follow this License in all other respects regarding verbatim copying of that
document.

70 STABS

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix G: GNU Free Documentation License 71

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

72 STABS

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Symbol Types Index 73

Symbol Types Index

(Index is nonexistent)

