DSDP5 User Guide — Software for Semidefinite
Programming

Steven J. Benson
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL U.S.A.

http://www.mcs.anl.gov/ “benson

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA U.S.A

http://www.stanford.edu/ " yyye

Technical Report ANL/MCS-TM-277
September 21, 2005

Abstract

DSDP implements the dual-scaling algorithm for semidefinite programming. The source code if this
interior-point solver, written entirely in ANSI C, is freely available. The solver can be used as a subroutine
library, as a function within the MATLAB environment, or as an executable that reads and writes to files.
Initiated in 1997, DSDP has developed into an efficient and robust general purpose solver for semidefinite
programming. Although the solver is written with semidefinite programming in mind, it can also be used
for linear programming and other constraint cones.

The features of DSDP include:

e a robust algorithm with a convergence proof and polynomially bounded complexity under mild
assumptions on the data,

e primal and dual solutions,

e feasible solutions when they exist or approximate certificates of infeasibity,

e initial points that can be feasible or infeasible,

e relatively low memory requirements for an interior-point method,

e sparse and low-rank data structures,

e extensibility that allows applications to customize the solver and improve its performance,
e a subroutine library that enables it to be linked to larger applications,

e scalable performance for large problems on parallel architectures, and

e a well documented interface and examples of its use.

The package has been used in many applications and tested for efficiency, robustness, and ease of use.
We welcome and encourage further use under the terms of the license included in the distribution.

1 NOTATION 1

1 Notation

The DSDP package implements a dual-scaling algorithm to find solutions (X, y;, S;) to linear and semidefinite
optimization problems of the form

p p
(P) inf Z<Cj’Xj> subject to Z<Ai,j7Xj>:bi7 i:l,...,m, XjGKj,
j=1

j=1
(D) sup sz Yi subject to ZAi’jyi—i_Sj :Cj, j=1...,p, Sj EK]'.
1=1 =1

In this formulation, b; and y; are real scalars.

For semidefinite programming, the data A; ; and C; are symmetric matrices of dimension n; (S%), and
the cone K is the set of symmetric positive semidefinite matrices of the same dimension. The inner product
(C,X):=CeX =3, ,C X, and the symbol > (>) means the matrix is positive (semi)definite. In linear
programming, A; and C are vectors of real scalars, K is the nonnegative orthant, and the inner product
(C, X) is the usual vector inner product.

More generally, users specify Cj, 4; ; from an inner-product space V; that intersects a cone K;. Using
the notation summarized in Table 1, let the symbol A denote the linear map A : V — R™ defined by
(AX); = (4;,X); its adjoint A* : R™ — V is defined by A*y = >_.", y;A;. Equivalent expressions for (P)
and (D) can be written

(P) inf (C,X) subject to AX =b, X e K,
(D) sup b’y subjectto A*'y+S=C, ScK.

Formulation (P) will be referred to as the primal problem, and formulation (D) will be referred to as the
dual problem. Variables that satisfy the linear equations are called feasible, whereas the others are called
infeasible. The interior of the cone will be denoted by K, and the interior feasible sets of (P) and (D) will
be denoted by F°(P) and FY(D), respectively.

Table 1: Basic terms and notation for linear (LP), semidefinite (SDP), and conic programming.

Term LP SDP Conic Notation
Dimension n n >on; n
Data Space (3 C, A;) R"” g ie...oV, Vv
Cone x,s >0 X,8~-0 X, SeKi®..0K, X,SeK
Interior of Cone x,8 >0 X, 85>0 X,Sekl@...@Kp X,Sek
Inner Product 'z CeX Y A{Cj, X;5) (C, X)
Norm el 1 X1l (T 11 1%) 2 Byl
Product [T151 ... Znsn)T XS X151 @...8X,S, XS
Identity Element ...17 1 L®...ael, I
Inverse [1/s1...1/s,])T S—1 Site...e8;! S—1

Dual Barrier > Ins; Indet S > Indet S; Indet S

2 DUAL-SCALING ALGORITHM 2

2 Dual-Scaling Algorithm

This section summarizes the dual-scaling algorithm for solving (P) and (D). For simplicity, parts of this
discussion assume that the cone is a single semidefinite block, but an extension of the algorithm to multiple
blocks and other cones is relatively simple. This discussion also assumes that the A;s are linearly independent,
there exists X € FO(P), and a starting point (y, S) € F(D) is known. The next section discusses how DSDP
generalizes the algorithm to relax these assumptions.

Tt is well known that under these assumptions, both (P) and (D) have optimal solutions X* and (y*, S*),
which are characterized by the equivalent conditions that the duality gap (X*,S*) is zero and the product
X*S* is zero. Moreover, for every v > 0, there exists a unique primal-dual feasible solution (X,,y,,S))
satisfies the perturbed optimality equation XS, = vI. The set of all solutions C = {(X,,y,,S,) : v > 0} is
known as the central path, and C serves as the basis for path-following algorithms that solve (P) and (D).
These algorithms construct a sequence {(X,y,S)} C F°(P) x F°(D) in a neighborhood of the central path
such that the duality gap (X, S) goes to zero. A scaled measure of the duality gap that proves useful in the
presentation and analysis of path-following algorithms is u(X,S) = (X, S)/n for all (X,S) € K x K. Note
that for all (X,S) € K x K, we have u(X,S) > 0 unless XS = 0. Moreover, u(X,,S,) = v for all points
(X, yv,Sy) on the central path.

The dual-scaling algorithm applies Newton’s method to AX = b, A*y +85 = C, and X = vS~! to
generate

AX +AX) = b, (1)
A (Ay) +AS = 0, (2)
vSTIASSTtHAX = wST - X, (3)

Equations (1)-(3) will be referred to as the Newton equations; their Schur complement is

(A, 87TALS™) - (A, 5714,571)
: : : Ay=b—vAS. (@)

v

(A, S71ALS7YY oo (A, S71A,STY

The left-hand side of this linear system is positive definite when .S € K. In this manuscript, it will sometimes
be referred to as M. DSDP computes A’y := M ~1b and A"y := M~1AS~!. For any v,

1
Ay = =Ny — Ay
v

solves (4). We use the subscript to emphasize that v can be chosen after computing A’y and A”y and that
the value chosen for the primal step may be different from the value chosen for the dual step.

Using A,y and (3), we get
X(w)=v(S'+5 (A Ay)S™), (5)

which satisfies AX () = b. Because X (v) € K if and only if
C—A(y—Ay) €K, (6)
DSDP applies a Cholesky factorization on (6) to test the condition. If X (v) € K, a new upper bound
z2:=(C,X(v)) =b"y+ (X(),S) =bTy +v (A,yTAS™! +n) (7)

can be obtained without explicitly computing X (v). The dual-scaling algorithm does not require X (v) to
compute the step direction defined by (4), so DSDP does not compute it unless specifically requested. This
feature characterizes the algorithm and its performance.

2

DUAL-SCALING ALGORITHM

Either (y, S) or X reduces the the dual potential function

Y(y) := plog(z — bTy) — Indet S

enough at each iteration to achieve linear convergence.

1:
2:
3:
4:

5
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Setup data structures and factor A;.
Choose y such that § «— C' — A*y € K.
Choose an upper bound z and a barrier parameter v.
for kK —0,..., kpar do
Monitor solution and check for convergence.
Compute M and AS~!.
Solve MA'y = b, MA"y = AS~1.
if C — A*(y— A,y) € K then
Z2—bly+v (Al,yT.AS_l + n)
Ty, Ay — Ay, i —v.
end if
Select v.
Find a4 to reduce 1, and set y «— y + aqA,y, S — C — A*y.
for kk=1,...,kkpq. do
Compute AS~1!.
Solve MA°y = AS—1.
Select v.

Find a. to reduce ¢,, and set y «— y + a Ay, S «— C — A*y.

end for
end for o
Optional: Compute X using g, Ay, f.

3 FEASIBLE POINTS, INFEASIBLE POINTS, AND STANDARD FORM 4

3 Feasible Points, Infeasible Points, and Standard Form

The convergence of the algorithm assumes that both (P) and (D) have an interior feasible region and the
current solutions are elements of the interior. To satisfy these assumptions, DSDP bounds the variables y
such that | < y < w where [,u € R™. By default, [; = —10” and u; = 107 for each 4 from 1 through
m. Furthermore, DSDP bounds the trace of X by a penalty parameter I whose default value is I' = 10'°.
Including these bounds and their associated Lagrange variables 2! € R™, z* € R™, and 7, DSDP solves
following pair of problems:

(PP) minimize (C,X) + ufa* — [Tg!
subject to AX + v — = b,
(I, X) < T,
X €K, ¥ >0, x> 0.
(DD) maximize by —T'r
subject to C—A*y+Ir = SeK,
I <y<u, r > 0.

The reformulations (PP) and (DD) are bounded and feasible, so the optimal objective values to this pair of
problems are equal. Furthermore, (PP) and (DD) can be expressed in the form of (P) and (D).

Unless the user provides a feasible point y, DSDP uses the y values provided by the application (usually
all zeros) and increases r until C' — A*y + Ir € K. Large values of 7 improve robustness, but smaller values
often improve performance. In addition to bounding X, the parameter I" penalizes infeasiblity in (D) and
forces r toward zero. The nonnegative variable r increases the dimension m by one and adds an inequality
to the original problem. The M matrix treats r separately by storing the corresponding row/column as a
separate vector and applying the Sherman-Morrison-Woodbury formula. Unlike other inequalities, DSDP
allows 1 to reach the boundary of the cone. Once r = 0, it is fixed and effectively removed from the problem.

The bounds on y add 2m inequality constraints to the original problem; and, with a single exception,
DSDP treats them the same as the constraints on the original model. The lone difference between these
bounds and the other constraints is that DSDP explicitly computes the corresponding Lagrangian variables
x! and 2 at each iteration to quantify the infeasibility in (P). The bounds I and u penalize infeasiblity in (P),
force #! and z* toward zero, and prevent numerical difficulties created by variables with large magnitude.

The solution to (PP) and (DD) is a solution to (P) and (D) when the optimal objective values of (P) and
(D) exist and are equal, and the bounds are sufficiently large. DSDP identifies unboundedness or infeasibility
in (P) and (D) through examination of the solutions to (PP) and (DD). Given parameters ep and €p,

o if r < e, |AX — b||l/{I,X) > €p, and by > 0, it characterizes (D) as unbounded and (P) as
infeasible;

o if r > ¢, and || AX — b||oo/(I, X) < €p, it characterizes (D) as infeasible and (P) as unbounded.

Normalizing unbounded solutions will provide an approximate certificate of infeasibility. Larger bounds may
improve the quality of the certificate of infeasibility and permit additional feasible solutions, but they may
also create numerical difficulties in the solver.

4 ITERATION MONITOR)

4 Iteration Monitor

The progress of the DSDP solver can be monitored by using standard output printed to the screen. The data
below shows an example of this output.

Iter PP Objective DD Objective PInfeas DInfeas Nu StepLength Pnrm
0 1.00000000e+02 -1.13743137e+05 2.2e+00 3.8e+02 1.1e+05 0.00 0.00 0.00
1 1.36503342e+06 -6.65779055e+04 5.1e+00 2.2e+02 1.1e+04 1.00 0.33 4.06
2 1.36631922e+05 -6.21604409e¢+03 5.4e+00 1.9e+01 4.5e+02 1.00 1.00 7.85
3 5.45799174e+03 -3.18292092e+03 1.5e-03 9.1e+00 7.5e+01 1.00 1.00 17.63
4 1.02930559e+03 -5.39166166e+02 1.1e-05 5.3e-01 2.7e+01 1.00 1.00 7.58
5 4.30074471e+02 -3.02460061e+01 3.3e-09 0.0e+00 5.6e+00 1.00 1.00 11.36
11 8.99999824e+00 8.99999617e+00 1.1le-16 0.0e+00 1.7e-08 1.00 1.00 7.03

12 8.99999668e+00 8.99999629e+00 2.9e-19 0.0e+00 3.4e-09 1.00 1.00 14.19
The program will print a variety of statistics for each problem to the screen.
Iter the iteration number.

PP Objective the upper bound z and objective value in (PP).
DD Objective the objective value in (DD).
PInfeas the primal infeasiblity in (P) is ||2% — 2| oo-
DInfeas the dual infeasibility in (D) is the variable r.
Nu the barrier parameter v.
StepLength the multiple of the step-directions in (P) and (D).
Porm the proximity to the central path: |V p-1.

5 READING SDPA FILES 6

5 Reading SDPA files

DSDP can be used if the user has a problem written in sparse SDPA format. These executables have been
put in the directory DSDPROOT/exec/. The file name should follow the executable. For example,

> dsdpb5 truss4.dat-s
Other options can also be used with DSDP. These should follow the SDPA filename.

-gaptol <rtol>

-mu0 <muO>
-r0 <r0>
-boundy <le7>

-save <filename>

-y0 <filename>

-maxit <iter>

-rho <3>

—-dobjmin <dd>

-penalty <1e8>
-print <1>

-bigM <0>

-dloginfo <0>

-dlogsummary <1>

to stop the problem when the relative duality gap is
less than this number.

to specify the initial barrier parameter v.
to specify the initial value of r in (DD).
to bound the magnitude of each variable y in (DD).

to save the solution into a file with a format similar to
SDPA.

to specify an initial vector y in (D).

to stop the problem after a specified number of itera-
tions.

to set the potential parameter p to this multiple of the
conic dimension n.

to add a constraint that sets a lower bound on the ob-
jective value at the solution.

to set the penalty parameter I for infeasibility in (D).
print standard output at each k iteration.

treat the inequality » > 0 in (DD) as other inequalities
and keep it positive.

to print more detailed output. Higher number produce
more output.

to print detailed timing information about each domi-
nant computations.

6 APPLYING DSDP TO GRAPH PROBLEMS 7

6 Applying DSDP to Graph Problems

Within the directory DSDPROOT/examples/ is a program maxcut . c which reads a file containing a graph,
generates the semidefinite relaxation of a maximum cut problem, and solves the relaxation. For example,

> maxcut graphl

The first line of the graph should contain two integers. The first integer states the number of nodes in
the graph, and the second integer states the number of edges. Subsequent lines have two or three entries
separated by a space. The first two entries specify the two nodes that an edge connects. The optional third
entry specifies the weight of the node. If no weight is specified, a weight of 1 will be assigned.

The same options that apply to reading SDPA files also apply here.

A similar program reads a graph from a file, formulates a minimum bisection problem or Lovasz ©
problem, and solves it. For example,

> theta graphl
reads the graph in the file graphl and solves this graph problem.

Acknowledgments

We thank Xiong Zhang and Cris Choi for their help in developing this code. Xiong Zhang, in particular, was
fundamental to the initial version of DSDP. We also thank Hans Mittelmann for his efforts in testing and
benchmarking the different versions of the code. Finally, we thank all of the users who have commented on
previous releases and suggested improvements to the software. Their contributions have made DSDP a more
reliable, robust, and efficient package.

This work was supported by the Mathematical, Information, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38.

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (” Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

